首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The Hoxa2 gene is an important component of regulatory events during hindbrain segmentation and head development in vertebrates. In this study we have used sequenced comparisons of the Hoxa2 locus from 12 vertebrate species in combination with detailed regulatory analyses in mouse and chicken embryos to characterize the mechanistic basis for the regulation of Hoxa2 in rhombomere (r) 4. A highly conserved region in the Hoxa2 intron functions as an r4 enhancer. In vitro binding studies demonstrate that within the conserved region three bipartite Hox/Pbx binding sites (PH1-PH3) in combination with a single binding site for Pbx-Prep/Meis (PM) heterodimers co-operate to regulate enhancer activity in r4. Mutational analysis reveals that these sites are required for activity of the enhancer, suggesting that the r4 enhancer from Hoxa2 functions in vivo as a Hox-response module in combination with the Hox cofactors, Pbx and Prep/Meis. Furthermore, this r4 enhancer is capable of mediating a response to ectopic HOXB1 expression in the hindbrain. These findings reveal that Hoxa2 is a target gene of Hoxb1 and permit us to develop a gene regulatory network for r4, whereby Hoxa2, along with Hoxb1, Hoxb2 and Hoxa1, is integrated into a series of auto- and cross-regulatory loops between Hox genes. These data highlight the important role played by direct cross-talk between Hox genes in regulating hindbrain patterning.  相似文献   

3.
Rhombomeres are embryonic territories arising from the transient segmentation of the hindbrain. Their identity is specified by Hox genes from paralogous groups 1-4. Hoxa2 is the only Hox gene to be expressed in the second rhombomere and the regulatory cues leading to this region-specific expression have been poorly investigated. A 2.5-kb DNA fragment overlapping with the 3' end of Hoxa2 was previously shown to specifically direct the expression of a reporter gene in the second rhombomere and the rostral somites of mouse embryos. Here, we report that this enhancer region is activated in vitro by Hoxa2 and that this activation is strictly dependent on a short 10-bp sequence matching the consensus for Hox-Pbx recognition sites.  相似文献   

4.
Roles of Hoxa1 and Hoxa2 in patterning the early hindbrain of the mouse   总被引:9,自引:0,他引:9  
Early in its development, the vertebrate hindbrain is transiently subdivided into a series of compartments called rhombomeres. Genes have been identified whose expression patterns distinguish these cellular compartments. Two of these genes, Hoxa1 and Hoxa2, have been shown to be required for proper patterning of the early mouse hindbrain and the associated neural crest. To determine the extent to which these two genes function together to pattern the hindbrain, we generated mice simultaneously mutant at both loci. The hindbrain patterning defects were analyzed in embryos individually mutant for Hoxa1 and Hoxa2 in greater detail and extended to embryos mutant for both genes. From these data a model is proposed to describe how Hoxa1, Hoxa2, Hoxb1, Krox20 (Egr2) and kreisler function together to pattern the early mouse hindbrain. Critical to the model is the demonstration that Hoxa1 activity is required to set the anterior limit of Hoxb1 expression at the presumptive r3/4 rhombomere boundary. Failure to express Hoxb1 to this boundary in Hoxa1 mutant embryos initiates a cascade of gene misexpressions that result in misspecification of the hindbrain compartments from r2 through r5. Subsequent to misspecification of the hindbrain compartments, ectopic induction of apoptosis appears to be used to regulate the aberrant size of the misspecified rhombomeres.  相似文献   

