首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
In this paper, we revisit the dynamical interaction among prey (bird), mesopredator (rat), and superpredator (cat) discussed in [Courchamp, F., Langlais, M., Sugihara, G., 1999. Cats protecting birds: modelling the mesopredator release effect. Journal of Animal Ecology 68, 282–292]. First, we develop a prey-mesopredator-superpredator (i.e., bird-rat-cat, briefly, BRC) model, where the predator’s functional responses are derived based on the classical Holling’s time budget arguments. Our BRC model overcomes several model construction problems in Courchamp et al. (1999), and admits richer, reasonable and realistic dynamics. We explore the possible control strategies to save or restore the bird by controlling or eliminating the rat or the cat when the bird is endangered. We establish the existence of two types of mesopredator release phenomena: severe mesopredator release, where once superpredators are suppressed, a burst of mesopredators follows which leads their shared prey to extinction; and mild mesopredator release, where the mesopredator release could assert more negative impact on the endemic prey but does not lead the endemic prey to extinction. A sharp sufficient criterion is established for the occurrence of severe mesopredator release. We also show that, in a prey-mesopredator-superpredator trophic food web, eradication of introduced superpredators such as feral domestic cats in the BRC model, is not always the best solution to protect endemic insular prey. The presence of a superpredator may have a beneficial effect in such systems.  相似文献   

2.
The aim of this work is to develop and analyse a mathematical model for a predator-2 preys system arising in insular environments. We are interested in the evolution of a native prey population without behavioural traits to cope with predation or competition, after the introduction of alien species. Here, we consider a long living bird population with low fertility rate. We point out the effects of the preference of the predator for either juvenile or adult stages. In addition, we study the impact of alien prey introduction in such a model. We use a reaction-diffusion system with a singular logistic right hand side. The aim of this work is to bring interesting dynamics to the fore. As a first example, oscillatory behaviour takes place in the model without alien preys and when predators have an average preference coefficient. Introduction of alien preys can lead to species extinction.  相似文献   

3.
Cats protecting birds: modelling the mesopredator release effect   总被引:14,自引:1,他引:13  
1. Introduced predators account for a large part of the extinction of endemic insular species, which constitutes a major component of the loss of biodiversity among vertebrates. Eradication of alien predators from these ecosystems is often considered the best solution.
2. In some ecosystems, however, it can generate a greater threat for endemic prey through what is called the 'mesopredator release'. This process predicts that, once superpredators are suppressed, a burst of mesopredators may follow which leads their shared prey to extinction.
3. This process is studied through a mathematical model describing a three species system (prey–mesopredator–superpredator). Analysis of the model, with and without control of meso- and superpredators, shows that this process does indeed exist and can drive shared prey to rapid extinction.
4. This work emphasizes that, although counter-intuitive, eradication of introduced superpredators, such as feral domestic cats, is not always the best solution to protect endemic prey when introduced mesopredators, such as rats, are also present.  相似文献   

4.
Birds free from nest predators for long periods may either lose the ability to recognize and respond to predators or retain antipredator responses if they are not too costly. How these alternate scenarios play out has rarely been investigated in an avian community whose members have different evolutionary histories. We presented models of two nest predators (rat and snake) and a negative control (tree branch) to birds on Hawai?i Island. Endemic Hawaiian birds evolved in the absence of terrestrial predators until rats were introduced approximately 1,000 years ago. Introduced birds evolved with diverse predator communities including mammals and snakes, but since their introduction onto the island approximately one century ago have been free from snake predation. We found that (a) endemic and introduced birds had higher agitation scores toward the rat model compared with the branch, and (b) none of the endemic birds reacted to the snake model, while one introduced bird, the Red‐billed Leiothrix (Leiothrix lutea), reacted as strongly to the snake as to the rat. Overall, endemic and introduced birds differ in their response to predators, but some endemic birds have the capacity to recognize and respond to introduced rats, and one introduced bird species retained recognition of snake predators from which they had been free for nearly a century, while another apparently lost that ability. Our results indicate that the retention or loss of predator recognition by introduced and endemic island birds is variable, shaped by each species' unique history, ecology, and the potential interplay of genetic drift, and that endemic Hawaiian birds could be especially vulnerable to introduced snake predators.  相似文献   

