首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A gramicidin channel in a fluid phase DMPC bilayer with excess lipid and water has been simulated. By use of the formal correspondence between diffusion and random walk, a permeability for water through the channel was calculated, and was found to agree closely with the experimental results of Rosenberg and Finkelstein (Rosenberg, P.A., and A. Finkelstein. 1978. J. Gen. Physiol. 72:327-340; 341-350) for permeation of water through gramicidin in a phospholipid membrane. By using fluctuation analysis, components of resistance to permeation were computed for movement through the channel interior, for the transition step at the channel mouth where the water molecule solvation environment changes, and for the process of diffusion up to the channel mouth. The majority of the resistance to permeation appears to occur in the transition step at the channel mouth. A significant amount is also due to structurally based free energy barriers within the channel. Only small amounts are due to local friction within the channel or to diffusive resistance for approaching the channel mouth.  相似文献   

2.
This study is an investigation of the ability of the bacterial channel alpha-hemolysin to facilitate water permeation across biological membranes. alpha-Hemolysin channels were incorporated into rabbit erythrocyte ghosts at varying concentrations, and water permeation was induced by mixing the ghosts with hypertonic sucrose solutions. The resulting volume decrease of the ghosts was followed by time-resolved optical absorption at pH 5, 6, and 7. The average single-channel permeability coefficient of alpha-hemolysin for water ranged between 1.3x10-12 cm/s and 1.5x10-12 cm/s, depending on pH. The slightly increased single-channel permeability coefficient at lower pH-values was attributed to an increase in the effective pore size. The activation energy of water transport through the channel was low (Ea=5.4 kcal/mol), suggesting that the properties of water inside the alpha-hemolysin channel resemble those of bulk water. This conclusion was supported by calculations based on macroscopic hydrodynamic laws of laminar water flow. Using the known three-dimensional structure of the channel, the calculations accurately predicted the rate of water flow through the channel. The latter finding also indicated that water permeation data can provide a good estimate of the pore size for large channels.  相似文献   

3.
Immediately following exposure to thiocyanate (SCN-)-containing solutions, the cystic fibrosis conductance regulator Cl- channel exhibits high unitary SCN conductance and anomalous mole fraction behaviour, suggesting the presence of multiple anion binding sites within the channel pore. However, under steady-state conditions SCN-conductance is very low. Here I show, using patch clamp recording from CFTR-transfected mammalian cell lines, that under steady-state conditions neither SCN- conductance nor SCN- permeability show anomalous mole fraction behaviour. Instead, SCN conductance, permeability, and block of Cl- permeation can all be reproduced by a rate theory model that assumes only a single intrapore anion binding site. These results suggest that under steady-state conditions the interaction between SCN- and the CFTR channel pore can be understood by a simple model whereby SCN- ions enter the pore more easily than Cl-, and bind within the pore more tightly than Cl-. The implications of these findings for investigating and understanding the mechanism of anion permeation are discussed.  相似文献   

4.
The activity of certain muscles that cross the elbow joint complex (EJC) are affected by forearm position and forearm movement during elbow flexion/extension. To investigate whether these changes are based on the musculoskeletal geometry of the joint, a three-dimensional musculotendinoskeletal computer model of the EJC was used to estimate individual muscle activity in multi-degree-of-freedom (df) rapid (ballistic) elbow movements. It is hypothesized that this model could reproduce the major features of elbow muscle activity during multi-df elbow movements using dynamic optimal control theory, given a minimum-time performance criterion. Results from the model are presented and verified with experimental kinematic and electromyographic data from movements that involved both one-df elbow flexion/extension and two-df flexion/extension with forearm pronation/supination. The model demonstrated how the activity of particular muscles is affected by both forearm position and movement, as measured in these experiments and as previously reported by others. These changes were most evident in the flexor muscles and least evident in the extensor muscles. The model also indicated that, for specific one- and two-df movements, activating a muscle that is antagonistic or noncontributory to the movement could reduce the movement time. The major features of muscle activity in multi-df elbow movements appear to be highly dependent on the joint's musculoskeletal geometry and are not strictly based on neural influences or neuroanatomical substrates. Received: 9 May 1997 / Accepted in revised form: 8 December 1998  相似文献   

