首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endocannabinoids control spasticity in a multiple sclerosis model.   总被引:17,自引:0,他引:17  
Spasticity is a complicating sign in multiple sclerosis that also develops in a model of chronic relapsing experimental autoimmune encephalomyelitis (CREAE) in mice. In areas associated with nerve damage, increased levels of the endocannabinoids, anandamide (arachidonoylethanolamide, AEA) and 2-arachidonoyl glycerol (2-AG), and of the AEA congener, palmitoylethanolamide (PEA), were detected here, whereas comparable levels of these compounds were found in normal and non-spastic CREAE mice. While exogenously administered endocannabinoids and PEA ameliorate spasticity, selective inhibitors of endocannabinoid re-uptake and hydrolysis-probably through the enhancement of endogenous levels of AEA, and, possibly, 2-arachidonoyl glycerol-significantly ameliorated spasticity to an extent comparable with that observed previously with potent cannabinoid receptor agonists. These studies provide definitive evidence for the tonic control of spasticity by the endocannabinoid system and open new horizons to therapy of multiple sclerosis, and other neuromuscular diseases, based on agents modulating endocannabinoid levels and action, which exhibit little psychotropic activity.  相似文献   

2.
3.
In this paper, we showed that in the cortex of mice expressing an abberant form of FUS protein that model amyotrophic lateral sclerosis (ALS), the processes of KCl-induced and basal [3H]glutamate release and uptake are altered at the presymptomatic stage as compared to the non-transgenic littermates. The change in these three parameters in transgenic animals causes excitotoxicity, which, in turn, may lead to massive loss of motor neurons and the onset of ALS symptoms.  相似文献   

4.
Early recognition of whether a product has potential as a new therapy for treating multiple sclerosis (MS) relies upon the quality of the animal models used in the preclinical trials. The promising effects of new treatments in rodent models of experimental autoimmune encephalomyelitis (EAE) have rarely been reproduced in patients suffering from MS. EAE in outbred marmoset monkeys, Callithrix jacchus, is a valid new model, and might provide an experimental link between EAE in rodent models and human MS. Using magnetic resonance imaging techniques similar to those used in patients suffering from MS pathological abnormalities in the brain, white matter of the animal can be visualized and quantified. Moreover, NMR spectroscopy, in combination with pattern recognition, offers an advanced uroscopic technique for the identification of biomarkers of inflammatory demyelination.  相似文献   

5.
Multiple sclerosis (MS) is a debilitating inflammatory disease of the central nervous system (CNS) characterized by local destruction of the insulating myelin surrounding neuronal axons. With more than 200 million MS patients worldwide, the absence of treatments that prevent progression or induce repair poses a major challenge. Anti-inflammatory therapies have met with limited success only in preventing relapses. Previous screening of human serum samples revealed natural IgM antibodies that bind oligodendrocytes and promote both cell signaling and remyelination of CNS lesions in an MS model involving chronic infection of susceptible mice by Theiler's encephalomyelitis virus and in the lysolecithin model of focal demyelination. This intriguing result raises the possibility that molecules with binding specificity for oligodendrocytes or myelin components may promote therapeutic remyelination in MS. Because of the size and complexity of IgM antibodies, it is of interest to identify smaller myelin-specific molecules with the ability to promote remyelination in vivo. Here we show that a 40-nucleotide single-stranded DNA aptamer selected for affinity to murine myelin shows this property. This aptamer binds multiple myelin components in vitro. Peritoneal injection of this aptamer results in distribution to CNS tissues and promotes remyelination of CNS lesions in mice infected by Theiler's virus. Interestingly, the selected DNA aptamer contains guanosine-rich sequences predicted to induce folding involving guanosine quartet structures. Relative to monoclonal antibodies, DNA aptamers are small, stable, and non-immunogenic, suggesting new possibilities for MS treatment.  相似文献   

