共查询到20条相似文献,搜索用时 0 毫秒
1.
H J Rahmsdorf A Sch?nthal P Angel M Litfin U Rüther P Herrlich 《Nucleic acids research》1987,15(4):1643-1659
2.
3.
4.
Kawane T Hou JQ Sato H Sugita Y Bannai S Ishii T 《Biochimica et biophysica acta》1999,1427(2):155-160
Macrophage-specific metalloelastase (MME) hydrolyzes elastin and other matrix proteins and plays an important physiological role in tissue remodeling and pathological tissue destruction. We have examined the effects of diethylmaleate (DEM), an electrophilic agent that reacts with sulfhydryls, on the expression of MME mRNA in mouse peritoneal macrophages. Quantification of MME mRNA by Northern blot analysis revealed that basal mRNA levels were quite low in freshly isolated cells, although mRNA levels increased markedly and reached a steady level within 12 h when cells were cultured in a serum-supplemented RPMI 1640 medium. When macrophages were challenged with DEM at 0.05-1.0 mM for 8 h the expression of the MME gene was enhanced further. In the presence of 0.1 mM DEM, the level of the MME mRNA increased 2-fold compared to the control levels after 6-9 h and decreased to control levels in 24 h. Other electrophilic agents, catechol and 1-chloro-2,4-dinitrobenzene, also enhanced MME gene expression. However, oxidative stress agents such as hydrogen peroxide, menadione, paraquat (an O-2 generator), sodium arsenite and cadmium chloride had no effect on MME gene expression. These results indicate that the electrophilic agents selectively enhance the expression of MME mRNA during primary culture of the macrophages. 相似文献
5.
Bacterial lipopolysaccharide and gamma interferon induce transcription of beta interferon mRNA and interferon secretion in murine macrophages 总被引:4,自引:3,他引:4 下载免费PDF全文
Bacterial lipopolysaccharide (LPS) induces interferon (IFN) secretion and an antiviral state in murine peritoneal macrophages (PM). These cells secrete predominantly IFN-beta, as shown by neutralization assays with monoclonal antibodies. Secretion of IFN-beta is also induced in PM by IFN-gamma. LPS and IFN-gamma synergistically stimulated PM to produce IFN in amounts almost comparable to those induced by infection with Newcastle disease virus. Low levels of IFN-beta mRNA can be detected in freshly harvested PM by hybridization assays. The accumulation of this mRNA is markedly increased in PM treated with LPS or IFN-gamma, and it is further enhanced in the presence of the inhibitor of protein synthesis, cycloheximide. Similar studies were carried out on the RAW 264.7 line of transformed macrophages. These cells are induced to secrete IFN-beta by LPS but not by IFN-gamma, suggesting that this cytokine may elicit such specific response only in PM. IFN-beta mRNA is undetectable in untreated RAW 264.7 cells, and accumulation of this mRNA is induced by LPS but not by IFN-gamma. The secretion of IFN induced by these agents in PM and by LPS in RAW 264.7 cells and the corresponding accumulation of IFN-beta mRNA are blocked by an inhibitor of protein kinase C, staurosporine. The activity of this kinase is apparently necessary to stimulate accumulation of IFN-beta mRNA. The induction of IFN-beta by IFN-gamma appears to be a characteristic response of PM and may be at least in part responsible for the resistance of these cells to viral infections. 相似文献
6.
7.
8.
9.
