首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the conductance of pea thylakoid membranes and their capacity for photophosphorylation as function of the extraction of chloroplast coupling factor CF1. The degree of extraction was varied via the incubation time in EDTA-containing hypo-osmolar medium and was measured by rocket electroimmunodiffusion. The conductance of thylakoid membranes was measured by flash kinetic spectrophotometry. The time course of extraction followed the time course of thylakoid swelling. Contrary to expectation increasing loss of CF1 did not primarily increase the velocity of proton efflux from each vesicle. Instead proton-tight vesicles were converted to leaky ones, which lost phosphorylating activity. Two subpopulations occurred, although both types of vesicles, leaky and proton-tight ones, were CF1-depleted to a similar degree. This implied that only a small fraction of CF1-lacking CF0 was functional as a proton channel. Tight vesicles had no functional channels while leaky ones had at least one. We determined the proportion of tight vesicles in three independent ways: via the residual phosphorylation activity, via measurements of proton efflux and via measurements of the electric relaxation across the membrane. The results obtained were identical. A statistical evaluation of the data led us to the following conclusions. EDTA treatment produced vesicles containing approximately 10(5) chlorophyll molecules, equivalent to a total of approximately 100 CF0CF1 per vesicle. Even at the highest degree of extraction (75% of total CF1 extracted) only 2.5 out of 75 exposed CF0 per vesicle were proton-conducting. The unit conductance of one open CF0 channel was 169 +/- 18 fS at pH 7.5 and room temperature. At an electrical driving force of 100 mV this was equivalent to the passage of approximately 10(5) protons/s. The most important consequence of this relatively high unit conductance was that a single open CF0 channel was capable of dissipating the protonmotive force of one vesicle, thereby deactivating the whole remaining catalytic capacity of this vesicle.  相似文献   

2.
The ATP synthase of chloroplasts consists of a proton-conducting portion, CF0, and a catalytic portion, CF1. The smaller subunits of CF1, in particular delta, may play a key role in the coupling of proton transport to ATP synthesis. Purified subunit delta, when added to partially CF1-depleted thylakoid membranes, can restore photophosphorylation (Engelbrecht, S., and Junge, W. (1987) Eur. J. Biochem. 172, 213-218). We report here that it does so by blocking proton conduction through CF0. Thylakoids were CF1-depleted by incubation in hypoosmolar NaCl/EDTA solutions. Variation of the NaCl concentrations and of the incubation times not only changed the overall degree of CF1 depletion but also the subunit composition of solubilized CF1, namely CF1 containing delta and CF1(-delta). This was quantified by immunoelectrophoresis and by fast protein liquid chromatography. Proton conduction was measured by flash spectrophotometry by using standard electrochromic and pH-indicating absorption changes. The removal of integral CF1 was correlated with high electric conductance of thylakoid membranes, an increased extent of rapid proton leakage, and loss of ATP synthesis activity, which exceeded the percentual loss of CF1. The removal of predominantly CF1(-delta) resulted in comparatively lesser effects on the loss of ATP synthesis and on the extent and velocity of proton leakage. On the same line, addition of integral CF1 and of purified delta diminished the electric leak in CF1-depleted thylakoids. Both approaches, the controlled removal of CF1 and CF1(-delta), respectively, and addition of delta and CF1 showed that delta can act as a "stopcock" to the exposed proton channel CF0.  相似文献   

3.
The ATP synthase of chloroplasts consists of the proton channel, CF0, and the catalytic part, CF1, which carries nucleotide-binding sites on subunits alpha and beta. The still poorly understood interaction between CF0 and the catalytic sites on CF1 is mediated by the smaller subunits gamma, delta and epsilon of CF1. We investigated the ability of purified delta to block proton leakage through CF0 channels after their exposure by removal of the CF1 counterpart. Thylakoids were partially depleted of CF1 by EDTA treatment. This increased their proton permeability and thereby reduced the rate of photophosphorylation. Subunit delta was isolated and purified by FPLC [Engelbrecht, S. and Junge, W. (1987) FEBS Lett. 219, 321-325]. Addition of delta to EDTA-treated thylakoids reconstituted high rates of phenazine-methosulfate-mediated photophosphorylation. Since delta does not interact with nucleotides by itself, the reconstitution was due to a reduction of the proton leakage through open CF0 channels. The molar ratio of purified delta over exposed CF0, which started to elicit this effect, was 3:1. However, if delta was added together with purified CF1 lacking delta, in a 1:1 molar ratio, the relative amount over exposed CF0 was as low as 0.06. This corroborated our previous conclusion [Lill, H., Engelbrecht, S., Sch?nknecht, G. and Junge, W. (1986) Eur. J. Biochem. 160, 627-634] that only a very small fraction of exposed CF0 was actually proton-conducting but with a very high unit conductance. CF1 including delta was apparently rebound preferentially to open CF0 channels. Although the ability of delta to control proton conduction through CF0 was evident, it remains to be established whether delta acts as a gated proton valve or as a conformational transducer in the integral CF0CF1 ATPase.  相似文献   

