首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Flooding stress has negative impact on soybean cultivation as it severely impairs plant growth and development. To examine whether nuclear function is affected in soybean under flooding stress, abundance of nuclear proteins and their mRNA expression were analyzed. Two-day-old soybean seedlings were treated with flooding for 2 days, and nuclear proteins were purified from root tips. Gel-free proteomics analysis identified a total of 39 flooding-responsive proteins, of which abundance of 8 and 31 was increased and decreased, respectively, in soybean root tips. Among these differentially regulated proteins, the mRNA expression levels of five nuclear-localized proteins were further analyzed. The mRNA levels of four proteins, which are splicing factor PWI domain-containing protein, epsilon2-COP, beta-catenin, and clathrin heavy chain decreased under flooding stress, were also down-regulated. In addition, mRNA level of a receptor for activated protein kinase C1(RACK1) was down-regulated, though its protein was accumulated in the soybean nucleus in response to flooding stress. These results suggest that several nuclear-related proteins are decreased at both the protein and mRNA level in the root tips of soybean under flooding stress. Furthermore, RACK1 might have an important role with accumulation in the soybean nucleus under flooding-stress conditions.  相似文献   

2.
Plant and Soil - Cropping systems using forage grasses as cover crops have been effective in soil conservation and nutrient cycling, but root persistence of ruzigrass (Urochloa ruziziensis) is...  相似文献   

3.
Programmed cell death in the root cortex of soybean root necrosis mutants   总被引:3,自引:1,他引:2  
The soybean root necrosis (rn) mutation causes a progressive browning of the root soon after germination that is associated with accumulation of phytoalexins and pathogenesis-related proteins and an increased tolerance to root-borne infection by the fungal pathogen, Phytophthora sojae. Grafting and decapitation experiments indicate that the rn phenotype is root-autonomous at the macroscopic level. However, the onset and severity of browning was modulated in intact plants by exposure to light, as was the extent of lateral root formation, suggesting that both lateral roots and the rn phenotype could be directly or indirectly controlled by similar shoot-derived factors. Browning first occurs in differentiated inner cortical cells adjacent to the stele and is preceded by a wave of autofluorescence that emanates from cortical cells opposite the xylem poles and spreads across the cortex. Before any visible changes in autofluorescence or browning, fragmented DNA was detected by TUNEL (T erminal deoxynucleotidyl transferase-mediated dU TP-digoxigenin n ick e nd l abeling) in small clusters of inner cortical cells that subsequently could be distinguished cytologically from neighboring cells throughout rn root development. Inner cortical cells overlying lateral root primordia in either Rn or rn plants also were stained by TUNEL. Features commonly observed in animal cell apoptosis were confirmed by electron microscopy but, surprisingly, cells with a necrotic morphology were detected alongside apoptotic cells in the cortex of rn roots when TUNEL-positive cells were first observed. The two morphologies may represent different stages of a common pathway for programmed cell death (pcd) in plant roots, or two separate pathways of pcd could be involved. The phenotype of rn plants suggests that the Rn gene could either negatively regulate cortical cell death or be required for cortical cell survival. The possibility of a mechanistic link between cortical cell death in rn plants and during lateral root emergence is discussed.  相似文献   

4.
5.

Background

Since drought can seriously affect plant growth and development and little is known about how the oscillations of gene expression during the drought stress-acclimation response in soybean is affected, we applied Illumina technology to sequence 36 cDNA libraries synthesized from control and drought-stressed soybean plants to verify the dynamic changes in gene expression during a 24-h time course. Cycling variables were measured from the expression data to determine the putative circadian rhythm regulation of gene expression.

Results

We identified 4866 genes differentially expressed in soybean plants in response to water deficit. Of these genes, 3715 were differentially expressed during the light period, from which approximately 9.55 % were observed in both light and darkness. We found 887 genes that were either up- or down-regulated in different periods of the day. Of 54,175 predicted soybean genes, 35.52 % exhibited expression oscillations in a 24 h period. This number increased to 39.23 % when plants were submitted to water deficit. Major differences in gene expression were observed in the control plants from late day (ZT16) until predawn (ZT20) periods, indicating that gene expression oscillates during the course of 24 h in normal development. Under water deficit, dissimilarity increased in all time-periods, indicating that the applied stress influenced gene expression. Such differences in plants under stress were primarily observed in ZT0 (early morning) to ZT8 (late day) and also from ZT4 to ZT12. Stress-related pathways were triggered in response to water deficit primarily during midday, when more genes were up-regulated compared to early morning. Additionally, genes known to be involved in secondary metabolism and hormone signaling were also expressed in the dark period.