5.
We document the phylogenetic behavior of the 18S rRNA molecule in 67 taxa from 28 metazoan phyla and assess the effects of among-site rate variation on reconstructing phylogenies of the animal kingdom. This empirical assessment was undertaken to clarify further the limits of resolution of the 18S rRNA gene as a phylogenetic marker and to address the question of whether 18S rRNA phylogenies can be used as a source of evidence to infer the reality of a Cambrian explosion. A notable degree of among-site rate variation exists between different regions of the 18S rRNA molecule, as well as within all classes of secondary structure. There is a significant negative correlation between inferred number of nucleotide substitutions and phylogenetic information, as well as with the degree of substitutional saturation within the molecule. Base compositional differences both within and between taxa exist and, in certain lineages, may be associated with long branches and phylogenetic position. Importantly, excluding sites with different degrees of nucleotide substitution significantly influences the topology and degree of resolution of maximum-parsimony phylogenies as well as neighbor-joining phylogenies (corrected and uncorrected for among-site rate variation) reconstructed at the metazoan scale. Together, these data indicate that the 18S rRNA molecule is an unsuitable candidate for reconstructing the evolutionary history of all metazoan phyla, and that the polytomies, i.e., unresolved nodes within 18S rRNA phylogenies, cannot be used as a single or reliable source of evidence to support the hypothesis of a Cambrian explosion. Received: 9 December 1997 / Accepted: 23 March 1998  相似文献   

6.
Aquaporins are protein channels located across the cell membrane with the role of conducting water or other small sugar alcohol molecules (aquaglyceroporins). The high-resolution X-ray structure of the human aquaporin 5 (HsAQP5) shows that HsAQP5, as all the other known aquaporins, exhibits tetrameric structure. By means of molecular dynamics simulations we analyzed the role of spontaneous fluctuations on the structural behavior of the human AQP5. We found that different conformations within the tetramer lead to a distribution of monomeric channel structures, which can be characterized as open or closed. The switch between the two states of a channel is a tap-like mechanism at the cytoplasmic end which regulates the water passage through the pore. The channel is closed by a translation of the His67 residue inside the pore. Moreover, water permeation rate calculations revealed that the selectivity filter, located at the other end of the channel, regulates the flow rate of water molecules when the channel is open, by locally modifying the orientation of His173. Furthermore, the calculated permeation rates of a fully open channel are in good agreement with the reported experimental value.  相似文献   

7.
Water permeation and electrostatic interactions between water and channel are investigated in the Escherichia coli glycerol uptake facilitator GlpF, a member of the aquaporin water channel family, by molecular dynamics simulations. A tetrameric model of the channel embedded in a 16:0/18:1c9-palmitoyloleylphosphatidylethanolamine membrane was used for the simulations. During the simulations, water molecules pass through the channel in single file. The movement of the single file water molecules through the channel is concerted, and we show that it can be described by a continuous-time random-walk model. The integrity of the single file remains intact during the permeation, indicating that a disrupted water chain is unlikely to be the mechanism of proton exclusion in aquaporins. Specific hydrogen bonds between permeating water and protein at the channel center (at two conserved Asp-Pro-Ala "NPA" motifs), together with the protein electrostatic fields enforce a bipolar water configuration inside the channel with dipole inversion at the NPA motifs. At the NPA motifs water-protein electrostatic interactions facilitate this inversion. Furthermore, water-water electrostatic interactions are in all regions inside the channel stronger than water-protein interactions, except near a conserved, positively charged Arg residue. We find that variations of the protein electrostatic field through the channel, owing to preserved structural features, completely explain the bipolar orientation of water. This orientation persists despite water translocation in single file and blocks proton transport. Furthermore, we find that for permeation of a cation, ion-protein electrostatic interactions are more unfavorable at the conserved NPA motifs than at the conserved Arg, suggesting that the major barrier against proton transport in aquaporins is faced at the NPA motifs.  相似文献   