5.
The Hoxa2 and Hoxb2 genes are members of paralogy group II and display segmental patterns of expression in the developing vertebrate hindbrain and cranial neural crest cells. Functional analyses have demonstrated that these genes play critical roles in regulating morphogenetic pathways that direct the regional identity and anteroposterior character of hindbrain rhombomeres and neural crest-derived structures. Transgenic regulatory studies have also begun to characterize enhancers and cis-elements for those mouse and chicken genes that direct restricted patterns of expression in the hindbrain and neural crest. In light of the conserved role of Hoxa2 in neural crest patterning in vertebrates and the similarities between paralogs, it is important to understand the extent to which common regulatory networks and elements have been preserved between species and between paralogs. To investigate this problem, we have cloned and sequenced the intergenic region between Hoxa2 and Hoxa3 in the chick HoxA complex and used it for making comparative analyses with the respective human, mouse, and horn shark regions. We have also used transgenic assays in mouse and chick embryos to test the functional activity of Hoxa2 enhancers in heterologous species. Our analysis reveals that three of the critical individual components of the Hoxa2 enhancer region from mouse necessary for hindbrain expression (Krox20, BoxA, and TCT motifs) have been partially conserved. However, their number and organization are highly varied for the same gene in different species and between paralogs within a species. Other essential mouse elements appear to have diverged or are absent in chick and shark. We find the mouse r3/r5 enhancer fails to work in chick embryos and the chick enhancer works poorly in mice. This implies that new motifs have been recruited or utilized to mediate restricted activity of the enhancer in other species. With respect to neural crest regulation, cis-components are embedded among the hindbrain control elements and are highly diverged between species. Hence, there has been no widespread conservation of sequence identity over the entire enhancer domain from shark to humans, despite the common function of these genes in head patterning. This provides insight into how apparently equivalent regulatory regions from the same gene in different species have evolved different components to potentiate their activity in combination with a selection of core components.  相似文献   

6.
7.
During development of the vertebrate hindbrain, Hox genes play multiple roles in the segmental processes that regulate anteroposterior (AP) patterning. Paralogous Hox genes, such as Hoxa3, Hoxb3 and Hoxd3, generally have very similar patterns of expression, and gene targeting experiments have shown that members of paralogy group 3 can functionally compensate for each other. Hence, distinct functions for individual members of this family may primarily depend upon differences in their expression domains. The earliest domains of expression of the Hoxa3 and Hoxb3 genes in hindbrain rhombomeric (r) segments are transiently regulated by kreisler, a conserved Maf b-Zip protein, but the mechanisms that maintain expression in later stages are unknown. In this study, we have compared the segmental expression and regulation of Hoxa3 and Hoxb3 in mouse and chick embryos to investigate how they are controlled after initial activation. We found that the patterns of Hoxa3 and Hoxb3 expression in r5 and r6 in later stages during mouse and chick hindbrain development were differentially regulated. Hoxa3 expression was maintained in r5 and r6, while Hoxb3 was downregulated. Regulatory comparisons of cis-elements from the chick and mouse Hoxa3 locus in both transgenic mouse and chick embryos have identified a conserved enhancer that mediates the late phase of Hoxa3 expression through a conserved auto/cross-regulatory loop. This block of similarity is also present in the human and horn shark loci, and contains two bipartite Hox/Pbx-binding sites that are necessary for its in vivo activity in the hindbrain. These HOX/PBC sites are positioned near a conserved kreisler-binding site (KrA) that is involved in activating early expression in r5 and r6, but their activity is independent of kreisler. This work demonstrates that separate elements are involved in initiating and maintaining Hoxa3 expression during hindbrain segmentation, and that it is regulated in a manner different from Hoxb3 in later stages. Together, these findings add further strength to the emerging importance of positive auto- and cross-regulatory interactions between Hox genes as a general mechanism for maintaining their correct spatial patterns in the vertebrate nervous system.  相似文献   

8.
9.
RNA sequence elements involved in the regulation of pre-mRNA splicing have previously been identified in vertebrate genomes by computational methods. Here, we apply such approaches to predict splicing regulatory elements in Drosophila melanogaster and compare them with elements previously found in the human, mouse, and pufferfish genomes. We identified 99 putative exonic splicing enhancers (ESEs) and 231 putative intronic splicing enhancers (ISEs) enriched near weak 5' and 3' splice sites of constitutively spliced introns, distinguishing between those found near short and long introns. We found that a significant proportion (58%) of fly enhancer sequences were previously reported in at least one of the vertebrates. Furthermore, 20% of putative fly ESEs were previously identified as ESEs in human, mouse, and pufferfish; while only two fly ISEs, CTCTCT and TTATAA, were identified as ISEs in all three vertebrate species. Several putative enhancer sequences are similar to characterized binding-site motifs for Drosophila and mammalian splicing regulators. To provide additional evidence for the function of putative ISEs, we separately identified 298 intronic hexamers significantly enriched within sequences phylogenetically conserved among 15 insect species. We found that 73 putative ISEs were among those enriched in conserved regions of the D. melanogaster genome. The functions of nine enhancer sequences were verified in a heterologous splicing reporter, demonstrating that these sequences are sufficient to enhance splicing in vivo. Taken together, these data identify a set of predicted positive-acting splicing regulatory motifs in the Drosophila genome and reveal regulatory sequences that are present in distant metazoan genomes.  相似文献   