6.
Lanthionine ketimine (LK) is a natural sulfur amino acid metabolite which binds to collapsin response mediator protein‐2 (CRMP2), an abundant brain protein that interacts with multiple partners to regulate microtubule dynamics, neurite growth and retraction, axonal transport, and neurotransmitter release. LK ethyl‐ester (LKE) is a cell‐permeable synthetic derivative that promotes neurogenesis, suppresses nitric oxide production from microglia, and reduces neurotoxicity of microglia‐conditioned medium. These properties led us to test the effects of LKE in experimental autoimmune encephalomyelitis (EAE), a commonly used mouse model of multiple sclerosis. Female C57Bl/6 mice were immunized with myelin oligodendrocyte glycoprotein peptide 35–55 to develop a chronic disease. LKE was provided in the chow at 100 ppm, ad libitum beginning when the mice reached moderate clinical signs. Over the following 4 weeks the LKE‐treated mice showed a significant reduction in clinical signs compared to vehicle‐treated mice. LKE dose dependently reduced IFNγ production from splenic T cells, but had no effect on IL‐17 production suggesting protective effects were mediated within the CNS. Electron microscopy revealed that, compared to sham mice, EAE mice had significant neurodegeneration in both the optic nerve and spinal cord, which was reduced in the LKE‐treated mice. In contrast only minimal disruption of myelin was observed at this time point. In the optic nerve, measurements of axon caliber and myelin thickness showed little changes between sham and EAE mice, however, treatment with LKE increased the percentage of axons with thicker myelin and with larger axon calibers. In the spinal cord, only smaller effects of LKE on myelin thickness were observed. The effects of LKE were associated with a reduced relative level of phosphorylated CRMP2 to CRMP2. Together, these results demonstrate that LKE reduces neurodegeneration in a chronic EAE model of MS, which could have translation potential for treatment of progressive forms of MS.

  相似文献   


7.
Cognitive problems frequently accompany neurological manifestations of multiple sclerosis (MS). However, during screening of preclinical candidates, assessments of behaviour in mouse models of MS typically focus on locomotor activity. In the present study, we analysed cognitive behaviour of 9 to 10-week-old female C57Bl/6J mice orally administered with the toxin cuprizone that induces demyelination, a characteristic feature of MS. Animals received 400 mg/kg cuprizone daily for 2 or 4 weeks, and their performance was compared with that of vehicle-treated mice. Cuprizone-treated animals showed multiple deficits in short touchscreen-based operant tasks: they responded more slowly to visual stimuli, rewards and made more errors in a simple rule-learning task. In contextual/cued fear conditioning experiments, cuprizone-treated mice showed significantly lower levels of contextual freezing than vehicle-treated mice. Diffusion tensor imaging showed treatment-dependent changes in fractional anisotropy as well as in axial and mean diffusivities in different white matter areas. Lower values of fractional anisotropy and axial diffusivity in cuprizone-treated mice indicated developing demyelination and/or axonal damage. Several diffusion tensor imaging measurements correlated with learning parameters. Our results show that translational touchscreen operant tests and fear conditioning paradigms can reliably detect cognitive consequences of cuprizone treatment. The suggested experimental approach enables screening novel MS drug candidates in longitudinal experiments for their ability to improve pathological changes in brain structure and reverse cognitive deficits.  相似文献   