5.
The introduction of invasive alien predators often has catastrophic effects on populations of naïve native prey, but in situations where prey survive the initial impact a predator may act as a strong selective agent for prey that can discriminate and avoid it. Using two common species of Australian small mammals that have persisted in the presence of an alien predator, the European red fox Vulpes vulpes, for over a century, we hypothesised that populations of both would perform better where the activity of the predator was low than where it was high and that prey individuals would avoid signs of the predator’s presence. We found no difference in prey abundance in sites with high and low fox activity, but survival of one species—the bush rat Rattus fuscipes—was almost twofold higher where fox activity was low. Juvenile, but not adult rats, avoided fox odour on traps, as did individuals of the second prey species, the brown antechinus, Antechinus stuartii. Both species also showed reduced activity at foraging trays bearing fox odour in giving-up density (GUD) experiments, although GUDs and avoidance of fox odour declined over time. Young rats avoided fox odour more strongly where fox activity was high than where it was low, but neither adult R. fuscipes nor A. stuartii responded differently to different levels of fox activity. Conservation managers often attempt to eliminate alien predators or to protect predator-naïve prey in protected reserves. Our results suggest that, if predator pressure can be reduced, otherwise susceptible prey may survive the initial impact of an alien predator, and experience selection to discriminate cues to its presence and avoid it over the longer term. Although predator reduction is often feasible, identifying the level of reduction that will conserve prey and allow selection for avoidance remains an important challenge.  相似文献   

6.
The impact of alien predator species on insular native biota has often been attributed to island prey naïveté (i.e. lack of, or inefficient, anti-predator behavior). Only rarely, however, has the concept of island prey naïveté been tested, and then only a posteriori (i.e. hundreds or thousands of years after alien species introduction). The presence of native or anciently introduced predators or competitors may be crucial for the recognition and development of adaptive behavior toward unknown predators or competitors of the same archetype (i.e. a set of species that occupy a similar ecological niche and show similar morphological and behavioral traits when interacting with other species). Here, we tested whether two squamates endemic to New Caledonia, a skink, Caledoniscincus austrocaledonicus, and a gecko, Bavayia septuiclavis, recognized and responded to the odor of two major invaders introduced into the Pacific islands, but not yet into New Caledonia. We chose one predator, the small Indian mongoose Herpestes javanicus and one competitor, the cane toad Rhinella marina, which belong respectively to the same archetype as the following two species already introduced into New Caledonia in the nineteenth century: the feral cat Felis catus and the golden bell frog Litoria aurea. Our experiment reveals that geckos are naïve with respect to the odors of both an unknown predator and an unknown competitor, as well as to the odors of a predator and a competitor they have lived with for centuries. In contrast, skinks seem to have lost some naïveté regarding the odor of a predator they have lived with for centuries and seem “predisposed” to avoid the odor of an unknown potential competitor. These results indicate that insular species living in contact with invasive alien species for centuries may be, although not systematically, predisposed toward developing adaptive behavior with respect to species belonging to the same archetype and introduced into their native range.  相似文献   

7.
Many animals respond to the presence of predators with conspicuous signals such as alarm calling. These signals may aid the detection of the predator by conspecifics or may deter the predator from attack. The advantages of such signals may be dependent upon predator type and habitat type. We measured signalling behaviours (alarm calling and tail flicking) in foraging chaffinches in response to different predator models (hawk and pigeon control, cat and plastic box as control). In addition we measured responses to a cat model when chaffinches were foraging in different habitat structures (obstructed vs. open). There was no difference in the number of individual chaffinches alarm calling in obstructed vs. open habitat, but birds tail flicked more in open habitat, suggesting that tail flicking acts as a visual signal to the predator or conspecifics and therefore unlike auditory cues is influenced by habitat structure. Chaffinches were also more likely to tail flick in response to the cat model than the other three models. Our results are consistent with the idea that animals may respond to ground predators, which spend a large amount of time observing prey before attack, by using signalling behaviours, such as tail flicking and alarm calling. Further work on prey selection by predators is needed to separate the functions of signalling behaviour in response to predators.  相似文献   