8.
The detailed kinetics of permeation and effusion of small nitroxide spin probe radicals with the protein shells of horse spleen ferritin (HoSF) and human H-chain ferritin (HuHF) and a 3-fold channel variant D131H+E134H of HuHF were studied by electron paramagnetic resonance spectroscopy and gel permeation chromatography under a variety of experimental conditions. The results confirm that the permeation of molecular species of 7-9-A diameter into ferritin is a charge selective process and that the threefold channels are the likely pathways for entry into the protein. Studies with holoHoSF show that increased temperature increases the rates of penetration and effusion and also increases the concentration of positively charged spin probe accumulated within the protein in excess of that in the external solution. The interior of HoSF is much more accessible to small molecules at physiological temperature of approximately 40 degrees C than at room temperature. The large activation energy of 63-67 kJ/mol measured for the effusion/penetration and the small diffusion coefficient, D approximately 5 x 10(-22) m(2)/s at 20 degrees C, corresponding to a time of approximately 60 min for traversing the protein shell, is consistent with the kinetics of diffusion being largely controlled by the restrictive porosity of the protein itself. An inverse dependence of the first-order rate constant for effusion out of the protein channel on the incubation time used for radical penetration into the protein is attributed to increased binding of the radical within the funnel-shaped channel.  相似文献   

9.
We have examined whether the anionic amino acids, glutamate and aspartate, permeate through the same volume-regulated conductance permeant to Cl- ions. Cell swelling was initiated in response to establishing a whole-cell configuration in the presence of a hyposmotic gradient. Volume-regulated anion currents carried by Cl-, glutamate, or aspartate developed with similar time courses and showed similar voltage-dependent inactivation. Permeability ratios (Paa/PCl) calculated from measured reversal potentials were dependent on the mole fraction ratio (MFR) of the permeant anions ([aa]/([aa] + [Cl-])). MFR was varied from 0.00 to 0.97. As the fraction of amino acid increased, Paa/PCl decreased. Current amplitude was similarly dependent on MFR. These results show that the permeation of anionic amino acids and that of Cl- ions are not independent of each other, indicating that the ion channel underlying the volume-regulated conductance can be occupied by more than one ion at a time. Application of Eyring rate theory indicated that the major barrier to Cl- ion permeation is at the intracellular side of the membrane, and that the major barrier to amino acid permeation is at the extracellular side of the membrane. The interactions between these permeant ions may have a physiological modulatory role in volume regulation through a volume-regulated anion conductance.  相似文献   

10.
A composite continuum theory for calculating ion current through a protein channel of known structure is proposed, which incorporates information about the channel dynamics. The approach is utilized to predict current through the Gramicidin A ion channel, a narrow pore in which the applicability of conventional continuum theories is questionable. The proposed approach utilizes a modified version of Poisson-Nernst-Planck (PNP) theory, termed Potential-of-Mean-Force-Poisson-Nernst-Planck theory (PMFPNP), to compute ion currents. As in standard PNP, ion permeation is modeled as a continuum drift-diffusion process in a self-consistent electrostatic potential. In PMFPNP, however, information about the dynamic relaxation of the protein and the surrounding medium is incorporated into the model of ion permeation by including the free energy of inserting a single ion into the channel, i.e., the potential of mean force along the permeation pathway. In this way the dynamic flexibility of the channel environment is approximately accounted for. The PMF profile of the ion along the Gramicidin A channel is obtained by combining an equilibrium molecular dynamics (MD) simulation that samples dynamic protein configurations when an ion resides at a particular location in the channel with a continuum electrostatics calculation of the free energy. The diffusion coefficient of a potassium ion within the channel is also calculated using the MD trajectory. Therefore, except for a reasonable choice of dielectric constants, no direct fitting parameters enter into this model. The results of our study reveal that the channel response to the permeating ion produces significant electrostatic stabilization of the ion inside the channel. The dielectric self-energy of the ion remains essentially unchanged in the course of the MD simulation, indicating that no substantial changes in the protein geometry occur as the ion passes through it. Also, the model accounts for the experimentally observed saturation of ion current with increase of the electrolyte concentration, in contrast to the predictions of standard PNP theory.  相似文献   