Two-dimensional polyacrylamide gel electrophoresis (2D PAGE) analysis of biosynthetically labeled proteins of murine peritoneal macrophages elicited by inflammatory and activating stimuli indicated that the accumulation of a small number of cell-associated proteins was altered after in vitro treatment with bacterial lipopolysaccharide (LPS). Both increases and decreases in the accumulation of specific proteins were observed after LPS stimulation. Proteins of approximately 87, 43, 37, 30, and 28 Kd were similarly regulated by LPS in proteose peptone-, P. acnes-, and M. bovis BCG-elicited macrophages. Thioglycollate-elicited and resident peritoneal macrophages showed very few changes in the pattern of proteins synthesized after LPS treatment. Many of the proteins whose accumulation was increased by LPS in the elicited macrophages (proteins of approximately 87, 52, 43, 37, and 28 Kd) were already synthesized at high levels in resident macrophages. LPS stimulation also altered the accumulation of many of the same proteins in bone marrow-derived macrophages, indicating the lack of T lymphocyte influence on the LPS-induced changes in macrophages. LPS stimulation of highly purified B cells caused changes in the accumulation of several proteins of 70 and 78 Kd, which were different from those regulated by LPS in peritoneal macrophages. 相似文献
10.
Macrophage activation for tumoricidal and microbicidal functions can be achieved in part by treatment with recombinant interferon gamma (IFN gamma) in vitro. We have previously demonstrated that IFN gamma treatment of murine peritoneal macrophages results in a two- to five-fold increase in the activity of Ca++, phospholipid dependent protein kinase C (Hamilton et al., J. Biol. Chem., 260:1378, 1985). We now report that this effect was not dependent upon continuing protein synthesis since treatment with cycloheximide under conditions where normal protein synthesis was inhibited by greater than 95% had no effect upon the development of increased enzyme activity. Examination of Ca++ and phospholipid requirements revealed no differences between enzyme isolated from control or IFN gamma treated cells. Similarly, protein kinase C from control and IFN gamma-treated cells could not be distinguished in terms of the diacylglycerol (DG) or phorbol diester (PMA) concentration required for stimulation of activity. Kinetic analysis of the ATP (as substrate) concentration dependence revealed that both control and treated enzyme preparations (either basal or stimulated) had comparable Km values. Maximum velocity (Vmax) was increased both by IFN gamma treatment and also by stimulation with DG or PMA. The major difference which could be discerned between protein kinase C derived from control versus IFN gamma-treated macrophages was the magnitude of the response to DG or PMA; IFN gamma treatment increased the stimulation index (i.e., ratio of basal to stimulated activity) by a factor of two to four fold. These results suggest that IFN gamma treatment leads to reversible modulation of existing protein kinase C resulting in increased catalytic efficiency when exposed to an appropriate stimulant. 相似文献
11.
12.
13.
We have used a Chinese hamster ovary cell line (DF3) that overproduces ornithine decarboxylase (ODC) to examine various parameters in the cell cycle-dependent regulation of this enzyme. Under a variety of conditions, alterations in the activity of ODC were accompanied by parallel changes in the levels of the protein, as measured by immunologically cross-reactive material (CRM). While putrescine has been known to suppress the induction of ODC, we have found that in DF3 cells 10(-4)M ornithine completely suppresses ODC activity. We also show that the levels of ODC mRNA are not modulated when the levels of ODC activity and CRM change drastically. The data can be interpreted in terms of models involving either an effect of putrescine on the translation of ODC mRNA, or on the activity of a relatively specific protease with ODC as its target. 相似文献
14.
15.
Posttranscriptional regulation of ribosomal protein S20 and stability of the S20 mRNA species 总被引:15,自引:8,他引:7 下载免费PDF全文
G A Mackie 《Journal of bacteriology》1987,169(6):2697-2701
16.
17.
