首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As scientists, we are at least as excited about the open questions—the things we do not know—as the discoveries. Here, we asked 15 experts to describe the most compelling open questions in plant cell biology. These are their questions: How are organelle identity, domains, and boundaries maintained under the continuous flux of vesicle trafficking and membrane remodeling? Is the plant cortical microtubule cytoskeleton a mechanosensory apparatus? How are the cellular pathways of cell wall synthesis, assembly, modification, and integrity sensing linked in plants? Why do plasmodesmata open and close? Is there retrograde signaling from vacuoles to the nucleus? How do root cells accommodate fungal endosymbionts? What is the role of cell edges in plant morphogenesis? How is the cell division site determined? What are the emergent effects of polyploidy on the biology of the cell, and how are any such “rules” conditioned by cell type? Can mechanical forces trigger new cell fates in plants? How does a single differentiated somatic cell reprogram and gain pluripotency? How does polarity develop de-novo in isolated plant cells? What is the spectrum of cellular functions for membraneless organelles and intrinsically disordered proteins? How do plants deal with internal noise? How does order emerge in cells and propagate to organs and organisms from complex dynamical processes? We hope you find the discussions of these questions thought provoking and inspiring.

We asked 15 experts to address what they consider to be the most compelling open questions in plant cell biology and these are their questions.  相似文献   

2.
How proteins enter the nucleus   总被引:127,自引:0,他引:127  
P A Silver 《Cell》1991,64(3):489-497
Nuclear protein import is a selective process. Proteins destined for the nucleus contain NLSs. These short stretches of amino acids interact with proteins located in the cytoplasm, on the nuclear envelope, and/or at the nuclear pore complex. Following binding at the pore complex, proteins are translocated through the pore into the nucleus in a manner requiring ATP. The biochemical dissection of the nuclear pore complex has begun. Alteration of protein import into the nucleus is emerging as a new and complex form of regulation. However, we are left with the following problems: How do proteins move through the cytoplasm to reach the nuclear pore? How does the nuclear pore complex open and close in a selective manner? How is ATP utilized during import? And finally, how is bi-directional traffic of both proteins and RNA through the pore regulated?  相似文献   

3.
4.
Reconstitution of vesicular transport events and the molecular and genetic analysis of the secretory pathway have taken the field of membrane traffic into a new era. Already, proteins have been discovered that facilitate multiple transport steps, and studies of the identities and modes of action of additional transport components, such as those that specify the targets of transport vesicles, will soon follow. Even after we understand how transport vesicles form, find their targets, and then fuse, other fundamental questions will still remain. How are proteins sorted into distinct transport vesicles? How is the directionality of protein transport achieved? How do organelles maintain their identities in the face of large volumes of membrane traffic? Finally, how is membrane traffic regulated? Answers to each of these fundamental questions are likely to be available in the not-too-distant future.  相似文献   

5.
How fast? How strong? How many? So what? Why do numbers matter in biology? Chromatin binding proteins are forever in motion, exchanging rapidly between bound and free pools. How do regulatory systems whose components are in constant flux ensure stability and flexibility? This review explores the application of quantitative and mathematical approaches to mechanisms of epigenetic regulation. We discuss methods for measuring kinetic parameters and protein quantities in living cells, and explore the insights that have been gained by quantifying and modelling dynamics of chromatin binding proteins.  相似文献   

6.
This paper argues that the current dogma that juvenile hormones are structurally unique and constitute a family of derivatives of farnesoic acid which are produced by the corpus allatum (CA), secreted into the hemolymph, frequently transported by binding proteins, enter cells by diffusion across the cell membrane and there the products of the CA interact in some way with the genome, probably via nuclear receptors of the steroid superfamily, may not be tenable. It does so by examining the following questions. How many JHs are there? Are there other sources of JH in insects? Are there non-farnesoids with JH activity in insects? How does JH get into cells? Is the product of the CA the effective hormone? How many modes of action are there? How many receptors are there?  相似文献   