10.
Hox genes are instrumental in assigning segmental identity in the developing hindbrain. Auto-, cross- and para-regulatory interactions help establish and maintain their expression. To understand to what extent such regulatory interactions shape neuronal patterning in the hindbrain, we analysed neurogenesis, neuronal differentiation and motoneuron migration in Hoxa1, Hoxb1 and Hoxb2 mutant mice. This comparison revealed that neurogenesis and differentiation of specific neuronal subpopulations in r4 was impaired in a similar fashion in all three mutants, but with different degrees of severity. In the Hoxb1 mutants, neurons derived from the presumptive r4 territory were re-specified towards an r2-like identity. Motoneurons derived from that territory resembled trigeminal motoneurons in both their migration patterns and the expression of molecular markers. Both migrating motoneurons and the resident territory underwent changes consistent with a switch from an r4 to r2 identity. Abnormally migrating motoneurons initially formed ectopic nuclei that were subsequently cleared. Their survival could be prolonged through the introduction of a block in the apoptotic pathway. The Hoxa1 mutant phenotype is consistent with a partial misspecification of the presumptive r4 territory that results from partial Hoxb1 activation. The Hoxb2 mutant phenotype is a hypomorph of the Hoxb1 mutant phenotype, consistent with the overlapping roles of these genes in facial motoneuron specification. Therefore, we have delineated the functional requirements in hindbrain neuronal patterning that follow the establishment of the genetic regulatory hierarchy between Hoxa1, Hoxb1 and Hoxb2.  相似文献   

11.
The previously described expression patterns of zebrafish and mouse Hoxa1 genes are seemingly very disparate, with mouse Hoxa1 expressed in the gastrula stage hindbrain and the orthologous zebrafish hoxa1a gene expressed in cell clusters within the ventral forebrain and midbrain. To investigate the evolution of Hox gene deployment within the vertebrate CNS, we have performed a comparative expression analysis of Hoxa1 orthologs in a range of vertebrate species, comprising representatives from the two major lineages of vertebrates (actinopterygians and sarcopterygians). We find that fore/midbrain expression of hoxa1a is conserved within the teleosts, as it is shared by the ostariophysan teleost zebrafish (Danio rerio) and the distantly related acanthopterygian teleost medaka (Oryzias latipes). Furthermore, we find that in addition to the described gastrula stage hindbrain expression of mouse Hoxa1, there is a previously unreported neurula stage expression domain, again located more anteriorly at the ventral fore/midbrain boundary. A two-phase expression profile in early hindbrain and later fore/midbrain is shared by the other tetrapod model organisms chick and Xenopus. We show that the anterior Hoxa1 expression domain is localized to the anterior terminus of the medial longitudinal fasciculus (MLF) in mouse, chick, and zebrafish. These findings suggest that anterior expression of Hoxa1 is a primitive characteristic that is shared by the two major vertebrate lineages. We conclude that Hox gene expression within the vertebrate CNS is not confined exclusively to the segmented hindbrain and spinal cord, but rather that a presumptive fore/midbrain expression domain arose early in vertebrate origins and has been conserved for at least 400 million years.  相似文献   