8.
Cuprizone, copper chelator, treatment of mouse is a toxic model of multiple sclerosis (MS) in which oligodendrocyte death, demyelination and remyelination can be observed. Understanding T and B cell subset as well as their cytokines involved in MS pathogenesis still requires further scrutiny to better understand immune component of MS. The study presented here, aimed to evaluate relevant cytokines, lymphocytes, and gene expressions profiles during demyelination and remyelination in the cuprizone mouse model of MS. Eighty male C57BL/6J mice fed with 0.2% cuprizone for eight weeks. Cuprizone has been removed from the diet in the following eight weeks. Cuprizone treated and control mice sacrificed biweekly, and corpus callosum of the brain was investigated by staining. Lymphocyte cells of mice analyzed by flow cytometry with CD3e, CD11b, CD19, CD80, CD86, CD4, CD25 and FOXP3 antibodies. IFN-gamma, IL-1alpha, IL-2, IL-5, IL-6, IL-10, IL-17, TNF-alpha cytokines were analyzed in plasma samples. Neuregulin 1 (Nrg1), ciliary neurotrophic factor (Cntf) and C-X-C chemokine receptor type 4 (Cxcr4) gene expressions in corpus callosum sections of the mice brain were quantified. Histochemistry analysis showed that demyelination began at the fourth week of cuprizone administration and total demyelination occurred at the twelfth week in chronic model. Remyelination occurred at the fourth week of following withdrawal of cuprizone from diet. The level of mature and activated T cells, regulatory T cells, T helper cells and mature B cells increased during demyelination and decreased when cuprizone removed from diet. Further, both type 1 and type 2 cytokines together with the proinflammatory cytokines increased. The level of oligodendrocyte maturation and survival genes showed differential gene expression in parallel to that of demyelination and remyelination. In conclusion, for the first-time, involvement of both cellular immune response and antibody response as well as oligodendrocyte maturation and survival factors having role in demyelination and remyelination of cuprizone mouse model of MS have been shown.  相似文献   

9.
Theiler's virus infection of the central nervous system (CNS) induces an immune-mediated demyelinating disease in susceptible mouse strains and serves as a relevant infection model for human multiple sclerosis (MS). Cannabinoids have been shown to exert beneficial effects on animal models of MS and evidence suggests that the endocannabinoid system plays a role in the tonic control of spasticity. In this study we show that OMDM1 [(R)-N-oleoyl-(1'-hydroxybenzyl)-2'-ethanolamine] and OMDM2 [(S)-N-oleoyl-(1'-hydroxybenzyl)-2'-ethanolamine], two selective inhibitors of the putative endocannabinoid transporter and hence of endocannabinoid inactivation, provide an effective therapy for Theiler murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD). Treatment of TMEV-infected mice with OMDM1 and OMDM2 enhanced anandamide levels in the spinal cord and ameliorated motor symptoms. This was associated with a down-regulation of inflammatory responses in the spinal cord. In addition we show that OMDM1 and OMDM2 down-regulate macrophage function by (i) decreasing the surface expression of major histocompatibility complex (MHC) class II molecules, (ii) inhibiting nitric oxide synthase-2 (NOS-2) expression and (iii) reducing the production of the pro-inflammatory cytokines interleukin-1beta (IL-1beta) and interleukin-12 (IL-12p40). Taken together, these results point to the manipulation of the endocannabinoid system as a possible strategy to develop future MS therapeutic drugs.  相似文献   

10.
Recent evidence in multiple sclerosis (MS) suggests that active CMV infection may result in more benign clinical disease. The goal of this pilot study was to determine whether underlying murine CMV (MCMV) infection affects the course of the Theiler''s murine encephalitis virus (TMEV) induced murine model of MS. A group of eight TMEV-infected mice were co-infected with MCMV at 2 weeks prior to TMEV infection while a second group of TMEV-infected mice received MCMV two weeks post TMEV. We also used 2 control groups, where at the above time points MCMV was replaced with PBS. Outcome measures included (1) monthly monitoring of disability via rotarod for 8 months; (2) in vivo MRI for brain atrophy studies and (3) FACS analysis of brain infiltrating lymphocytes at 8 months post TMEV infection. Co-infection with MCMV influenced the disease course in mice infected prior to TMEV infection. In this group, rotarod detectable motor performance was significantly improved starting 3 months post-infection and beyond (p≤0.024). In addition, their brain atrophy was close to 30% reduced at 8 months, but this was only present as a trend due to low power (p = 0.19). A significant reduction in the proportion of brain infiltrating CD3+ cells was detected in this group (p = 0.026), while the proportion of CD45+ Mac1+ cells significantly increased (p = 0.003). There was also a strong trend for a reduced proportion of CD4+ cells (p = 0.17) while CD8 and B220+ cell proportion did not change. These findings support an immunomodulatory effect of MCMV infection in this MS model. Future studies in this co-infection model will provide insight into mechanisms which modulate the development of demyelination and may be utilized for the development of novel therapeutic strategies.  相似文献   