4.
Summary We previously introduced a flash spectrophotometric method to analyze proton conduction by CF0 in vesicles derived from thylakoid membranes (H. Lill, S. Engelbrecht, G. Schönknecht & W. Junge, 1986,Eur. J. Biochem. 160:627–634). The unit conductance of CF0, as revealed by this technique, was orders of magnitude higher than that theoretically expected for a hydrogen-bonded chain. We scrutinized the validity of this method. Small vesicles were derived from thylakoids by EDTA treatment. The intrinsic electric generators in the membrane were stimulated by short flashes of light and the relaxation of the voltage via ionic channels was measured through electrochromic absorption changes of intrinsic pigments. The voltage decay was stimulated by a statistical model. As the vesicle-size distribution had only a minor influence, the simulation required only two fit parameters, the first proportional to the unit conductance of an active channelG, and the second denoting the average number of active channels per vesiclen. This technique was applied to CF0, the proton channel of the chloroplast ATP synthase, and to gramicidin, serving as a standard. For both channels we found the above two fit parameters physically meaningful. They could be independently varied in predictable wasy, i.e.n by addition of known inhibitors of F0-type proton channels andG via the temperature. for gramicidin, the unit conductance (2.7 pS) was within the range described in the literature. This established the competence of this method for studies on the mechanism of proton conduction by CF0, whose conductance so far has not been accessible to other, more conventional approaches. The time-averaged unit conductance of CF0 was about 1 pS, equivalent to the turnover of 6×105 H+/(CF0·sec) at 100 mV driving force.  相似文献   

5.
We investigated the ability of subunits beta, gamma, delta, and epsilon of CF1, the F1-ATPase of chloroplasts, to interact with exposed CF0 in EDTA-treated, partially CF1-depleted thylakoid membranes. We measured the ability of subunits beta, gamma, delta, and epsilon to stimulate the rate of photophosphorylation under continuous light and, for subunit beta, also the ability to diminish the proton leakage through exposed CF0 by deceleration of the decay of electrochromic absorption transients under flashing light. The greatest effect was caused by subunit beta, followed by gamma/delta/epsilon. Pairwise combinations of gamma, delta, and epsilon or each of these subunits alone were only marginally effective. Subunit gamma from the thermophilic bacterium PS 3 in combination with chloroplast delta and epsilon was as effective as chloroplast gamma. The finding that the small CF1 subunits in concert and the beta subunit by itself specifically interacted with the exposed proton channel CF0, qualifies the previous concept of subunit delta acting particularly as a plug to the open CF0 channel. The interactions between the channel and the catalytic portion of the enzyme seem to involve most of the small, and at least beta of the large subunits.  相似文献   

6.
Upon EDTA treatment thylakoids lose the chloroplast coupling factor 1 (CF1) part of their ATP synthase, CF0CF1, this exposes the proton channel, CF0. The previously established ability of the CF1 subunit delta to block the proton leak through CF0 prompted us to study (a) the ability of complete CF1 and, for comparison, CF1 lacking the delta subunit to block proton leakage and thereby to reconstitute structurally some photophosphorylation activity of the remaining CF0CF1 molecules and (b) their ability to form functional enzymes (functional reconstitution). In order to discriminate between activities caused by added CF1 or CF1(-delta) and remaining CF0CF1, the former were inhibited by chemical modification of subunit beta by N,N'-dicyclohexyl carbodiimide (DCCD) and the latter by tentoxin. We found that added CF1 acted both structurally and functionally while added DCCD-treated CF1 (DCCD-CF1) acted only structurally. In contrast to previous observations, CF1(-delta) and DCCD-CF1(-delta) also acted structurally although the reduction of proton leakage was smaller than with DCCD-CF1. Hence there was no functional reconstitution without subunit delta present. Previous studies indicated that only a small fraction of exposed CF0 is highly conducting and that this small fraction is distinguished by its high affinity for added CF1. The results of this study point rather to a wider distribution of CF0 conductance states and binding affinities.  相似文献   