Complex regulation of tumor necrosis factor mRNA turnover in lipopolysaccharide-activated macrophages 总被引:6,自引:0,他引:6
The turnover of tumor necrosis factor (TNF) mRNA in permanently transfected macrophages of the RAW 264.7 cell line was studied directly (by Northern blot analysis using a probe specific for TNF) and indirectly (through studies of the turnover of various reporter mRNAs, either containing or lacking the TNF 3' untranslated region (UTR)). The TNF mRNA was found to be very unstable in RAW 264.7 cells. Instability appeared to result from two distinguishable nucleolytic processes. The major degradative process involved was not specific for the TNF 3' UTR of reporter mRNAs, and was inhibited by actinomycin D pretreatment. It appeared to be expressed constitutively, in that cell activation by lipopolysaccharide (LPS) did not modify message stability. When cells were treated with actinomycin D, a minor nucleolytic activity was 'uncovered'. This minor activity was noted to increase with time following LPS activation. It also exhibited specificity, in that reporter mRNAs bearing the 3' UTR of TNF were more susceptible to degradation in the presence of actinomycin D than were constructs lacking the 3' UTR of TNF. Thus, TNF mRNA turnover appears complex, and depends upon at least two separable degradative pathways. The TNF 3' UTR apparently contributes only modestly to the instability of this mRNA under normal conditions. 相似文献
18.
19.
S R Brandwein E Skamene J A Aubut F Gervais M N Nesbitt 《Journal of immunology (Baltimore, Md. : 1950)》1987,138(12):4263-4269
The production of IL 1 by LPS-stimulated peritoneal macrophages from inbred mouse strains was studied. Macrophages from A/J (A) mice were deficient in IL 1 production, when compared with high IL 1-producing strains, including C57BL/6J (B). The difference between A and B macrophages was maintained over a wide LPS concentration range and throughout a 72-hr incubation period. Because of these differences, it was possible to investigate the mechanisms regulating IL 1 production by applying techniques of genetic analysis by using recombinant inbred (RI) strains derived from the A and B progenitors. A strain distribution pattern (SDP) of IL 1 production (low/high response) was obtained with the use of 15 AXB/BXA RI strains. This suggested the presence of a major gene locus controlling the production of IL 1 in response to LPS stimulation, with allelic differences presumably resulting in deficient or efficient IL 1 production. In addition, there appeared to be one or more other loci involved in determining the magnitude of the IL 1 response to LPS in the responder mice. The IL 1 response did not appear to be linked to the major histocompatibility complex, since B10.A mice (which share the same H-2a haplotype as A/J) were efficient IL 1 producers. There did not appear to be any correlation between the degree of IL 1 production and the magnitude of the peritoneal macrophage inflammatory response, or between IL 1 production and LPS responsiveness (as determined by splenocyte proliferation). SDP analysis also indicated that the IL 1 response was not linked to macrophage tumoricidal activity. A comparison of the SDP for IL 1 production with a library of SDP for other known genetic waits suggested linkage with at least four loci on chromosome 1. 相似文献
20.
To identify the TLR4-initiated signaling events that couple to formyl peptide receptor (FPR)1 mRNA stabilization, macrophages were treated with LPS along with a selection of compounds targeting several known signaling pathways. Although inhibitors of protein tyrosine kinases, MAPKs, and stress-activated kinases had little or no effect on the response to LPS, LY294002 (LY2) and parthenolide (an IkappaB kinase inhibitor) were both potent inhibitors. LY2 but not parthenolide blocked the LPS-induced stabilization of FPR1 mRNA. Although both LY2 and wortmannin effectively blocked PI3K activity, wortmannin had little effect on FPR1 expression and did not modulate the decay of FPR1 mRNA. Moreover, although LY2 was demonstrated to be a potent inhibitor of PI3K activity, a structural analog of LY2, LY303511 (LY3), which did not inhibit PI3K, was equally effective at preventing LPS-stimulated FPR1 expression. The mammalian target of rapamycin activity (measured as phospho-p70S6 kinase) was activated by LPS but not significantly blocked by LY2. In addition, although rapamycin blocked mTOR activity, it did not inhibit FPR1 mRNA expression. Finally, the mechanisms involved in stabilization of FPR1 by LPS could be distinguished from those involved in stabilization of AU-rich mRNAs because the prolonged half-life of FPR1 mRNA was insensitive to the inhibition of p38 MAPK. These findings demonstrate that LY2/LY3 targets a novel TLR4-linked signaling pathway that selectively couples to the stabilization of FPR1 mRNA. 相似文献