首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clostridium perfringens type A strains that produce alpha-toxin cause gas gangrene, which is a life-threatening infection with fever, pain, edema, myonecrosis and gas production. Intramuscular injection of the toxin or Bacillus subtilis carrying the alpha-toxin gene causes myonecrosis and produces histopathological features of the disease. Immunization of mice with alpha-toxin or fragments of the toxin prevents gas gangrene caused by C. perfringens. The toxin possesses phospholipase C (PLC), sphingomyelinase (SMase) and biological activities causing hemolysis, lethality and dermonecrosis. These biological activities are closely related to PLC and/or SMase activities. However, there is yet some uncertainty about the biological activities induced by the PLC and SMase activities of alpha-toxin. Based on the isolation and characterization of the gene for alpha-toxin and a comparison of the toxin with enzymes of the PLC family, significant progress has been made in determining the function-structure of alpha-toxin and the mode of action of the toxin. To provide a better understanding of the role of alpha-toxin in tissue damage in gas gangrene, this article summarizes current knowledge of the characteristics and mode of action of alpha-toxin.  相似文献   

2.
Clostridium perfringens phospholipase C (PLC), also called alpha-toxin, is the major virulence factor in the pathogenesis of gas gangrene. The toxic activities of genetically engineered alpha-toxin variants harboring single amino-acid substitutions in three loops of its C-terminal domain were studied. The substitutions were made in aspartic acid residues which bind calcium, and tyrosine residues of the putative membrane-interacting region. The variants D269N and D336N had less than 20% of the hemolytic activity and displayed a cytotoxic potency 103-fold lower than that of the wild-type toxin. The variants in which Tyr275, Tyr307, and Tyr331 were substituted by Asn, Phe, or Leu had 11-73% of the hemolytic activity and exhibited a cytotoxic potency 102- to 105-fold lower than that of the wild-type toxin. The results demonstrated that the sphingomyelinase activity and the C-terminal domain are required for myotoxicity in vivo and that the variants D269N, D336N, Y275N, Y307F, and Y331L had less than 12% of the myotoxic activity displayed by the wild-type toxin. This work therefore identifies residues critical for the toxic activities of C. perfringens PLC and provides new insights toward understanding the mechanism of action of this toxin at a molecular level.  相似文献   

3.
Clostridium perfringens biotype A strains are the causative agents of gas-gangrene in man and are also implicated as etiological agents in sudden death syndrome in young domestic livestock. The main virulence factor produced by these strains is a zinc-dependent, phosphatidylcholine-preferring phospholipase C (alpha-toxin). The crystal structure of alpha-toxin, at pH 7.5, with the active site open and therefore accessible to substrate has previously been reported, as has calcium-binding to the C-terminal domain of the enzyme at pH 4.7. Here we focus on conformation changes in the N-terminal domain of alpha-toxin in crystals grown at acidic pH. These changes result in both the obscuring of the toxin active site and the loss of one of three zinc ions from it. Additionally, this "closed" form contains a small alpha helix, not present in the open structure, which hydrogen bonds to both the N and C-terminal domains. In conjunction with the previously reported findings that alpha-toxin can exist in active and inactive forms and that Thr74Ile and Phe69Cys substitutions markedly reduced the haemolytic activity of the enzyme, our work suggests that these loop conformations play a critical role in the activity of the toxin.  相似文献   