7.
R Wagner  E C Apley    W Hanke 《The EMBO journal》1989,8(10):2827-2834
The purified chloroplast ATP synthase (CF(0)-CF(1)) was reconstituted into azolectin liposomes from which bilayer membranes on the tip of a glass pipette ('dip stick technique')and planar bilayer membranes were form ed. The CF(0)-CF(1) facilitated ion conductance through the bilayer membranes. Our results clearly indicated that the observed single channel currents were carried by H+ through the isolated and reconstituted chloroplast ATPase. We demonstrated that in proteoliposomes it is the whole enzyme complex CF(0)-CF(1) and not the membrane sector CF(0) alone that constitutes a voltagegated, proton-selective channel with a high conductance of 1-5 pS at pH 5.5-8.0. After removal of CF(1) from the liposomes by NaBr treatment the membrane sector CF(0) displayed various kinds of channels also permeable to monovalent cations. The open probability P(0) of the CF(0)-CF(1) channel increased considerable with increasing membrane voltage [from P(0) less than or equal to 1% (V(m) less than or equal to 120 mV) to P(0) less than or equal to 30% (120 mV less than or equal to Vm 200 mV)]. In the presence of ADP (3 microM) and P(i) (5 microM), which specifically bind to CF(1), the open probability decreased and venturicidin (1 microM), a specific inhibitor of H+ flow through CF(0) in thylakoid membranes, blocked the channel almost completely. Our results, which reveal a high channel unit conductance, and at membrane voltages less than 100 mV low open probability with concomitant mean open times in the micros timescale (less than 100 micros) for the energy coupling in the enzyme complex. At physiological membrane voltages for photophosphorylation (about 30 mV) the enzyme complex would then display a time-averaged conductance of about 1 fS.  相似文献   

8.
F0F1 ATP synthases synthesize ATP in their F1 portion at the expense of free energy supplied by proton flow which enters the enzyme through their channel portion F0. The smaller subunits of F1, especially subunit delta, may act as energy transducers between these rather distant functional units. We have previously shown that chloroplast delta, when added to thylakoids partially depleted of the coupling factor CF1, can reconstitute photophosphorylation by inhibiting proton leakage through exposed coupling factor CF0. In view of controversies in the literature, we reinvestigated two further aspects related to subunit delta, namely (a) its stoichiometry in CF0CF1 and (b) whether or not delta is required for photophosphorylation. By rocket immunoelectrophoresis of thylakoid membranes and calibration against purified delta, we confirmed a stoichiometry of one delta per CF0CF1. In CF1-depleted thylakoids photophosphorylation could be reconstituted not only by adding CF1 and subunit delta but, surprisingly, also by CF1 (-delta). We found that the latter was attributable to a contamination of CF1 (-delta) preparations with integral CF1. To lesser extent CF1 (-delta) acted by complementary rebinding to CF0 channels that were closed because they contained delta [CF0(+delta)]. This added catalytic capacity to proton-tight thylakoid vesicles. The ability of subunit delta to control proton flow through CF0 and the absolute requirement for delta in restoration of photophosphorylation suggest an essential role of this small subunit at the interface between the large portions of ATP synthase: delta may be part of the coupling site between electrochemical, conformational and chemical events in this enzyme.  相似文献   