11.
Neuronal excitation involving the excitatory glutamate receptors is recognized as an important underlying mechanism in neurodegenerative disorders. Excitation resulting from stimulation of the ionotropic glutamate receptors is known to cause the increase in intracellular calcium and trigger calcium-dependent pathways that lead to neuronal apoptosis. Kainic acid (KA) is an agonist for a subtype of ionotropic glutamate receptor, and administration of KA has been shown to increase production of reactive oxygen species, mitochondrial dysfunction, and apoptosis in neurons in many regions of the brain, particularly in the hippocampal subregions of CA1 and CA3, and in the hilus of dentate gyrus (DG). Systemic injection of KA to rats also results in activation of glial cells and inflammatory responses typically found in neurodegenerative diseases. KA-induced selective vulnerability in the hippocampal neurons is related to the distribution and selective susceptibility of the AMPA/kainate receptors in the brain. Recent studies have demonstrated ability of KA to alter a number of intracellular activities, including accumulation of lipofuscin-like substances, induction of complement proteins, processing of amyloid precursor protein, and alteration of tau protein expression. These studies suggest that KA-induced excitotoxicity can be used as a model for elucidating mechanisms underlying oxidative stress and inflammation in neurodegenerative diseases. The focus of this review is to summarize studies demonstrating KA-induced excitotoxicity in the central nervous system and possible intervention by anti-oxidants.  相似文献   

12.
Mature T cells initially respond to Ag by activation and expansion, but high and repeated doses of Ag cause programmed cell death and can suppress T cell-mediated diseases in rodents. We evaluated repeated systemic Ag administration in a marmoset model of experimental allergic encephalomyelitis that closely resembles the human disease multiple sclerosis. We found that treatment with MP4, a chimeric, recombinant polypeptide containing human myelin basic protein and human proteolipid protein epitopes, prevented clinical symptoms and did not exacerbate disease. CNS lesions were also reduced as assessed in vivo by magnetic resonance imaging. Thus, specific Ag-directed therapy can be effective and nontoxic in primates.  相似文献   

13.

Background  

MS-pathogenesis is known to involve both multiple environmental events, and several independent genetic risk-factors.  相似文献   

14.
The spinal cord is a target of progesterone (PROG), as demonstrated by the expression of intracellular and membrane PROG receptors and by its myelinating and neuroprotective effects in trauma and neurodegeneration. Here we studied PROG effects in mice with experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis characterized by demyelination and immune cell infiltration in the spinal cord. Female C57BL/6 mice were immunized with a myelin oligodendrocyte glycoprotein peptide (MOG40–54). One week before EAE induction, mice received single pellets of PROG weighing either 20 or 100 mg or remained free of steroid treatment. On average, mice developed clinical signs of EAE 9–10 days following MOG administration. The spinal cord white matter of EAE mice showed inflammatory cell infiltration and circumscribed demyelinating areas, demonstrated by reductions of luxol fast blue (LFB) staining, myelin basic protein (MBP) and proteolipid protein (PLP) immunoreactivity (IR) and PLP mRNA expression. In motoneurons, EAE reduced the expression of the alpha 3 subunit of Na,K-ATPase mRNA. In contrast, EAE mice receiving PROG showed less inflammatory cell infiltration, recovery of myelin proteins and normal grain density of neuronal Na,K-ATPase mRNA. Clinically, PROG produced a moderate delay of disease onset and reduced the clinical scores. Thus, PROG attenuated disease severity, and reduced the inflammatory response and the occurrence of demyelination in the spinal cord during the acute phase of EAE.  相似文献   