8.
To test whether predator odor exposure negatively affects the behavior of prey, we exposed three groups of male house mice (Mus musculus) to the odors of cat (Felis catus) urine, rabbit (Oryctolagus cuniculus) urine and water (control), respectively, for consecutive 58 days and investigated how the treatments affected the response, aggressiveness, dominance, urinary attractiveness to females and pheromone composition of male mice. Compared to mice exposed to rabbit urine or water, those exposed to cat odor did not show any response habituation to the cat odor and became more aggressive, increased mark urine production and were more attractive to females when the latter were tested with their urine. Furthermore, gas chromatography coupled with mass spectrometry analysis revealed coincident elevations of the well-known male pheromones, E,E-α-farnesene, E-β-farnesene, R,R-dehydro-exo-brevicomin or S-2-sec-butyl-dihydrothiazole. In addition, rabbit urine exposure increased urinary attractiveness to females and pheromonal levels of the males in comparison with the mice exposed to water. This could be related to olfactory enrichment of heterospecific chemosignals, suggesting that predator odors were more beneficial. In light of these anti-intuitional findings in the chemical interaction between cats and mice, we conclude that predator odor affects prey more profoundly than previously believed and that its impact may not always be negative.  相似文献   

9.
The behavioral strategies developed by predators to capture and kill their prey are fascinating, notably for predators that forage for prey at, or beyond, the boundaries of their ecosystem. We report here the occurrence of a beaching behavior used by an alien and large-bodied freshwater predatory fish (Silurus glanis) to capture birds on land (i.e. pigeons, Columbia livia). Among a total of 45 beaching behaviors observed and filmed, 28% were successful in bird capture. Stable isotope analyses (δ13C and δ15N) of predators and their putative prey revealed a highly variable dietary contribution of land birds among individuals. Since this extreme behavior has not been reported in the native range of the species, our results suggest that some individuals in introduced predator populations may adapt their behavior to forage on novel prey in new environments, leading to behavioral and trophic specialization to actively cross the water-land interface.  相似文献   

10.
Predation by introduced mammals is decimating New Zealand's indigenous fauna. Understanding factors that influence this process allows resources for predator control to be applied with maximum effect. This study examines how predation of a secondary prey species (a relatively common but declining native plover, the banded dotterel Charadrius bicinctus ) varied with reductions in abundance of a major prey source (rabbits), kill-trapping of predators, nest density and habitat complexity. Banded dotterels mostly nest in open braided riverbeds alongside a number of endemic threatened species. We measured the fate of 753 dotterel clutches exposed to predation by cats, ferrets and hedgehogs. We found key times and places of high predation risk. Immediately after widespread reduction in rabbit populations by rabbit haemorrhagic disease (RHD), clutch predation rates were almost as high (mean, 50%) as those recorded during past rabbit poisoning programmes (mean, 57%). Both rates were significantly higher than the mean predation rate of 22% without rabbit control, suggesting a shift in predator diet immediately after rabbit population declines. Unlike after rabbit poisoning, clutch predation rate remained high in the years after RHD. Other patterns observed included higher clutch predation rate where nest density was lower, suggesting that predation can potentially cause local extinction. Clutch predation was also higher along riverbed margins where vegetation was dense. There was equivocal evidence for an effect of predator kill-trapping on clutch predation rate. Management strategies that could potentially reduce clutch predation risks include focusing predator mitigation measures during periods of rabbit decline, maintaining them for more than one breeding season if the rabbit declines are widespread (e.g. RHD epidemics), and applying greater effort at sites with relatively low nest density and along riverbed margins where predator use is more frequent.  相似文献   