9.
The ATP synthases in photophosphorylation and respiration are of the F-type with a membrane-bound proton channel, F0, and an extrinsic catalytic portion, F1. The properties of one particular subunit, delta (in chloroplasts and Escherichia coli) and OSCP (in mitochondria), are reviewed and the role of this subunit at the interface between F0 and F1 is discussed. Delta and OSCP from the three sources have in common the molecular mass (approximately 20 kDa), an elongated shape (axial ratio in solution about 3:1), one high-affinity binding site to F1 (Kd approximately 100 nM) plus probably one or two further low-affinity sites. When isolated delta is added to CF1-depleted thylakoid membranes, it can block proton flow through exposed CF0 channels, as do CF1 or CF1(-delta)+ delta. This identifies delta as part of the proton conductor or, alternatively, conformational energy transducer between F0 (proton flow) and F1 (ATP). Hybrid constructs as CF1(-delta)+ E. coli delta and EF1(-delta)+ chloroplast delta diminish proton flow through CF0.CF1(-delta) + E. coli delta does the same on EF0. Impairment of proton leaks either through CF0 or through EF0 causes "structural reconstitution' of ATP synthesis by remaining intact F0F1. Functional reconstitution (ATP synthesis by fully reconstructed F0F1), however, is absolutely dependent on the presence of subunit delta and is therefore observed only with CF1 or CF1(-delta) + chloroplast delta on CF0 and EF1 or EF1(-delta) + E. coli delta on EF0. The effect of hybrid constructs on F0 channels is surprising in view of the limited sequence homology between chloroplast and E. coli delta (36% conserved residues including conservative replacements). An analysis of the distribution of the conserved residues at present does not allow us to discriminate between the postulated conformational or proton-conductive roles of subunit delta.  相似文献   

10.
The mobility of protons in a dioxolane-linked gramicidin A channel (D1) is comparable to the mobility of protons in aqueous solutions (Cukierman, S., E. P. Quigley, and D. S. Crumrine. 1997. Biophys. J. 73:2489-2502). Aliphatic alcohols decrease the mobility of H+ in aqueous solutions. In this study, the effects of methanol on proton conduction through D1 channels were investigated in different lipid bilayers and at different HCl concentrations. Methanol attenuated H+ currents in a voltage-independent manner. Attenuation of proton currents was also independent of H+ concentrations in solution. In phospholipid bilayers, methanol decreased the single channel conductance to protons without affecting the binding affinity of protons to bilayers. In glycerylmonooleate membranes, the attenuation of single channel proton conductances qualitatively resembled the decrease of conductivities of HCl solutions by methanol. However, in both types of lipid bilayers, single channel proton conductances through D1 channels were considerably more attenuated than the conductivities of different HCl solutions. This suggests that methanol modulates single proton currents through D1 channels. It is proposed that, on average, one methanol molecule binds to a D1 channel, and attenuates H+ conductance. The Gibbs free energy of this process (DeltaG0) is approximately 1.2 kcal/mol, which is comparable to the free energy of decrease of HCl conductivity in methanol solutions (1.6 kcal/mol). Apolar substances like urea and glucose that do not transport protons in HCl solutions and do not permeate D1 channels decreased solution conductivity and single channel conductance by a considerably larger proportion than methanol. Cs+ currents through D1 channels were considerably less (fivefold) attenuated by methanol than proton currents. It is proposed that methanol partitions inside the pore of gramicidin channels and delays the transfer of protons between water and methanol molecules, causing a significant attenuation of the single channel proton conductance. Gramicidin channels offer an interesting experimental model to study proton hopping along a single chain of water molecules interrupted by a single methanol molecule.  相似文献   

11.
F0F1-ATP synthases catalyse ATP formation from ADP and Pi by using the free energy supplied by the transmembrane electrochemical potential of the proton. The delta subunit of F1 plays an important role at the interface between the channel portion F0 and the catalytic portion F1. In chloroplasts it can plug the protonic conductance of CF0 and in Escherichia coli it is required for binding of EF1 to EF0. We wanted to know whether or not delta of one species was effective between F0 and F1 of the other species and vice versa. To this end the respective coupling membrane (thylakoids, everted vesicles from E. coli) was (partially) depleted of F1 and purified F1, F1(-delta), and delta were added in various combinations to the F1-depleted membranes. The efficiency or reconstitution was measured in thylakoids via the rate of phenazinemethosulfate-mediated cyclic photophosphorylation and in E. coli everted vesicles via the degree of 9-amino-6-chloro-2-methoxyacridine fluorescence quenching. Addition of CF1 to partially CF1-depleted thylakoid vesicles restored photophosphorylation to the highest extent. CF1(-delta)+chloroplast delta, EF1, EF1(-delta)+E. coli delta were also effective but to lesser extent. CF1(-delta)+E. coli delta and EF1(-delta)+chloroplast delta restored photophosphorylation to a small but still significant extent. With F1-depleted everted vesicles prepared by repeated EDTA treatment of E. coli membranes, addition of CF1, CF1 (-delta)+chloroplast delta and CF1(-delta)+E. coli delta gave approximately half the extent of 9-amino-6-chloro-2-methoxyacridine fluorescence quenching as compared to EF1 or EF1(-delta)+E. coli delta by energization of the vesicles with NADH, while Ef1(-delta)+chloroplast delta was ineffective. All 'mixed' combinations were probably reconstitutively active only by plugging the protonic leak through the exposed F0 (structural reconstitution) rather than by catalytic activity. Nevertheless, the cross-reconstitution is stunning in view of the weak sequence similarity between chloroplast delta and E. coli delta. It favors a role of delta as a conformational transducer rather than as a proton conductor between F0 and F1.  相似文献   