7.
The scientific study of protein surfactant interactions goes back more than a century, and has been put to practical uses in everything from the estimation of protein molecular weights to efficient washing powder enzymes and products for personal hygiene. After a burst of activity in the late 1960s and early 1970s that established the general principles of how charged surfactants bind to and denature proteins, the field has kept a relatively low profile until the last decade. Within this period there has been a maturation of techniques for more accurate and sophisticated analyses of protein-surfactant complexes such as calorimetry and small angle scattering techniques. In this review I provide an overview of different useful approaches to study these complexes and identify eight different issues which define central concepts in the field. (1) Are proteins denatured by monomeric surfactant molecules, micelles or both? (2) How does unfolding of proteins in surfactant compare with "proper" unfolding in chemical denaturants? Recent work has highlighted the role of shared micelles, rather than monomers, below the critical micelle concentration (cmc) in promoting both protein denaturation and formation of higher order structures. Kinetic studies have extended the experimentally accessible range of surfactant concentrations to far above the cmc, revealing numerous different modes of denaturation by ionic surfactants below and above the cmc which reflect micellar properties as much as protein unfolding pathways. Uncharged surfactants follow a completely different denaturation strategy involving synergy between monomers and micelles. The high affinity of charged surfactants for proteins means that unfolding pathways are generally different in surfactants versus chemical denaturants, although there are common traits. Other issues are as follows: (3) Are there non-denaturing roles for SDS? (4) How reversible is unfolding in SDS? (5) How do solvent conditions affect the way in which surfactants denature proteins? The last three issues compare SDS with "proper" membranes. (6) Do anionic surfactants such as SDS mimic biological membranes? (7) How do mixed micelles interact with globular proteins? (8) How can mixed micelles be used to measure the stability of membrane proteins? The growing efforts to understand the unique features of membrane proteins have encouraged the development of mixed micelles to study the equilibria and kinetics of this class of proteins, and traits which unite globular and membrane proteins have also emerged. These issues emphasise the amazing power of surfactants to both extend the protein conformational landscape and at the same time provide convenient and reversible short-cuts between the native and denatured state for otherwise obdurate membrane proteins.  相似文献   

8.
Polypeptide translocation across the endoplasmic reticulum membrane.   总被引:6,自引:0,他引:6  
Many polypeptides have been postulated to play direct roles in secretory protein translocation based on genetic criteria, cross-linking, and antibody inhibition. Much of the excitement in the next few years will come from the resolution of current controversies. What is the nature of the ribosome receptor, and is it essential for translocation? Is BiP required for translocation in mammalian cells? Are all of the polypeptides of signal peptidase and oligosaccharyltransferase required for catalytic function, or do some of them mediate steps of protein translocation? One of the best ways to resolve these problems will be to determine the importance of each in reconstituted translocation reactions by fractionation or immunodepletion, or by analysis in a purified reaction. Another approach is to identify homologues of these molecules in S. cerevisiae and to assess their importance in in vivo translocation. Several mechanistic questions remain to be addressed as well. Does the protein translocation apparatus consist of protein, or lipid, or both? How are integral membrane proteins inserted? How is the translocon gated to admit only unfolded or partially folded secretory polypeptides and to exclude cytoplasmic molecules? The answers to these questions will illuminate a basic enigma in cell biology that has remained unanswered for many years.  相似文献   

9.
10.
Spores of Bacillus species can remain in their dormant and resistant states for years, but exposure to agents such as specific nutrients can cause spores'' return to life within minutes in the process of germination. This process requires a number of spore-specific proteins, most of which are in or associated with the inner spore membrane (IM). These proteins include the (i) germinant receptors (GRs) that respond to nutrient germinants, (ii) GerD protein, which is essential for GR-dependent germination, (iii) SpoVA proteins that form a channel in spores'' IM through which the spore core''s huge depot of dipicolinic acid is released during germination, and (iv) cortex-lytic enzymes (CLEs) that degrade the large peptidoglycan cortex layer, allowing the spore core to take up much water and swell, thus completing spore germination. While much has been learned about nutrient germination, major questions remain unanswered, including the following. (i) How do nutrient germinants penetrate through spores'' outer layers to access GRs in the IM? (ii) What happens during the highly variable and often long lag period between the exposure of spores to nutrient germinants and the commitment of spores to germinate? (iii) What do GRs and GerD do, and how do these proteins interact? (iv) What is the structure of the SpoVA channel in spores'' IM, and how is this channel gated? (v) What is the precise state of the spore IM, which has a number of novel properties even though its lipid composition is very similar to that of growing cells? (vi) How is CLE activity regulated such that these enzymes act only when germination has been initiated? (vii) And finally, how does the germination of spores of clostridia compare with that of spores of bacilli?  相似文献   