11.
Biological invasions are a serious problem in natural ecosystems. Local species that are potential prey of invasive alien predators can be threatened by their inability to recognize invasive predator cues. Such an inability of prey to recognize the presence of the predator supports the naïve prey hypothesis. We exposed eggs of a damselfly, Ischnura elegans, to four treatments: water with no predator cue (control), water with a native predator cue (perch), water with an invasive alien predator cue (spinycheek crayfish) that is present in the damselfly sampling site, and water with an invasive alien predator cue (signal crayfish) that is absent in the damselfly sampling site but is expected to invade it. We measured egg development time, mortality between ovipositing and hatching, and hatching synchrony. Eggs took longer to develop in the signal crayfish group (however, in this group, we also observed high green algae growth), and there was a trend of shorter egg development time in the spinycheek crayfish group than in the control group. There was no difference in egg development time between the perch and the control group. Neither egg mortality nor hatching synchrony differed between groups. We suggest that egg response to signal crayfish could be a general stress reaction to an unfamiliar cue or an artifact due to algae development in this group. The egg response to the spinycheek crayfish cue could be caused by the predation of crayfish on damselfly eggs in nature. The lack of egg response to the perch cue could be caused by perch predation on damselfly larvae rather than on eggs. Such differences in egg responses to alternative predator cues can have important implications for understanding how this group of insects responds to biological invasions, starting from the egg stage.  相似文献   

12.
A predator-prey model with infected prey   总被引:6,自引:0,他引:6  
A predator-prey model with logistic growth in the prey is modified to include an SIS parasitic infection in the prey with infected prey being more vulnerable to predation. Thresholds are identified which determine when the predator population survives and when the disease remains endemic. For some parameter values the greater vulnerability of the infected prey allows the predator population to persist, when it would otherwise become extinct. Also the predation on the more vulnerable prey can cause the disease to die out, when it would remain endemic without the predators.  相似文献   

13.
The invasion of alien species into areas beyond their native ranges is having profound effects on ecosystems around the world. In particular, novel alien predators are causing rapid extinctions or declines in many native prey species, and these impacts are generally attributed to ecological naïveté or the failure to recognise a novel enemy and respond appropriately due to a lack of experience. Despite a large body of research concerning the recognition of alien predation risk by native prey, the literature lacks an extensive review of naïveté theory that specifically asks how naïveté between novel pairings of alien predators and native prey disrupts our classical understanding of predator–prey ecological theory. Here we critically review both classic and current theory relating to predator–prey interactions between both predators and prey with shared evolutionary histories, and those that are ecologically ‘mismatched’ through the outcomes of biological invasions. The review is structured around the multiple levels of naïveté framework of Banks & Dickman (2007), and concepts and examples are discussed as they relate to each stage in the process from failure to recognise a novel predator (Level 1 naïveté), through to appropriate (Level 2) and effective (Level 3) antipredator responses. We discuss the relative contributions of recognition, cue types and the implied risk of cues used by novel alien and familiar native predators, to the probability that prey will recognise a novel predator. We then cover the antipredator response types available to prey and the factors that predict whether these responses will be appropriate or effective against novel alien and familiar native predators. In general, the level of naïveté of native prey can be predicted by the degree of novelty (in terms of appearance, behaviour or habitat use) of the alien predator compared to native predators with which prey are experienced. Appearance in this sense includes cue types, spatial distribution and implied risk of cues, whilst behaviour and habitat use include hunting modes and the habitat domain of the predator. Finally, we discuss whether the antipredator response can occur without recognition per se, for example in the case of morphological defences, and then consider a potential extension of the multiple levels of naïveté framework. The review concludes with recommendations for the design and execution of naïveté experiments incorporating the key concepts and issues covered here. This review aims to critique and combine classic ideas about predator–prey interactions with current naïveté theory, to further develop the multiple levels of naïveté framework, and to suggest the most fruitful avenues for future research.  相似文献   