12.
Possible structural and functional similarities between the channel part, CF0, of chloroplast ATPase (CF0CF1) and ion channels permeable to monovalent cations were investigated using high-affinity toxins mainly targeted against voltage-sensitive K+ channels. In particular, the effect of the K(+)-channel blocker alpha-dendrotoxin and the crude scorpion venom of Leiurus quinquestriatus hebraeus (LQ venom) on ATP synthesis in thylakoid membranes and in CF0CF1-containing liposomes was characterised. Alpha-dendrotoxin (K(i) approximately 5.05 microM) and the LQ venom (K(i) approximately 1.55 micrograms/ml) specifically inhibited ATP synthesis in thylakoid membranes and in CF0CF1-containing liposomes. Our results show that alpha-dendrotoxin and peptides of the LQ venom with an apparent molecular mass of about 4.0 kDa, probably isoforms of charybdotoxin, specifically bind to CF0CF1. This binding was reversible and induced a high leak conductance for H+ through CF0. The Ca(2+)-dependent ATPase activity of the isolated soluble part of CF0CF1 (CF1) was completely inhibited by 1 microM alpha-dendrotoxin, while the crude LQ venom, at concentrations up to 10 micrograms/ml, had no affect on ATPase activity. The concentration dependence of the inhibition by alpha-dendrotoxin indicates that approximately 2 mol alpha-dendrotoxin bind/mol CF0CF1 and 1 mol alpha-dendrotoxin/mol CF1. Known inhibitors of H(+)-flow-through CF0 acted in the presence of alpha-dendrotoxin synergistically. Dicyclohexylcarbodiimide and venturicidin, in contrast to their known effect of blocking H(+)-flow-through CF0, increased the leak conductance through CF0 in the presence of alpha-dendrotoxin drastically. This uncoupling effect indicates that their normal mode of blocking is a secondary effect. Binding of the inhibitors to their respective sites apparently does not affect the proton pathway in CF0, but induces a conformation which closes the channel part for H+. Protein sequence comparison between the known binding site of charybdotoxin in the shaker K+ channel from Drosophila [MacKinnon, R. & Heginbotham, L. (1990) Neuron 5, 767-771] and the choroplast ATPase showed that subunit III reveals a significant similarity (64%) in parts of its sequence (Gln28-Leu53) to the helix 5 and helix 6 (S5-S6) linker region (Ala413-Cys462; the charybdotoxin-binding site) of the shaker K+ channel. According to secondary-structure predictions, the homologous sequences in subunit III and the shaker K+ channel represent putative hydrophilic loops connecting two transmembrane alpha-helices. Apparently the shaker K+ channel and subunit III share significant topological features in these hydrophilic loops which may be part of the respective channel entrance.  相似文献   

13.
The proton conductable ATP synthase (CF0-CF1) is the key enzyme of energy conversion in the membrane of bacteria, mitochondria and chloroplast. In spite of a large body of studies, the structure and molecular mechanism of ATP synthases are still elusive. In order to learn the mechanism of ATP synthases, the authors used voltage-olamp technique to study the effect of different conditions on the proton conductance of F0-F1 into planar lipid bilayer membrane. The results obtained were as follows: (1) When CF0-CF1 was reconstructed into planar lipid bilayer membrane, the resistance decreased by 10 times. (2) Channel-like current was recorded at the low concentration of CF0-CFl(protein 2 mg/L) in the solution. (3) In metal ion-free solution, the channel currents changed with the trans-membrane proton gradient (ApH). Under holding potential from 0 to + 150 mV, the stimulation of △pH on channel current increased with a rise in the ApH from 2 to 4, the stimulation of 4.5 △pH on channel current was weaker than that of △pH 4.0. (4) The proton conduetance inhibitor, dicyclohexylcarbodiimide (DCCD), showed a rapid and irreversible inhibition effect on the channel current. (5) In metal ion-free solution (10 mmol/L Tris-HC1), when the ApH across the black lipid membrane (BLM) maintained at 3.0, the addition of Mg2 + caused a alger channel current of CF0-CF1 than the addition of Ca2+ , with holding potential from 0 to + 150 mV. The results indicated that reconstruction of CF0-CF1 was successful and Mg2 + was directly involved in the proton conductance pathways.  相似文献   