4.
Clostridium perfringens alpha-toxin elicits various immune responses such as the release of cytokines, chemokines, and superoxide via the GM1a/TrkA complex. Alpha-toxin possesses phospholipase C (PLC) hydrolytic activity that contributes to signal transduction in the pathogenesis of gas gangrene. Little is known about the relationship between lipid metabolism and TrkA activation by alpha-toxin. Using live-cell fluorescence microscopy, we monitored transbilayer movement of diacylglycerol (DAG) with the yellow fluorescent protein-tagged C1AB domain of protein kinase C-γ (EYFP-C1AB). DAG accumulated at the marginal region of the plasma membrane in alpha toxin-treated A549 cells, which also exhibited GM1a clustering and TrkA phosphorylation. Annexin V binding assays showed that alpha-toxin induced the exposure of phosphatidylserine on the outer leaflet of the plasma membrane. However, H148G, a variant toxin which binds cell membrane and has no enzymatic activity, did not induce DAG translocation, GM1a clustering, or TrkA phosphorylation. Alpha-toxin also specifically activated endogenous phospholipase Cγ-1 (PLCγ-1), a TrkA adaptor protein, via phosphorylation. U73122, an endogenous PLC inhibitor, and siRNA for PLCγ-1 inhibited the formation of DAG and release of IL-8. GM1a accumulation and TrkA phosphorylation in A549 cells treated with alpha-toxin were also inhibited by U73122. These results suggest that the flip-flop motion of hydrophobic lipids such as DAG leads to the accumulation of GM1a and TrkA. We conclude that the formation of DAG by alpha-toxin itself (first step) and activation of endogenous PLCγ-1 (second step) leads to alterations in membrane dynamics, followed by strong phosphorylation of TrkA.  相似文献   

5.
Highly purified alpha-toxin (phospholipase C) of Clostridium perfringens prepared by affinity chromatography on agarose-linked egg-yolk lipoprotein induced the in vitro aggregation of platelets of an irreversible type. The aggregation started after a time lag, the length of which depended on the concentration of the toxin; the reciprocal of the time lag was found to be directly proportional to the toxin concentration. Using this assay method, we demonstrated that the platelet-aggregating activity of alpha-toxin reached minimum at around 70 C but heating at higher temperatures inactivated it to a lesser extent; the same anomaly in heat inactivation was observed with phospholipase C activity possessed by the toxin. By subjecting purified alpha-toxin to isoelectric focusing, four molecular forms were isolated, all of which were associated with both the platelet-aggregating and phospholipase C activities. From all these results we concluded that the entity responsible for the platelet-aggregating activity is identical with alpha-toxin (phospholipase C).  相似文献   

6.
Clostridium perfringens alpha-toxin is a 370-residue, zinc-dependent, phospholipase C that is the key virulence determinant in gas gangrene. It is also implicated in the pathogenesis of sudden death syndrome in young animals and necrotic enteritis in chickens. Previously characterized alpha-toxins from different strains of C. perfringens are almost identical in sequence and biochemical properties. We describe the cloning, nucleotide sequencing, expression, characterization, and crystal structure of alpha-toxin from an avian strain, SWan C. perfringens (SWCP), which has a large degree of sequence variation and altered substrate specificity compared to these strains. The structure of alpha-toxin from strain CER89L43 has been previously reported in open (active site accessible to substrate) and closed (active site obscured by loop movements) conformations. The SWCP structure is in an open-form conformation, with three zinc ions in the active site. This is the first example of an open form of alpha-toxin crystallizing without the addition of divalent cations to the crystallization buffer, indicating that the protein can retain three zinc ions bound in the active site. The topology of the calcium binding site formed by residues 269, 271, 336, and 337, which is essential for membrane binding, is significantly altered in comparison with both the open and closed alpha-toxin structures. We are able to relate these structural changes to the different substrate specificity and membrane binding properties of this divergent alpha-toxin. This will provide essential information when developing an effective vaccine that will protect against C. perfringens infection in a wide range of domestic livestock.  相似文献   

7.
Bacillus cereus phospholipase was characterized as a phospholipase C by the analysis of lecithin degradation products by thin-layer and paper chromatography. Methanol in the growth menstruum inhibited completely the synthesis of phospholipase C, whereas the synthesis of lethal toxin and hemolysin were only partially inhibited. Dialysis of preformed B. cereus products against ethyl alcohol and methanol did not inactivate hemolytic, phospholipase C, or lethal activity. The hemolytic and lethal activities of culture filtrates were completely abolished by trypsin, but phospholipase C activity was resistant to inactivation. Lethal and phospholipase C properties of culture filtrates were resistant to inactivation at 45 C, whereas the hemolytic activity was completely destroyed. Lethal, hemolytic, and phospholipase C activities appeared simultaneously in a complex growth menstruum, but the kinetics of synthesis were different in all cases. Resolution of B. cereus filtrates on columns of Sephadex showed that the phospholipase C, hemolysin, and lethal toxin are distinct proteins. Evidence is also presented which suggests a correlation between the synthesis of B. cereus toxin and the period of transition from vegetative growth to sporulation. The activity of each B. cereus product was cation-independent, as opposed to cation-dependency of the phospholipase C and lethal activities of Clostridium perfringens alpha-toxin. Immunological cross-reactivity between the B. cereus products and C. perfringens alpha-toxin was not apparent; indeed, they were shown to be antigenically distinct.  相似文献   