14.
Rabbits killing birds: modelling the hyperpredation process   总被引:7,自引:1,他引:6  
1.  Introduced rabbits are known to have catastrophic effects on oceanic islands, either by direct destruction of the vegetative cover, or by the resulting disturbance of indigenous vertebrates.
2.  Another dramatic effect, less well known, but potentially of major importance, is the hyperpredation process. This process, related to apparent competition, predicts that an introduced prey species, well adapted to high predation pressure, could induce the extinction of an indigenous prey, through the sudden increased population size of an introduced predator. In many island ecosystems, the simultaneous presence of introduced feral cats and rabbits is thus potentially a further threat for small vertebrates endemic of these islands.
3.  Through a mathematical model, we tested this hypothesis, using a tri-trophic system comprising an indigenous prey (birds), an introduced prey (rabbits) and an introduced predator (cats), and we demonstrated the theoretical existence of the hyperpredation process.
4.  In addition, the numerical analysis of the model allowed a quantification of this process. It shows that the conditions required for an indigenous species to cope with the hyperpredation process imply very high intrinsic growth rates and/or carrying capacity, as well as behavioural anti-predator response to the introduced predator. Since these conditions are unlikely to be met, this process is a further potential threat to most indigenous vertebrate prey.
5.  Finally, our model shows that, although it can be induced by both types of adaptation together or alone, behavioural adaptations alone are more powerful in generating the hyperpredation process, than are life history traits adaptations.  相似文献   

15.
Abstract Predation is recognized as a major selective pressure influencing population dynamics and evolutionary processes. Prey species have developed a variety of predator avoidance strategies, not least of which is olfactory recognition. However, within Australia, European settlement has brought with it a number of introduced predators, perhaps most notably the red fox (Vulpes vulpes) and domestic cat (Felis catus), which native prey species may be unable to recognize and thus avoid due to a lack of coexistence history. This study examined the response of native Tasmanian swamp rats (Rattus lutreolus velutinus) to predators of different coexistence history (native predator‐ spotted‐tail quoll (Dasyurus maculatus), domestic cats and the recently introduced red fox). We used an aggregate behavioural response of R. l. velutinus to predator integumental odour in order to assess an overall behavioural response to predation risk. Rattus lutreolus velutinus recognized the integumental odour of the native quoll (compared with control odours) but did not respond to either cat or fox scent (compared with control odur). In contrast, analyses of singular behaviours resulted in the conclusion that rats did not respond differentially to either native or introduced predators, as other studies have concluded. Therefore, measuring risk assessment behaviours at the level of overall aggregate response may be more beneficial in understanding and analysing complex behavioural patterns such as predator detection and recognition. These results suggest that fox and cat introductions (and their interactive effects) may have detrimental impacts upon small native Tasmanian mammals due to lack of recognition and thus appropriate responses.  相似文献   

16.
The ecological effects of introduced species on native organisms can sometimes, but not always be significant. The risks associated with invasive alien pests are difficult to quantify. This paper concentrates on the ecological effects of invasive insect predators that feed on pest insects, because the former may potentially affect the biological control of the latter. The literature indicates that invasive predatory insects generally are resistant to changes in environmental conditions, long-lived and voracious with a high reproductive rate, high dispersal ability, able to spread very rapidly across landscapes and exhibit phenotypic plasticity. Their colonization of patches of prey may induce native predators to leave, but the evidence that invaders negatively affect the abundance of the native species is scarce and not persuasive. Insect predators do not substantially affect the abundance of their prey, if the ratio of generation time of the predator to that of the prey is large (the generation time ratio hypothesis), therefore the effect of an invasion by long-lived alien predators on systems consisting of long-lived native predators and short-lived prey on the abundance of the prey is hard to detect.  相似文献   

17.
Alien predators are widely considered to be more harmful to prey populations than native predators. To evaluate this expectation, we conducted a meta-analysis of the responses of vertebrate prey in 45 replicated and 35 unreplicated field experiments in which the population densities of mammalian and avian predators had been manipulated. Our results showed that predator origin (native versus alien) had a highly significant effect on prey responses, with alien predators having an impact double that of native predators. Also the interaction between location (mainland versus island) and predator origin was significant, revealing the strongest effects with alien predators in mainland areas. Although both these results were mainly influenced by the huge impact of alien predators on the Australian mainland compared with their impact elsewhere, the results demonstrate that introduced predators can impose more intense suppression on remnant populations of native species and hold them further from their predator-free densities than do native predators preying upon coexisting prey.  相似文献   