14.
Chloroplast ATPase (CF1) was isolated from spinach, pea and maize thylakoids by EDTA extraction followed by anion-exchange chromatography. CF1 was purified and resolved by HPLC into integral CF1, and CF1 lacking the delta & epsilon subunits: CF1(-delta) and CF1(-epsilon). Washing Mono-Q-bound CF1 with alcohol-containing buffers followed by elution without alcohol produced the beta subunit and in separate peaks CF1(-delta) and CF1(-epsilon). Elution from Mono Q in the presence of tenside yielded a beta delta fragment, CF1(-delta) and CF1(-delta epsilon). Chloroplasts were CF1-depleted by EDTA extraction. Reconstitution of photophosphorylation in these 'EDTA vesicles' was obtained by addition of CF1 and its fragments. CF1, CF1(-delta) and CF1(-delta epsilon) were active with cross-reactivity between spinach, pea and maize. delta-containing CF1 always reconstituted higher activities than delta-deficient CF1. The beta delta fragment and dicyclohexylcarbodiimide (DCCD)-inhibited CF1 also were reconstitutively active while beta and DCCD-inhibited CF1(-delta) were not. These results support the notion that subunit delta can function as a stopcock to the CF0 proton channel as proposed by Junge, W., Hong, Y. Q., Qian, L. P. and Viale, A. [(1984) Proc. Natl Acad. Sci. USA 81, 3078-3082].  相似文献   

15.
Summary The proton-driven ATP synthase of chloroplasts is composed of two elements, CF0 and CF1. The membrane bound CF0 conducts protons and the peripheral CF1 interacts with nucleotides. By flash spectrophotometric techniques applied to thylakoid membranes from which about 50% of total CF1 was removed, we have previously determined the protonic (timeaveraged) single-channel conductance of CF0. Being in the order of 1 pS, it was sufficiently large to support the proposed role of CF0 as a low-impedance access for protons to the coupling site in CF0CF1. On the other hand, it was too large to be readily reconciled with current concepts of proton supply to and proton conduction through the channel.We studied the time-averaged single-channel conductance of CF0 under variation of pH, pD, ionic composition, temperature, and water/membrane structure with the following results: (i) CF0 was proton-specific even against a background of 300mm monovalent or 30mm divalent catins. (ii) While the conductance of CF0 was pH/pD-independent in the range from 5.6–8.0, in D2O it was lower by a constant factor of 1.7 than in H2O (iii) Addition of glycerol diminished the conductance and abolished the isotope effect. (iv) The Arrhenius activation energy was 42 kJ/mol and thus intermediate between the ones found for the water-filled pore, gramicidin (30 kJ/mol), and the mobile carrier, valinomycin (65 kJ/mol).The results implied that CF0 is endowed with an extremely proton-specific (107-fold) selectivity filter. Its conductance is very high, and its conduction cycle is not necessarily rate limited by a protolytic reaction. The mechanisms of rapid proton supply to the channel mouth and of proton conduction remained enigmatic.  相似文献   

16.
Repeated extraction of bovine heart submitochondrial particles with ammonia and EDTA (AE) yields a preparation that is highly deficient in coupling factor B (FB). The activity of the thrice extracted particle (AE-P3) in ATP-driven NAD+ reduction by succinate and the 32Pi-ATP exchange activity were substantially stimulated, 8-fold and 5-fold, respectively, by purified FB. To decrease the basal activity of the particle further, the residual FB in AE-P3 was inactivated by treatment with the -SH reagent, 4-vinylpyridine. The resulting particle was depleted of F1 by treatment with 3.5 M NaBr. This particle was incorporated into asolectin liposomes alone and in the presence of added FB. Passive proton conduction in the FB-deficient proteoliposomes was negligible and restored in the presence of FB. The H+ conductance was inhibited extensively by oligomycin and partially by F1-ATPase. The results show absolute dependence on FB for functioning of the FO proton channel.  相似文献   