15.
Unfortunately and despite all efforts, amyotrophic lateral sclerosis (ALS) remains an incurable neurodegenerative disorder characterized by the progressive and selective death of motor neurons. The cause of this process is mostly unknown, but evidence is available that excitotoxicity plays an important role. In this review, we will give an overview of the arguments in favor of the involvement of excitotoxicity in ALS. The most important one is that the only drug proven to slow the disease process in humans, riluzole, has anti-excitotoxic properties. Moreover, consumption of excitotoxins can give rise to selective motor neuron death, indicating that motor neurons are extremely sensitive to excessive stimulation of glutamate receptors. We will summarize the intrinsic properties of motor neurons that could render these cells particularly sensitive to excitotoxicity. Most of these characteristics relate to the way motor neurons handle Ca(2+), as they combine two exceptional characteristics: a low Ca(2+)-buffering capacity and a high number of Ca(2+)-permeable AMPA receptors. These properties most likely are essential to perform their normal function, but under pathological conditions they could become responsible for the selective death of motor neurons. In order to achieve this worst-case scenario, additional factors/mechanisms could be required. In 1 to 2% of the ALS patients, mutations in the SOD1 gene could shift the balance from normal motor neuron excitation to excitotoxicity by decreasing glutamate uptake in the surrounding astrocytes and/or by interfering with mitochondrial function. We will discuss point by point these different pathogenic mechanisms that could give rise to classical and/or slow excitotoxicity leading to selective motor neuron death.  相似文献   

16.
Kim do Y  Hao J  Liu R  Turner G  Shi FD  Rho JM 《PloS one》2012,7(5):e35476
A prominent clinical symptom in multiple sclerosis (MS), a progressive disorder of the central nervous system (CNS) due to heightened neuro-inflammation, is learning and memory dysfunction. Here, we investigated the effects of a ketogenic diet (KD) on memory impairment and CNS-inflammation in a murine model of experimental autoimmune encephalomyelitis (EAE), using electrophysiological, behavioral, biochemical and in vivo imaging approaches. Behavioral spatial learning deficits were associated with motor disability in EAE mice, and were observed concurrently with brain inflammation. The KD improved motor disability in the EAE model, as well as CA1 hippocampal synaptic plasticity (long-term potentiation) and spatial learning and memory (assessed with the Morris Water Maze). Moreover, hippocampal atrophy and periventricular lesions in EAE mice were reversed in KD-treated EAE mice. Finally, we found that the increased expression of inflammatory cytokines and chemokines, as well as the production of reactive oxygen species (ROS), in our EAE model were both suppressed by the KD. Collectively, our findings indicate that brain inflammation in EAE mice is associated with impaired spatial learning and memory function, and that KD treatment can exert protective effects, likely via attenuation of the robust immune response and increased oxidative stress seen in these animals.  相似文献   

17.
The experimental autoimmune encephalomyelitis (EAE) model resembles certain aspects of multiple sclerosis (MScl), with common features such as motor dysfunction, axonal degradation, and infiltration of T-cells. We studied the cerebrospinal fluid (CSF) proteome in the EAE rat model to identify proteomic changes relevant for MScl disease pathology. EAE was induced in male Lewis rats by injection of myelin basic protein (MBP) together with complete Freund's adjuvant (CFA). An inflammatory control group was injected with CFA alone, and a nontreated group served as healthy control. CSF was collected at day 10 and 14 after immunization and analyzed by bottom-up proteomics on Orbitrap LC-MS and QTOF LC-MS platforms in two independent laboratories. By combining results, 44 proteins were discovered to be significantly increased in EAE animals compared to both control groups, 25 of which have not been mentioned in relation to the EAE model before. Lysozyme C1, fetuin B, T-kininogen, serum paraoxonase/arylesterase 1, glutathione peroxidase 3, complement C3, and afamin are among the proteins significantly elevated in this rat EAE model. Two proteins, afamin and complement C3, were validated in an independent sample set using quantitative selected reaction monitoring mass spectrometry. The molecular weights of the identified differentially abundant proteins indicated an increased transport across the blood-brain barrier (BBB) at the peak of the disease, caused by an increase in BBB permeability.  相似文献   