8.
Alpha-toxin is the key determinant in gas-gangrene. The toxin, a phospholipase C, cleaves phosphatidylcholine in eukaryotic cell membranes. Calcium ions have been shown to be required for the specific binding of toxin to membranes prior to phospholipid cleavage. Reported X-ray crystallographic structures of the toxin show that the C-terminal domain has a fold that is analogous to the eukaryotic calcium and membrane-binding C2 domains. We report the binding sites for three calcium ions that have been identified, by crystallographic methods, in the C-terminal domain of the protein close to the postulated membrane-binding surface. The position of these ions at the tip of the domain, and their function (to facilitate membrane binding) is similar to that of calcium ions observed bound to C2 domains. Using the optical spectroscopic techniques of circular dichroism (CD) and fluorescence spectroscopy, pronounced changes to both near and far-UV CD and tryptophan emission fluorescence upon addition of calcium to the C-terminal domain of alpha-toxin have been observed. The changes in near-UV CD, fluorescence enhancement and a 2 nm blue-shift in the fluorescence emission spectrum are consistent with tryptophan residue(s) becoming more immobilised in a hydrophobic environment. Calcium binding appears to be low-affinity: Kd approximately 175-250 microM at pH 8 assuming a 1:1 stoichiometry. as measured by spectroscopic methods.  相似文献   

9.
Clostridium perfringens alpha-toxin (370 residues) is a major virulence factor in the pathogenesis of gas gangrene. The toxin is composed of an N-terminal domain (1-250 residues) where lies the catalytic site and a C-terminal domain (251-370 residues), the Ca(2+)-binding domain, responsible for binding to membranes. The role of Tyr-57 and Tyr-65 close to the catalytic pocket (site) in the N-domain was investigated. Replacement of Tyr-57 and -65 with alanine, leucine, or phenylalanine did not affect the sphingomyelinase activity of the toxin for sodium deoxycholate-solubilized shingomyelin. However, the substitution of Tyr-57 and -65 with alanine or leucine resulted in a radical reduction in the hemolysis of sheep erythrocytes, the release of carboxyfluorescein from shingomyelin-cholesterol (1:1) liposomes, and a significant decrease in binding to the liposomes. The binding of variant toxins, Y57C/C169L and Y65C/C169L, labeled with the environmentally sensitive fluorophore, acrylodan, to the liposomes suggested insertion of the variants in a hydrophobic environment in the bilayer. These observations suggested that Tyr-57 and -65 play a role in the penetration of the toxin into the bilayer of membranes and access of the catalytic site to sphingomyelin in membranes, but do not participate in the enzymatic activity.  相似文献   

10.
By use of carboxyfluorescein-loaded multilamellar liposomes prepared from synthetic phosphatidylcholine (PC) or sphingomyelin and cholesterol in a molar ratio of 1:1, we studied whether or not fatty acyl domain of the phospholipids affects the membrane-damaging action (or channel formation) of Staphylococcus aureus alpha-toxin on the phospholipid-cholesterol membranes. Our data indicated: (1) that toxin-induced carboxyfluorescein-leakage from the liposomes composed of saturated fatty acyl residue-carrying PC and cholesterol was decreased with increasing chain length of the acyl residues between 12 and 18 carbon atoms, although toxin-binding to the liposomes was not significantly affected by the length of fatty acyl residue; (2) that unsaturated fatty acyl residue in PC or sphingomyelin molecule conferred higher sensitivity to alpha-toxin on the phospholipid-cholesterol liposomes, compared with saturated fatty acyl residues; and (3) that hexamerization of alpha-toxin, estimated by SDS-polyacrylamide gel electrophoresis, occurred more efficiently on the liposomes composed of PC with shorter fatty acyl chain or unsaturated fatty acyl chain. Thus, hydrophobic domain of the phospholipids influences membrane-channel formation of alpha-toxin in the phospholipid-cholesterol membrane, perhaps by modulating packing of phospholipid, cholesterol and the toxin in membrane.  相似文献   