Conclusions

Gene expression networks can be dynamically shaped to acclimate plant metabolism under environmental stressful conditions. We have identified putative cycling genes that are expressed in soybean leaves under normal developmental conditions and genes whose expression oscillates under conditions of water deficit. These results suggest that time of day, as well as light and temperature oscillations that occur considerably affect the regulation of water deficit stress response in soybean plants.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1731-x) contains supplementary material, which is available to authorized users.  相似文献   

6.
Nitrate metabolism in soybean root nodules   总被引:1,自引:0,他引:1  
The nitrate metabolism in nodules induced by Bradyrhizobium japonicum strain PJ17 on roots of soybean [ Glycine max (L.) Merr. cv. Hodgson] has been characterized by the nitrate reductase (NR; EC 1.6.6.1 and EC 1.6.6.3) activity of both partners of the symbiosis. NR activities of bacteroids and nodular cytosol were comparable and significantly higher than those of the roots. Nitrate reduction led to nitrite accumulation in root nodules, which was maximum after pod filling. The nodule had the capacity to metabolize nitrite via nitrite reductase (NiR; EC 1.6.6.4), at least in the cytosolic fraction. This activity was partly inhibited by the low content of free O2 in the nodule. Indeed, nitrite accumulation decreased in the presence of an increased external pressure of O2.  相似文献   

7.
8.
9.
Summary Endoplasmic reticulum, Golgi apparatus, plasma membrane and mitochondria vesicles were isolated from the roots of four-day-old dark-grown soybean [Glycine max (L.) Merr. cv. Wells II] seedlings and characterized by marker enzyme analyses. Glycoproteins of enriched membrane fractions were identified by concanavalin A (con A)-peroxidase staining of polypeptides separated by two-dimensional IEF-SDS-PAGE and transferred to nitrocellulose.Con A bound to many polypeptides in each endomembrane-enriched fraction with several glycopolypeptides common to all fractions. The mitochondria-enriched fraction possessed few glycopolypeptides and those appeared to be highly glycosylated contaminants of endomembrane origin. Comparison of the endomembrane con A-binding patterns revealed changes in relative stain intensity, molecular weight and isoelectric point of several membrane glycopolypeptides suggestive of processing reactions of the endomembrane complex.Abbreviations con A concanavalin A - PM plasma membrane - GA Golgi apparatus - ER endoplasmic reticulum  相似文献   

10.
11.
Uniconazole-induced thermotolerance in soybean seedling root tissue   总被引:2,自引:0,他引:2  
Soybean [Glycine max(L.) Merr. cv. A2] seeds were germinated in 0 or 1 mg 11 (3.4 uM) uniconazole, after which seedling roots were excised and exposed to 22 or 48°C for 90 min. Prior to the temperature treatments there were few ultrastructural differences between uniconazole-treated seedling roots and the controls. Following exposure to 48°C, electron micrographs revealed near complete loss of normal ultrastructure in control epidermal root cells, whereas cellular integrity was maintained in treated roots, indicating that uniconazole conferred tolerance to high temperature. Total electrolyte, sugar and K+ leakage were all greater from control roots than treated roots during exposure to 48°C. Proline content in the roots was unaffected by uniconazole at 22°C but was 25–30% greater in treated tissue than in controls following exposure to 48°C. Malondialdehyde content was unaffected by uniconazole at 22°C but was nearly 20% less in treated tissue than in controls following high temperature exposure. This indicates that uniconazole decreased high-temperature-induced lipid peroxidation. Uniconazole elevated several antiox-idant systems in the roots, including water-soluble sulfhydryl concentration and catalase, peroxidase and superoxide dismutase activities. These findings are consistent with the hypothesis that uniconazole-induced stress tolerance is due, at least in part, to enhanced antioxidant activity which reduces stress-related oxidative damage to cell membranes.  相似文献   

12.
Siderophore-bound iron in the peribacteriod space of soybean root nodules   总被引:2,自引:0,他引:2  
Water-soluble, non-leghemoglobin iron (125 µmol kg-1 wet weight nodule) is found in extracts of soybean root nodules. This iron is probably confined to the peribacteroid space of the symbiosome, where its estimated concentration is 0.5 – 2.5 mM. This iron is bound by siderophores (compounds binding ferric iron strongly) which are different for each of the three strains of Bradyrhizobium japonicum with which the plants were inoculated. One of these, that from nodules inoculated with strain CC 705, is tentatively identified as a member of the pseudobactin family of siderophores. Leghemoglobin is present in only very small amounts in the peribacteroid space of symbiosomes isolated from soybean root nodules, and may be absent from the peribacteroid space of the intact nodule.  相似文献   