11.
Molecular mechanisms of ionizing radiation-induced apoptosis.   总被引:7,自引:0,他引:7  
Ionizing radiation activates not only signalling pathways in the nucleus as a result of DNA damage, but also signalling pathways initiated at the level of the plasma membrane. Proteins involved in DNA damage recognition include poly(ADP ribose) polymerase (PARP), DNA-dependent protein kinase, p53 and ataxia- telangiectasia mutated (ATM). Many of these proteins are inactivated by caspases during the execution phase of apoptosis. Signalling pathways outside the nucleus involve tyrosine kinases such as stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK), protein kinase C, ceramide and reactive oxygen species. Recent evidence shows that tumour cells resistant to ionizing radiation-induced apoptosis have defective ceramide signalling. How these signalling pathways converge to activate the caspases is presently unknown, although in some cell types a role for calpain has been suggested.  相似文献   

12.
J E Rothman 《Cell》1989,59(4):591-601
Subcellular compartments in which folding and assembly of proteins occur seem to have a set of PCB proteins capable of mediating these and related processes, such as translocation across membranes. When a domain of a polypeptide chain emerges from a ribosome during synthesis or from the distal side of a membrane during translocation, successive segments of the chain are incrementally exposed to solvent and yet are unlikely to be able to fold. This topological restriction on folding likely mandates a need for PCB proteins to prevent aggregation. Catalysis of topologically restricted folding by PCB proteins is likely to involve both an antifolding activity that postpones folding until entire domains are available and, more speculatively, a folding activity resulting from a programmed stepwise release that employs the energy of ATP hydrolysis to ensure a favorable pathway. We are left with a new set of problems. How do proteins fold in cells? What are the sequences or structural signals that dictate folding pathways? The new challenge will be to understand folding as a combination of physical chemistry, enzymology, and cell biology.  相似文献   

13.
14.
Surface-active amphiphiles find applications in a wide range of areas of industry such as agrochemicals, personal care, and pharmaceuticals. In many of these applications, interaction with cell membranes is a key factor for achieving their purpose. How do amphiphiles interact with lipid membranes? What are their bases for membrane specificity? Which biophysical properties of membranes are susceptible to modulation by amphiphilic membrane-effectors? What aspects of this interaction are important for performing their function? In our work on membrane biophysics over the years, questions like these have arisen and we now share some of our findings and discuss them in this review. This topic was approached focusing on the membrane properties and their alterations rather than on the amphiphile structure requirements for their interaction. Here, we do not aim to provide a comprehensive list of the modes of action of amphiphiles of biological interest but to help in understanding them.  相似文献   

15.
New technologies for the purification of stable membrane proteins have emerged in recent years, in particular methods that allow the preparation of membrane proteins with their native lipid environment. Here, we look at the progress achieved with the use of styrene-maleic acid copolymers (SMA) which are able to insert into biological membranes forming nanoparticles containing membrane proteins and lipids. This technology can be applied to membrane proteins from any host source, and, uniquely, allows purification without the protein ever being removed from a lipid bilayer. Not only do these SMA lipid particles (SMALPs) stabilise membrane proteins, allowing structural and functional studies, but they also offer opportunities to understand the local lipid environment of the host membrane. With any new or different method, questions inevitably arise about the integrity of the protein purified: does it retain its activity; its native structure; and ability to perform its function? How do membrane proteins within SMALPS perform in existing assays and lend themselves to analysis by established methods? We outline here recent work on the structure and function of membrane proteins that have been encapsulated like this in a polymer-bound lipid bilayer, and the potential for the future with this approach. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain.  相似文献   