11.
Clostridium perfringens (C. perfringens) is a Gram-positive bacterial pathogen that widely propagets in the soil and the gastrointestinal tract of human and animals. This bacteria causes food poisoning, gas gangrene and other various range of infectious diseases. But there is no standard diagnosis method of C. perfringens. In order to develop a new type of immunoassay for clinical purpose, we studied expression and extracellular secretion of recombinant alpha-toxin having enzyme activity in E. coli expression system. Cloning was carried out after PCR amplification from C. perfringens GAI 94074 which was clinical isolate. Three kinds of fragment were cloned using pET100/D-TOPO vector. These fragments coded for ribosome binding site, signal peptide, and alpha-toxin gene respectively. Recombinant pET100 plasmid transformed into TOP 10 cells and the obtained plasmids were transformed into BL21 (DE3) cells. Then, the transformants were induced expression with IPTG. In conclusion, we successfully cloned, expressed and exteracellular secreted C. perfringens alpha-toxin containing signal peptide. Biologically, the obtained recombinant protein was positive for phospholipase C activity.  相似文献   

12.
Staphylococcal alpha-toxin at subcytotoxic concentrations stimulated phosphatidylinositol turnover and arachidonic acid release in undifferentiated cultures of pheochromocytoma PC12 cells. Stimulation of phospholipase A2 but not C was dependent on extracellular calcium. Addition of staphylococcal alpha-toxin to PC12 cells caused a dose-dependent, biphasic increase in intracellular calcium measured by fura-2 fluorescence technique. Elevation of intracellular Ca2+ content occurred with a time course similar to those observed for stimulation of phospholipase A2. Alteration of membrane structure and formation of staphylococcal alpha-toxin pores facilitating an influx of Ca2+, represent the probable mechanisms by which phospholipases C and A2 are activated, respectively. These results suggest a possible involvement of Ca2+, phosphoinositides and arachidonic acid metabolites in the pathogenic action of staphylococcus alpha-toxin and caution against the general usage of this toxin as a permeabilizing agent to study stimulus-secretion coupling in secretory cells.  相似文献   

13.
Differences in the biological properties of the Clostridium perfringens phospholipase C (alpha-toxin) and the C. bifermentans phospholipase C (Cbp) have been attributed to differences in their carboxy-terminal domains. Three residues in the carboxy-terminal domain of alpha-toxin, which have been proposed to play a role in membrane recognition (D269, Y331 and F334), are not conserved in Cbp (Y, L and I respectively). We have characterised D269Y, Y331L and F334I variant forms of alpha-toxin. Variant D269Y had reduced phospholipase C activity towards aggregated egg yolk phospholipid but increased haemolytic and cytotoxic activity. Variants Y331L and F334I showed a reduction in phospholipase C, haemolytic and cytotoxic activities indicating that these substitutions contribute to the reduced haemolytic and cytotoxic activity of Cbp.  相似文献   

14.
Clostridium perfringens phospholipase C (CpPLC), also called α‐toxin, plays a key role in the pathogenesis of gas gangrene. CpPLC may lead to cell lysis at concentrations that cause extensive degradation of plasma membrane phospholipids. However, at sublytic concentrations it induces cytotoxicity without inducing evident membrane damage. The results of this work demonstrate that CpPLC becomes internalized in cells by a dynamin‐dependent mechanism and in a time progressive process: first, CpPLC colocalizes with caveolin both at the plasma membrane and in vesicles, and later it colocalizes with early and late endosomes and lysosomes. Lysosomal damage in the target cells is evident 9 h after CpPLC exposure. Our previous work demonstrated that CpPLCinduces ERK1/2 activation, which is involved in its cytotoxic effect. In this work we found that cholesterol sequestration, dynamin inhibition, as well as inhibition of actin polymerization, prevent CpPLC internalization and ERK1/2 activation, involving endocytosis in the signalling events required for CpPLC cytotoxic effect at sublytic concentrations. These results provide new insights about the mode of action of this bacterial phospholipase C, previously considered to act only locally on cell membrane.  相似文献   