13.
Nitrogen fixation in breis of soybean root nodules   总被引:2,自引:0,他引:2  
  相似文献   

14.
Tissue-specific expression of divergent actins in soybean root   总被引:6,自引:3,他引:3       下载免费PDF全文
It has been proposed that the evolution of distinct classes of genes encoding the kappa-, lambda-, and mu-actins in soybean is the result of an ancient divergence in patterns of actin gene expression. In this study, antisera against a family of synthetic actin peptides from a divergent region within the predicted actin polypeptide sequences have been used to explore the differential expression of plant actins. Antiserum elicited against a 16-residue synthetic lambda-actin peptide SAc4:257 reacted with a 46-kilodalton protein in soybean extracts, showed specificity for the lambda-peptide over the divergent kappa- and mu-actin peptides in enzyme-linked immunosorbent assays, and reacted strongly and preferentially with root protoderm in apical roots and in lateral root primordia. Antiserum elicited against the synthetic kappa-actin peptide SAc1:257 reacted with 46-kilodalton protein on protein gel blots, showed partial specificity toward the immunogenic kappa-peptide over the divergent lambda- and mu-peptides, and reacted strongly with all root tissues with the exception of root cap. These data support the hypothesis that ancient classes of plant actin genes may have been preserved because of their role in developmentally controlled differences in tissue-specific actin expression and/or function. The possibility that other diverse actin classes have unique patterns of regulation is discussed.  相似文献   

15.
16.
Reduction of ferric leghemoglobin in soybean root nodules   总被引:1,自引:0,他引:1       下载免费PDF全文
Lee KK  Klucas RV 《Plant physiology》1984,74(4):984-988
Callus tissue cultures were developed from apical meristem regions of tumor-like ineffective root nodules of alfalfa. Callus growth was a function of tissue source and hormone composition and concentration. Callus derived from ineffective nodules also were shown not to contain Rhizobium meliloti.

Glutamate dehydrogenase, glutamine synthetase, glutamate synthase, glutamate oxaloacetate transaminase and phosphoenolpyruvate carboxylase activities were present in callus cultures and in the respective nodule source used for callus induction. The mean specific activity of all enzymes evaluated was higher in callus cultures than in ineffective nodules. Quantitative but not qualitative differences in enzyme activities were evident between ineffective nodules and callus derived from these nodules. Tissue cultures derived from ineffective nodules may provide a model system to evaluate host plant-Rhizobium interactions.

  相似文献   

17.
18.
19.
Soybean (Glycine max cv Forrest) root nodule homogenates oxidized aldrin to its epoxide, dieldrin. In crude tissue brei, addition of an NADPH-generating system was inhibitory to epoxidation. However, anaerobic gel filtration and sucrose density separation removed factors required for inhibition by NADPH, allowing a normal stimulation by the NADPH-generating system. In fractions from sucrose density gradients, activity was found predominantly at a density containing rough microsomes, with additional activities in the soluble and other fractions. Epoxidase activity was 2–4-times greater in the nitrogen-fixing nodules than in roots. This demonstration of active epoxidation indicates the capacity of nodules to detoxify other pesticides and xenobiotics.  相似文献   

20.
Among the cereals, wheat is the most widely grown geographically and is part of the staple diet in much of the world. Understanding how the cereal endosperm develops and functions will help generate better tools to manipulate grain qualities important to end-users. We used a genomics approach to identify and characterize genes that are expressed in the wheat endosperm. We analyzed the 17,949 publicly available wheat endosperm EST sequences to identify genes involved in the biological processes that occur within this tissue. Clustering and assembly of the ESTs resulted in the identification of 6,187 tentative unique genes, 2,358 of which formed contigs and 3,829 remained as singletons. A BLAST similarity search against the NCBI non-redundant sequence database revealed abundant messages for storage proteins, putative defense proteins, and proteins involved in starch and sucrose metabolism. The level of abundance of the putatively identified genes reflects the physiology of the developing endosperm. Half of the identified genes have unknown functions. Approximately 61% of the endosperm ESTs has been tentatively mapped in the hexaploid wheat genome. Using microarrays for global RNA profiling, we identified endosperm genes that are specifically up regulated in the developing grain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号