11.
Detergent-solubilized cell wall extracts of the gram-positive, strictly aerobic bacterium Nocardia asteroides contain channel-forming activity as judged from reconstitution experiments using lipid bilayer membranes. The cell wall porin was identified as a protein with an apparent molecular mass of about 84 kDa based on SDS-PAGE. The porin was purified to homogeneity using preparative SDS-PAGE. The 84-kDa protein was no longer observed after heating in SDS buffer. The presumed dissociation products were not observed on SDS-polyacrylamide gels. The cell wall porin increased the specific conductance of artificial lipid bilayer membranes from phosphatidylcholine/phosphatidylserine mixtures by the formation of cation-selective channels, which had an average single-channel conductance of 3.0 nS in 1 M KCl. The single-channel conductance was only moderately dependent on the bulk aqueous KCl concentration, which indicated negative point charge effects on the channel properties. The analysis of the concentration dependence of the single-channel conductance using the effect of negative charges on channel conductance suggested that the diameter of the cell wall channel is about 1.4 nm. Asymmetric addition of the cell wall porin to lipid bilayer membranes resulted in an asymmetric voltage dependence. The cell wall channel switched into substates, when the cis side of the membrane, the side of the addition of the protein, had negative polarity. Positive potentials at the cis side had no influence on the conductance of the cell wall channel. Received: 23 September 1998 / Accepted: 9 December 1998  相似文献   

12.
 The development of a simple and rapid procedure for direct somatic embryogenesis from wild Medicago spp. (M. truncatula, M. littoralis, M. murex, M. polymorpha) has exploited various explants including meristematic zones. Phytogel-solidified medium supplemented with thidiazuron or 6-benzylaminopurine at different concentrations effectively promoted this process. The first somatic structures emerged within 20 days of culture initiation. Histological analyses confirmed the nature of the directly formed embryos. Secondary embryogenesis was also observed. Cuttings of clusters of primary and secondary embryos were used for cyclic production of new embryo generations. Regenerated plants with well-developed root systems on medium with reduced levels of macroelements and sucrose were easily adapted to a greenhouse. Received: 23 March 1998 / Revision received: 10 August 1998 / Accepted: 7 December 1998  相似文献   

13.
Summary The initial rate of methanogen accumulation and anaerobic biofilm accumulation increased with increasing bulk liquid organic space loading and volatile suspended solids concentration. The rates were faster at a 15 day bulk liquid SRT than 5 day SRT. The results indicate that a reduction in start-up time for anaerobic fixed film reactors might be achieved by maintaining high organic space loadings and high concentrations of active microorganisms in the bulk liquid phase during the start-up period.  相似文献   

14.
The access diffusion permeability of pores with diameters comparable to the aqueous jump distance is characterized using a rate theory analysis for the aqueous diffusion process. It is found that this process gives rise to two permeability terms, one associated with bulk diffusion and the other a jump from the aqueous solution into a position where it has access to the channel. The latter term dominates for small channel diameters and vice versa for large channel diameters. The properties of access diffusion with respect to concentration polarization is shown to be different in the two limits of large and small values of the channel radius. A necessary criterion for bulk access diffusion to be rate limiting is given in terms of measured channel conductance G, aqueous jump distance lambda and aqueous resistivity rho, G greater than pi lambda/rho, which does not require a knowledge of channel geometry.  相似文献   

15.
16.
In the current study, we assessed whether visuospatial sequence knowledge is retained over 24 hours and whether this retention is dependent on the occurrence of eye movements. Participants performed two sessions of a serial reaction time (SRT) task in which they had to manually react to the identity of a target letter pair presented in one of four locations around a fixation cross. When the letter pair ‘XO’ was presented, a left response had to be given, when the letter pair ‘OX’ was presented, a right response was required. In the Eye Movements (EM) condition, eye movements were necessary to perform the task since the fixation cross and the target were separated by at least 9° visual angle. In the No Eye Movements (NEM) condition, on the other hand, eye movements were minimized by keeping the distance from the fixation cross to the target below 1° visual angle and by limiting the stimulus presentation to 100 ms. Since the target identity changed randomly in both conditions, no manual response sequence was present in the task. However, target location was structured according to a deterministic sequence in both the EM and NEM condition. Learning of the target location sequence was determined at the end of the first session and 24 hours after initial learning. Results indicated that the sequence learning effect in the SRT task diminished, yet remained significant, over the 24 hour interval in both conditions. Importantly, the difference in eye movements had no impact on the transfer of sequence knowledge. These results suggest that the retention of visuospatial sequence knowledge occurs alike, irrespective of whether this knowledge is supported by eye movements or not.  相似文献   