12.
During hindbrain development, segmental regulation of the paralogous Hoxa2 and Hoxb2 genes in rhombomeres (r) 3 and 5 involves Krox20-dependent enhancers that have been conserved during the duplication of the vertebrate Hox clusters from a common ancestor. Examining these evolutionarily related control regions could provide important insight into the degree to which the basic Krox20-dependent mechanisms, cis-regulatory components, and their organization have been conserved. Toward this goal we have performed a detailed functional analysis of a mouse Hoxa2 enhancer capable of directing reporter expression in r3 and r5. The combined activities of five separate cis-regions, in addition to the conserved Krox20 binding sites, are involved in mediating enhancer function. A CTTT (BoxA) motif adjacent to the Krox20 binding sites is important for r3/r5 activity. The BoxA motif is similar to one (Box1) found in the Hoxb2 enhancer and indicates that the close proximity of these Box motifs to Krox20 sites is a common feature of Krox20 targets in vivo. Two other rhombomeric elements (RE1 and RE3) are essential for r3/r5 activity and share common TCT motifs, indicating that they interact with a similar cofactor(s). TCT motifs are also found in the Hoxb2 enhancer, suggesting that they may be another common feature of Krox20-dependent control regions. The two remaining Hoxa2 cis-elements, RE2 and RE4, are not conserved in the Hoxb2 enhancer and define differences in some of components that can contribute to the Krox20-dependent activities of these enhancers. Furthermore, analysis of regulatory activities of these enhancers in a Krox20 mutant background has uncovered differences in their degree of dependence upon Krox20 for segmental expression. Together, this work has revealed a surprising degree of complexity in the number of cis-elements and regulatory components that contribute to segmental expression mediated by Krox20 and sheds light on the diversity and evolution of Krox20 target sites and Hox regulatory elements in vertebrates.  相似文献   

13.
14.
15.
16.
Hox gene functions are intimately linked to correct developmental expression of the genes. The identification of cis-acting regulatory sequences and their associated trans-acting factors constitutes a key step in deciphering the mechanisms underlying the correct positioning of the functional domain of Hox genes along the anterior-posterior axis. We have identified DNA elements driving Hoxa5 regionalized expression in mice, using the 2.1-kb mesodermal enhancer (MES) localized in Hoxa5 3' flanking sequences as a starting point. The MES sequence comprises regulatory elements targeting Hoxa5 expression in the limbs, the urogenital and gastrointestinal tracts, and the cervical-upper thoracic region of the prevertebral column. A 164-bp DNA fragment within the MES caudally restricts Hoxa5 expression at the level of prevertebra 10, corresponding to the posterior limit of its functional domain. Cdx proteins directly bind to this element in vitro via two conserved sites. Preventing Cdx binding by mutating the sites causes caudal expansion of the transgene expression domain. Of all three murine Cdx proteins that bind this element in vitro, Cdx4 has emerged as a potential regional posterior repressor of Hoxa5 expression. The restrictive control provided by Cdx interactions with Hoxa5 regulatory sequences may be one of the critical events in cervicothoracic axial specification.  相似文献   

17.
The analysis of mice mutant for both Hoxa1 and Hoxb1 suggests that these two genes function together to pattern the hindbrain. Separately, mutations in Hoxa1 and Hoxb1 have profoundly different effects on hindbrain development. Hoxa1 mutations disrupt the rhombomeric organization of the hindbrain, whereas Hoxb1 mutations do not alter the rhombomeric pattern, but instead influence the fate of cells originating in rhombomere 4. We suggest that these differences are not the consequences of different functional roles for these gene products, but rather reflect differences in the kinetics of Hoxa1 and Hoxb1 gene expression. In strong support of the idea that Hoxa1 and Hoxb1 have overlapping functions, Hoxa1/Hoxb1 double mutant homozygotes exhibit a plethora of defects either not seen, or seen only in a very mild form, in mice mutant for only Hoxa1 or Hoxb1. Examples include: the loss of both rhombomeres 4 and 5, the selective loss of the 2(nd) branchial arch, and the loss of most, but not all, 2(nd) branchial arch-derived tissues. We suggest that the early role for both of these genes in hindbrain development is specification of rhombomere identities and that the aberrant development of the hindbrain in Hoxa1/Hoxb1 double mutants proceeds through two phases, the misspecification of rhombomeres within the hindbrain, followed subsequently by size regulation of the misspecified hindbrain through induction of apoptosis.  相似文献   

18.
19.
Expression and mutational analysis has shown that the vertebrate Hox genes are instrumental in patterning of the developing embryo. However, the combined effects of functional redundancy, compensation, and synergy often obscure the precise roles of these genes. By combining gene targeting strategies with the analysis of regulatory sequences from the Hoxa1 and Hoff1 genes, it has been possible to bypass some of these complications and demonstrate their genetic and functional interactions during the development of the hindbrain and branchial arches.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号