17.
Functional modification of a Ca2+-activated K+ channel by trimethyloxonium   总被引:3,自引:0,他引:3  
R MacKinnon  C Miller 《Biochemistry》1989,28(20):8087-8092
Single Ca2+-activated K+ channels from rat skeletal muscle plasma membranes were studied in neutral phospholipid bilayers. Channels were chemically modified by briefly exposing the external side to the carboxyl group modifying reagent trimethyloxonium (TMO). TMO modification, in a "multi-hit" fashion, reduces the single-channel conductance without affecting ion selectivity. Modification also shifts the voltage activation curve toward more depolarized voltages and reduces the affinity of the channel blocker charybdotoxin (CTX). CTX, bound to the channel during the TMO exposure, prevents the TMO-induced reduction of the single-channel conductance. These data suggest that the high-conductance Ca2+-activated K+ channel has carboxyl groups on its external surface. These groups influence ion conduction, gating, and the binding of CTX.  相似文献   

18.
The early observation of light-dependent Ca-ATPase activity in chloroplast thylakoids [Avron, M. (1962) J. Biol. Chem. 237, 2011-2017] has been reinvestigated. It is demonstrated that in contrast to light-triggered Mg-ATP activity, Ca-ATPase activity is strictly dependent on delta microH+, the transthylakoid membrane electrochemical potential gradient, since (a) there is an absolute requirement for continuous illumination; (b) electron-transport mediators that catalyze proton uptake, like phenazinemethosulphate, methylviologen of ferricyanide, are essential and (c) uncouplers inhibit the activity. The Ca-ATPase activity is essentially unaffected by dithiols, but is inhibited by CF0-CF1 inhibitors including tentoxin, dicyclohexylcarbodiimide and antisera to CF1. Addition of Ca-ATP to thylakoids does not induce delta pH or delta psi (the electrical potential gradient) formation either in the light or following preillumination with dithiols, demonstrating that it is not coupled to proton translocation. It is also demonstrated that Ca-ATP or Ca-ADP does not induce a proton leak through CF0-CF1. It is concluded that the Ca-ATPase activity in chloroplast thylakoid reflects a partial reaction of ATP synthesis catalyzed by CF0-CF1, which is internally uncoupled from proton translocation but is dependent on energization by a transmembrane delta microH+.  相似文献   

19.
AM2 and BM2 proton channels are attractive antiviral drug targets due to their essential roles during influenza virus replication. Although both AM2 and BM2 are proton-selective ion channels, they share little sequence similarity except for the HXXXW sequence, which suggests that their proton conductance properties might differ. To test this hypothesis, we applied two-electrode voltage clamp electrophysiological assays to study the specific conductance, leakage current, channel activation, and inhibition of AM2 and BM2 proton channels. It was found that BM2 channel has a higher specific conductance than AM2 channel at pH 5.5. Unlike AM2 channel, whose proton conductance is asymmetric (from viral exterior to interior), BM2 channel is capable of conducting proton in both directions. Moreover, BM2 requires a more acidic pH for channel activation than AM2, as revealed by its lower pKa values. Finally, both AM2 and BM2 can be inhibited by Cu(II) and Cu(I). Overall, the results from this side-by-side comparison of AM2 and BM2 channels reveal the structure-function relationships of these two viroporins, and such information might be important for the designing of novel ion channels.  相似文献   

20.
1. The membrane-integrated portion (TF0) of the proton translocating ATPase complex (TF0-F1) of the thermophilic bacterium PS3 was highly purified. Its proton-conducting activity was investigated in vesicles reconstituted from TF0 and phospholipids (TF0 vesicles). 2. The rate of proton conduction through TF0 was proportional to the membrane potential imposed (6H+ uptake/s/TF0 molecule with 103 mV at pH 8.0). The pH profile of the rate revealed that a proton, not a hydroxy ion, was the true substrate conducted and that there was a monoprotic proton binding site in TF0 (pKa = 6.8). The temperature coefficient of proton conductance of TF0 showed a considerable variation depending on the phospholipids of the vesicles with respective transition temperatures. 3. Passive proton conduction through TF0 was inhibited stoichiometrically by addition of either the soluble ATPase portion (TF1) of TF0-F1, or an energy transfer inhibitor dicyclohexylcarbodiimide or an antibody against TF0. 4. The proton conductance of TF0 was concluded to represent its intrinsic activity in the original TF0-F1 complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号