18.
Feral cat control using aerial broadcasting of toxic baits continues to be used in the rangelands of Western Australia. The effectiveness of these operations has sometimes been compromised by different environmental factors that affect prey and cat numbers. This study demonstrates that the ratio of cats to their preferred prey (small mammals) can be used to predict the most effective time to bait. The regular baiting of three conservation sites offered an opportunity to study the relationship between feral cat abundance, the abundance of their prey and ingestion of toxic baits. Peron Peninsula on the mid‐west coast, Lorna Glen station in the northern Goldfields and the central Gibson Desert of Western Australia are sites where cat control using toxic baits has been routinely applied over the last 15 years. We postulated that bait ingestion by cats was linked to the availability of live prey. Small mammal abundance (capture rates in pit‐fall traps) and relative cat abundance (based on daily track counts) were assessed at these sites and the data used to produce a predator‐prey ratio index (PPRI). We used generalised linear mixed models to test the effect of prey abundance, prebaiting cat abundance and PPRI on baiting efficacy (BE). The best model for predicting efficacy of baiting contained only PPRI. This simple model was able to predict baiting success over the entire range of outcomes, from highly successful ( >75% cat reduction) to unsuccessful (0% cat reduction). The ability to predict feral cat BE in advance of planned toxic baiting operations will provide a valuable tool for wildlife managers involved in cat control.  相似文献   

19.
1. Nonlethal predation effects may have stronger impacts on prey populations than direct predation impacts, and this should also apply to intraguild predation. The consequences of such interactions become especially important if invasive, and potentially destructive alien predators act as intraguild prey. 2. We studied the predation-risk impacts of a re-colonizing native top predator, Haliaeetus albicilla (white-tailed sea eagle), on the movements of Mustela vison (American mink), an alien predator in Europe. We radiocollared 20 mink in two study areas in the outer archipelago of the Baltic Sea, South-west Finland, during 2004 and 2005. In the archipelago, mink home ranges incorporate many islands, and mink are most predisposed to eagle predation while swimming between islands. Observed swimming distances of mink were compared to distances expected at random, and deviations from random swimming were explained by mink distance from nearest eagle nest, number of eagle observations near mink location, and mink home-range size. 3. Mink reduced their swimming distances with increasing sea eagle predation risk: for females, the reduction was 10% for an increase of 10 eagle observations, and 5% for each kilometre towards an eagle nest. Conclusions for males were restricted by their small sample size. 4. Our results suggest that female mink modify their behaviour according to eagle predation risk, which may reduce their population growth and have long-term cascading effects on lower trophic levels including bird, mammal and amphibian populations in the archipelago. Ecosystem restoration by bringing back the top predators may be one way of mitigating alien predator effects on native biota.  相似文献   

20.
Native bird species show latitudinal gradients in body size across species (Bergmann's rule), but whether or not such gradients are recapitulated in the alien distributions of bird species are unknown. Here, we test for the existence of Bergmann's rule in alien bird species worldwide, and investigate the causes of the observed patterns. Published databases were used to obtain the worldwide distributions of established alien bird populations, the locations of alien bird introductions, and bird body masses. Randomisation tests and linear models were used to assess latitudinal patterns in the body masses of introduced and established alien bird populations. Established alien bird species exhibit Bergmann's rule, but this is largely explained by where alien bird species have been introduced: latitudinal variation in the body masses of established alien bird species simply reflects latitudinal variation in the body masses of introduced species. There is some evidence that body mass is implicated in whether or not established species’ alien ranges spread towards or contract away from the Equator following establishment. However, most alien bird ranges are encompassed by the latitudinal band(s) to which the species was introduced. Bergmann's rule in alien birds is therefore a consequence of where humans have introduced different species, rather than of natural processes operating after population introduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号