15.
The alpha-toxin is one of the virulence factors of Clostridium perfringens for gas gangrene in humans and animals or necrotic enteritis in poultry. The C-terminal domain of this toxin ( cpa 247-370 ) was synthesized and cloned into pT1NX vector to construct the pT1NX-alpha plasmid. This surface-expressing plasmid was electroporated into Lactobacillus casei ATCC 393, generating the recombinant L. casei strain expressing alpha-toxoid (LC-α strain). Expression of this modified alpha-toxoid was confirmed by SDS-PAGE, immunoblotting, and direct immunofluorescence microscopy. BALB/c mice, immunized orally by the recombinant LC-α strain, elicited mucosal and significantly humoral immune responses (p < 0.05) and developed a protection against 900 MLD/mL of the standard alpha-toxin. This study showed that this recombinant LC-α strain could be a promising vaccine candidate against gas gangrene and necrotic enteritis.  相似文献   

16.
Clostridium perfringens alpha‐toxin (CP, 370 residues) is one of the main agents involved in the development of gas gangrene. In this study, the immunogenicity and protective efficacy of the C‐terminal domain (CP251‐370) of the toxin and phospholipase C (PLC; CB, 372 residues) of Clostridum bifermentans isolated from cases of clostridium necrosis were examined. The recombinant proteins were expressed as glutathione S‐transferase (GST) fusion proteins. Antibodies that cross‐reacted with alpha‐toxin were produced after immunization with recombinant proteins including GST‐CP251‐370, GST‐CP281‐370, GST‐CP311‐370, CB1‐372 and GST‐CB251‐372. Anti‐GST‐CP251‐370, anti‐GST‐CP281‐370 and anti‐GST‐CP311‐370 sera neutralized both the PLC and hemolytic activities of alpha‐toxin, whereas anti‐CB1‐372 and anti‐GST‐CB251‐372 weakly neutralized these activities. Immunization with GST‐CP251‐370 and GST‐CP281‐370 provided protection against the lethal effects of the toxin and C. perfringens type A NCTC8237. Partial protection from the toxin and C. perfringens was elicited by immunization with GST‐CP311‐370 and CB1‐372. GST‐CP251‐370 and GST‐CP281‐370 are promising candidates for vaccines for clostridial‐induced gas gangrene.  相似文献   

17.
Reduced tissue perfusion leading to tissue ischemia is a central component of the pathogenesis of myonecrosis caused by Clostridium perfringens. The C. perfringens alpha-toxin has been shown capable of inducing these changes, but its potential synergy with perfringolysin O (theta-toxin) is less well understood. Similarly, Clostridium septicum is a highly virulent causative agent of spontaneous gas gangrene, but its effect on the microcirculation has not been examined. Therefore, the aim of this study was to use intravital microscopy to examine the effects of C. perfringens and C. septicum on the functional microcirculation, coupled with the use of isogenic toxin mutants to elucidate the role of particular toxins in the resultant microvascular perfusion deficits. This study represents the first time this integrated approach has been used in the analysis of the pathological response to clostridial toxins. Culture supernatants from wild-type C. perfringens induced extensive cell death within 30 min, as assessed by in vivo uptake of propidium iodide. Furthermore, significant reductions in capillary perfusion were observed within 60 min. Depletion of either platelets or neutrophils reduced the alteration in perfusion, consistent with a role for these blood-borne cells in obstructing perfusion. In addition, mutation of either the alpha-toxin or perfringolysin O structural genes attenuated the reduction in perfusion, a process that was reversed by genetic complementation. C. septicum also induced a marked reduction in perfusion, with the degree of microvascular compromise correlating with the level of the C. septicum alpha-toxin. Together, these data indicate that as a result of its ability to produce alpha-toxin and perfringolysin O, C. perfringens rapidly induces irreversible cellular injury and a marked reduction in microvascular perfusion. Since C. septicum induces a similar reduction in microvascular perfusion, it is postulated that this function is central to the pathogenesis of clostridial myonecrosis, irrespective of the causative bacterium.  相似文献   