18.
In multiple sclerosis (MS), long-term disability is primarily caused by axonal and neuronal damage. We demonstrated in a previous study that neuronal apoptosis occurs early during experimental autoimmune encephalomyelitis, a common animal model of MS. In the present study, we show that, in rats suffering from myelin oligodendrocyte glycoprotein (MOG)-induced optic neuritis, systemic application of erythropoietin (Epo) significantly increased survival and function of retinal ganglion cells (RGCs), the neurons that form the axons of the optic nerve. We identified three independent intracellular signaling pathways involved in Epo-induced neuroprotection in vivo: Protein levels of phospho-Akt, phospho-MAPK 1 and 2, and Bcl-2 were increased under Epo application. Using a combined treatment of Epo together with a selective inhibitor of phosphatidylinositol 3-kinase (PI3-K) prevented upregulation of phospho-Akt and consecutive RGC rescue. We conclude that in MOG-EAE the PI3-K/Akt pathway has an important influence on RGC survival under systemic treatment with Epo.  相似文献   

19.
In multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE), impairment of glial "Excitatory Amino Acid Transporters" (EAATs) together with an excess glutamate-release by invading immune cells causes excitotoxic damage of the central nervous system (CNS). In order to identify pathways to dampen excitotoxic inflammatory CNS damage, we assessed the effects of a beta-lactam antibiotic, ceftriaxone, reported to enhance expression of glial EAAT2, in "Myelin Oligodendrocyte Glycoprotein" (MOG)-induced EAE. Ceftriaxone profoundly ameliorated the clinical course of murine MOG-induced EAE both under preventive and therapeutic regimens. However, ceftriaxone had impact neither on EAAT2 protein expression levels in several brain areas, nor on the radioactive glutamate uptake capacity in a mixed primary glial cell-culture and the glutamate-induced uptake currents in a mammalian cell line mediated by EAAT2. Moreover, the clinical effect of ceftriaxone was preserved in the presence of the EAAT2-specific transport inhibitor, dihydrokainate, while dihydrokainate alone caused an aggravated EAE course. This demonstrates the need for sufficient glial glutamate uptake upon an excitotoxic autoimmune inflammatory challenge of the CNS and a molecular target of ceftriaxone other than the glutamate transporter. Ceftriaxone treatment indirectly hampered T cell proliferation and proinflammatory INFgamma and IL17 secretion through modulation of myelin-antigen presentation by antigen-presenting cells (APCs) e.g. dendritic cells (DCs) and reduced T cell migration into the CNS in vivo. Taken together, we demonstrate, that a beta-lactam antibiotic attenuates disease course and severity in a model of autoimmune CNS inflammation. The mechanisms are reduction of T cell activation by modulation of cellular antigen-presentation and impairment of antigen-specific T cell migration into the CNS rather than or modulation of central glutamate homeostasis.  相似文献   

20.
Mast cells (MCs) exert a significant pathologic influence on disease severity in C57BL/6 (B6) strain-dependent experimental allergic encephalomyelitis (EAE), a model of primary progressive multiple sclerosis (MS). However, relapsing-remitting MS, which is modeled in SJL mice, is the more prevalent form. Given genetically determined heterogeneity in numbers and responsiveness of MCs from various strains of mice, we asked whether these cells also influence this more clinically relevant MS model using SJL-Kit(W/W-v) mice. Similar to the commercially available WBB6F(1)-Kit(W/W-v) mice, SJL-Kit(W/W-v) mice are MC-deficient, anemic, and neutropenic and have normal T cell compartments. They exhibit significantly reduced disease severity, but retain the relapsing-remitting course, a phenotype reversed by selective MC reconstitution. These data confirm that MC influence is not confined to an isolated model of EAE and reveal a new system to study the effects of MC heterogeneity on relapsing-remitting EAE and other SJL strain-specific diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号