17.
Qi Z  Sokabe M 《Biophysical chemistry》1999,82(2-3):183-193
To get insight into the significance of the hydrophobic lining on the ion permeation, we performed molecular dynamics simulations on a Na(+) permeation through a de novo synthetic hydrophobic channel. Electrophysiological study has suggested that the channel is formed from a tail-to-tail associated dimer of a cyclic octa-peptide coupled with hydrophobic acyl chains. The acyl chains line the channel pore while the cyclic peptide forms the channel entrance [Z. Qi, M. Sokabe, K. Donowaki, H. Ishida, Biophys. J. 76 (1999) 631]. Molecular dynamics simulation of water in the channel indicated that the inferred structure is physically reasonable [Z. Qi, M. Sokabe, Biophys. Chem. 71 (1998) 35]. In the present study, the potential energy profile of the Na(+) and the energy contributions from each component of the system at different positions along the channel axis were calculated. An energy well instead of a peak is located at the central hydrophobic cavity of the channel, due to its ability of accommodating at least five water molecules to hydrate the ion. Interestingly, the ion diffuses much faster in the hydrophobic acyl chain region, particularly in the central hydrophobic cavity, than it does in the peptide ring region and even surprisingly faster than that in the bulk phase. These results provide a physical basis for an idea that the hydrophobic lining of the K(+) channel [D.A. Doyle, J.M. Cabral, R.A. Pfuetzner, A. Kuo, J.M. Gulbis, S.L. Cohen, B.T. Chait, R. MacKinnon, Science 280 (1998) 69] plays an active role to facilitate the ion permeation through the channel pore.  相似文献   

18.
Ligand-gated ion channels contain a conserved leucine at position 9′ (L9′) in the M2 transmembrane domain. We used multiple substitutions at this position in the γ subunit of the mouse acetylcholine receptor (AChR) (γL9′) to examine the role of residue polarity at this position in the gating process at both the macroscopic and single-channel levels. The midpoint of the macroscopic dose-response relationship (EC50) and the channel closing rate constant, α, decreased as the polarity of the residue at that position increased, suggesting a stabilization of the open state of the channel. Both parameters showed similar dependencies on the polarity of the substituted residue. These data support the notion that during AChR gating, the amino acid at the 9′ position moves into a polar environment, and that interactions between this residue and the polar environment determine the stability of the open state. Since this residue is conserved in all other members of the ligand-gated ion channel family, we suggest that a similar mechanism applies to the other members of the family. Received: 17 September 1999/Revised: 15 December 1999  相似文献   

19.
Molecular dynamics study of the KcsA potassium channel   总被引:5,自引:3,他引:2       下载免费PDF全文
TW Allen  S Kuyucak    SH Chung 《Biophysical journal》1999,77(5):2502-2516
The structural, dynamical, and thermodynamic properties of a model potassium channel are studied using molecular dynamics simulations. We use the recently unveiled protein structure for the KcsA potassium channel from Streptomyces lividans. Total and free energy profiles of potassium and sodium ions reveal a considerable preference for the larger potassium ions. The selectivity of the channel arises from its ability to completely solvate the potassium ions, but not the smaller sodium ions. Self-diffusion of water within the narrow selectivity filter is found to be reduced by an order of magnitude from bulk levels, whereas the wider hydrophobic section of the pore maintains near-bulk self-diffusion. Simulations examining multiple ion configurations suggest a two-ion channel. Ion diffusion is found to be reduced to approximately (1)/(3) of bulk diffusion within the selectivity filter. The reduced ion mobility does not hinder the passage of ions, as permeation appears to be driven by Coulomb repulsion within this multiple ion channel.  相似文献   

20.
Autonomous endosperm was found in unfertilized ovules of V. odorata L. cultured on MS medium supplemented with 2,4-D as a sole growth regulator or on media with 2,4-D and BAP or kinetin. Frequency of endosperm induction was approximately 9% in ovules analyzed. The induction rate depended mainly on genotype of the donor plant, and to lesser degrees, on floral stage, flower series and medium type. Multinuclear endosperms consisting of 10–37 nuclei were found in ovules after as few as 4 days of culture. In some ovules at this stage, the egg cell and two polar nuclei were present. The process of endosperm degeneration began after 3 weeks of culture. In some ovules, degenerating autonomous endosperm was observed up to the 7th week. Parthenogenetic development of egg cells or apogamy did not accompany autonomous endosperm, supporting the hypothesis of independent pathways for embryo and endosperm development. Received: 1 December 1998 / Revision accepted: 6 April 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号