18.
Incorporation of the channel-forming polyene antibiotic amphotericin B and of cytotoxins from Staphylococcus aureus (alpha-toxin) or Pseudomonas aeruginosa into erythrocyte membranes results in a concentration-dependent enhancement of the flip rates of exogenous lysophosphatidylcholine. The flip rate is also enhanced by incorporation of tetracaine and dibucaine. Removal of tetracaine and amphotericin B from the cells normalizes the flip rates. In parallel to the enhancement of flip rates, alpha-toxin produces a loss of transmembrane asymmetry of both phosphatidylethanolamine and phosphatidylserine. Pretreatment of cells with amphotericin or high concentrations (over 2.5 mmol . l-1) of tetracaine, followed by removal of the perturbing agent by washing, produces a selective loss of the asymmetric orientation of phosphatidylethanolamine to the inner membrane layer, as evaluated by the accessibility of the lipid towards cleavage by phospholipase A2. The extent to which asymmetry is lost depends on the time of pretreatment with amphotericin or tetracaine, indicating a limitation by the rate of reorientation of phosphatidylethanolamine to the outer membrane surface. Evaluation of the accessibility of phosphatidylethanolamine towards cleavage by phospholipase A2 in the presence of local anesthetics indicates accessible fractions much higher than those obtained after removal of the perturbant. In the presence of tetracaine, endofacial phosphatidylethanolamine seems somehow to become accessible to phospholipase A2. Phosphatidylserine does not exhibit this peculiarity. The results indicate that various types of perturbation of the lipid domain of the erythrocyte membrane may enhance the transbilayer mobility of phospholipids as well as destabilize the asymmetric distribution of aminophospholipids. However, as in other instances reported previously (Haest, C.W.M., Erusalimsky, J., Dressler, V., Kunze, I. and Deuticke B. (1983) Biomed. Biochim. Acta 42, 17-21), there is no tight coupling between transbilayer mobility and destabilization of asymmetry of the transbilayer distribution of phospholipids.  相似文献   

19.
Heat stability and species range of purified staphylococcal alpha-toxin   总被引:9,自引:0,他引:9  
Cooper, Louis Z. (New England Medical Center Hospital, Boston, Mass.), Morton A. Madoff, and Louis Weinstein. Heat stability and species range of purified staphylococcal alpha-toxin. J. Bacteriol. 91:1686-1692. 1966.-Heating of high-titer purified staphylococcal alpha-toxin at 60 and 80 C resulted in a double-sloped curve of inactivation of the hemolytic effect on rabbit erythrocytes. Early inactivation was less at the lower temperature, but activity persisted for a longer time at 80 C. Toxin inactivated at 60 C showed renewed activity when heated briefly at 80 C. A precipitate which formed during heating of alpha-toxin at 60 or 80 C yielded hemolytic activity when resuspended and heated at 80 but not at 60 C. Supernatant fluid of heat-precipitated toxin was heat-labile and did not regain activity when heated at 80 C. The results indicate that the "paradoxical effect" of heating of staphylococcal alpha-toxin is not due to a thermolabile inhibitor, but results from alteration of the toxin molecule to a heat-stable active form. Demonstration of renewed activity by 80 C heating of purified toxin requires potent toxin preparations and brief heating periods. Hemolysis of erythrocytes of several animal species by purified alpha-toxin was generally similar to that produced by impure toxin. Rabbit cells were most susceptible. Human and horse erythrocytes hemolyzed to less than 0.1% of the extent of rabbit cells. Blood cells of other species were intermediate in their response to the lytic effect of alpha-toxin.  相似文献   

20.
The alpha-toxin (phospholipase C) of Clostridium perfringens has been reported to contain catalytically essential zinc ions. We report here that histidine residues are essential for the co-ordination of these ion(s). Incubation of alpha toxin with diethylpyrocarbonate, a histidine modifying reagent, did not result in the loss of phospholipase C activity unless the protein was first incubated with EDTA, suggesting that zinc ions normally protect the susceptible histidine residues. When the amino acid sequences of three phospholipase C's were aligned, essential zinc binding histidine residues in the non-toxic B. cereus phospholipase C were found in similar positions in the toxic C. perfringens enzyme and the weakly toxic C. bifermentans phospholipase C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号