16.
Secretion of the galectin family of mammalian carbohydrate-binding proteins   总被引:31,自引:0,他引:31  
Galectins are cytosolic proteins that lack any signal sequence for transport into the endoplasmic reticulum and are not glycosylated, although several galectins contain consensus sites for N-glycosylation, indicating that these proteins do not traverse the ER-Golgi network. However, there is abundant evidence for the extracellular localisation of some galectins at cell surfaces, in the extracellular matrix and in cell secretions consistent with other evidence for extracellular roles of galectins as modulators of cell adhesion and signalling. How then are galectins secreted if not through the classical secretory pathway? Do all galectins share the same secretory pathway? Can a particular galectin utilise more than one secretory pathway? If galectins play important extracellular roles how is their secretion regulated in relation to function? These are still largely unanswered questions but recent studies are beginning to give glimpses into some novel aspects of the secretion of these intriguing proteins.  相似文献   

17.
How do viruses spread from cell to cell? Enveloped viruses acquire their surrounding membranes by budding: either through the plasma membrane or an internal membrane of infected cells. Thus, a newly budded enveloped virus finds itself either in the extracellular milieu or in a lumenal compartment from which it can exit the cell by conventional secretion. On the other hand, naked viruses such as poliovirus, nodavirus, adenovirus, and SV40 lack an external membrane. They are simply protein-nucleic acid complexes within the cytoplasm or nucleus of the infected cell, and thus would seem to have no other exit route than cell lysis. We have presented the first documentation of nonlytic spread of a naked virus, and showed the interconnections between this event and the process or components of the autophagy pathway.  相似文献   

18.
Summary Cell adhesion and communication is one of the most fascinating fields of modern biology. How do cells receive information from the environment and from neighboring cells? How does this information elicit morphogenesis, cell division and migration? The recent identification of the surface molecules involved in these events in animal systems is beginning to disclose that a continuum, extracellular matrix-plasma membrane-cytoskeleton, may be a common structure present in all eukaryotic cells. In this article we compare current knowledge on this complex structure in animal systems to the emerging data on plants. We point out the areas that need additional research to fully understand the role of the cell wall-cytoskeleton continuum in plants.Abbreviations ABP actin-binding protein - AGP arabinogalactan proteins - CTK cytoskeleton - ECM extracellular matrix - FN fibronectin - hFN human fibronectin - HRGP hydroxyproline-rich glycoproteins - hVN human vitronectin - PM plasma membrane - SAM substrate adhesion molecule - VN vitronectin Dedicated to Professor Dr. Hartmut K. Lichtenthaler on the occasion of his 60th birthday  相似文献   

19.
《Autophagy》2013,9(2):430-431
How do viruses spread from cell to cell? Enveloped viruses acquire their surrounding membranes by budding: either through the plasma membrane or an internal membrane of infected cells. Thus, a newly budded enveloped virus finds itself either in the extracellular milieu or in a lumenal compartment from which it can exit the cell by conventional secretion. On the other hand, naked viruses such as poliovirus, nodavirus, adenovirus, and SV40 lack an external membrane. They are simply protein-nucleic acid complexes within the cytoplasm or nucleus of the infected cell, and thus would seem to have no other exit route than cell lysis. We have presented the first documentation of nonlytic spread of a naked virus, and showed the interconnections between this event and the process or components of the autophagy pathway.  相似文献   

20.
To visualize the intracellular trafficking of exogenous DNAs delivered by cationic liposomes, rhodamine-labeled DNAs were transfected into NIH3T3 cells and observed by confocal laser microscopy. After 0.5- to 1-h incubations, the DNAs reached the nucleus with a much higher frequency than that expected from the cell division rate. This result suggests that DNAs can enter the nucleus in the presence of the nuclear membrane. Interestingly, some DNAs appeared to extend through the nuclear membrane in the aggregated form which were much larger than the nuclear pore complex. The DNAs which have passed through the nuclear membrane were stained with SYTO 24, a DNA labeling reagent. The stained part may be "naked" DNA that is free of lipids or proteins. This observation indicates that a complex containing DNA fuses with the nuclear membrane and then naked DNA is released into the nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号