首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationship between phosphate status and photosynthesis in leaves   总被引:19,自引:0,他引:19  
K.-J. Dietz  C. Foyer 《Planta》1986,167(3):376-381
Spinach (Spinacia oleracea L.) and barley (Hordeum vulgare L.) were grown in hydroponic culture with varying levels of orthophosphate (Pi). When leaves were fed with 20 mmol·l–1 Pi at low CO2 concentrations, a temporary increase of CO2 uptake was observed in Pi-deficient leaves but not in those from plants grown at 1 mmol·l–1 Pi. At high concentrations of CO2 (at 21% or 2% O2) the Pi-induced stimulation of CO2 uptake was pronounced in the Pi-deficient leaves. The contents of phosphorylated metabolites in the leaves decreased as a result of Pi deficiency but were restored by Pi feeding. These results demonstrate that there is an appreciable capacity for rapid Pi uptake by leaf mesophyll cells and show that the effects of long-term phosphate deficiency on photosynthesis may be reversed (at least temporarily) within minutes by feeding with Pi.Abbreviation Pi orthophosphate  相似文献   

2.
Endogenous abscisic acid (ABA) content was measured in leavesof Cucumis sativus L. under the influence of hardening (lowand high) temperatures and salinity. The rise in cold and heatresistance of the seedlings was accompanied by a considerableincrease in the ABA level in the leaves. Chloride salinity alsobrought about a rise in the ABA content. The data indicate thatABA may induce resistance when the plants are exposed to severalstresses. Key words: Cucumis sativus, ABA, cold and heat hardening, salinity  相似文献   

3.
Summary Endogenous abscisic acid content (ABA) of Arbutus unedo leaves growing under natural conditions in a macchia near Sobreda, Portugal, was very high (0.25 to 2.3 g g1 fresh weight). Highest concentrations were found during the very early morning hours and at midday. During the late morning hours and in the late afternoon ABA concentrations decreased to between one-third and one-fourth of peak values. The samples for ABA content were obtained from both irrigated ( between-10 and-25 bar) and non-irrigated plants experiencing natural water stress during the dry season ( of-50 bar). During the course of the measurement day, stomatal conductance was relatively constant and conductance of watered plants was 50 to 100% greater than that of unwatered plants. No clear correlations between ABA content and stomatal conductance and/or xylem water potential were observed. Despite large differences in water potential and differences in degree of stomatal opening, absolute concentrations of ABA were not found to differ.Small quantities (8–14 pmoles cm2 leaf area) of ABA were applied to leaves of irrigated and non-irrigated Arbutus unedo plants by injection into the petiole. These extremely small ABA doses resulted in transient reductions in stomatal conductance. The effectiveness with which injected ABA closed stomata was highest during the morning and decreased substantially at midday. Increased sensitivity to injected ABA may again occur in the late afternoon but recent measurements suggest that this may depend on long-term drought experience of the plants. The characteristics of the response to injected ABA were similar in irrigated and non-irrigated plants although irrigated plants responded in general more strongly.  相似文献   

4.
Mature leaves of Phaseolus vulgaris L. (red kidney bean), Xanthium strumarium L. (cocklebur), and Gossypium hirsutum L. (cotton) were used to study accumulation of abscisic acid (ABA) during water stress. The water status of individual, detached leaves was monitored while the leaves slowly wilted, and samples were cut from the leaves as they lost water. The leaf sections were incubated at their respecitive water contents to allow ABA to build up or not. At least 8 h were required for a new steady-state level of ABA to be established. The samples from any one leaf covered a range of known water potentials (), osmotic pressures (), and turgor pressures (p). The and p values were calculated from pressure-volume curves, using a pressure bomb to measure the water potentials. Decreasing water potential had little effect on ABA levels in leaves at high turgor. Sensitivity of the production of ABA to changes in progressively increased as turgor approached zero. At p=1 bar, ABA content averaged 4 times the level found in fully turgid samples. Below p=1 bar, ABA content increased sharply to as much as 40 times the level found in unstressed samples. ABA levels rose steeply at different water potentials for different leaves, according to the at which turgor became zero. These differences were caused by the different osmotic pressures of the leaves that were used; must cqual - for turgor to be zero. Leaves vary in , not only among species, but also between plants of one and the same species depending on the growing conditions. A difference of 6 bars (calculated at =0) was found between the osmotic pressures of leaves from two groups of G. hirsutum plants; one group had previously experienced periodic water stress, and the other group had never been stressed. When individual leaves were subsequently wilted, the leaves from stress-conditioned plants required a lower water potential in order to accumulate ABA than did leaves from previously unstressed plants. On the basis of these results we suggest that turgor is the critical parameter of plant water relations which controls ABA production in water-stressed leaves.Abbreviations ABA abscisic acid - me-ABA abscisic-acid methyl ester - leaf water potential - osmotic pressure - p volumeaveraged turgor - volumetric modulus of elasticity  相似文献   

5.
The biosynthetic pathway to abscisic acid (ABA) from isopentenyl diphosphate in the fungus, Botrytis cinerea, was investigated. Labeling experiments with (18)O2 and H2(18)O indicated that all oxygen atoms at C-1, -1, -1' and -4' of ABA were derived from molecular oxygen, and not from water. This finding was inconsistent not only with the known carotenoid pathway via oxidative cleavage of carotenoids, but also with the classical direct pathway via cyclization of farnesyl diphosphate. The fungus produced new C15-compounds, 2E,4E-alpha-ionylideneethane and 2Z,4E-alpha-ionylideneethane, along with 2E,4E,6E-allofarnesene and 2Z,4E,6E-allofarnesene, but did not apparently produce carotenoids except for a trace of phytoene. The C15-compounds labeled with 13C were converted to ABA by the fungus, and the incorporation ratio of 2Z,4E-alpha-ionylideneethane was higher than that of 2E,4E-alpha-ionylideneethane. From these results, it was concluded that farnesyl diphosphate was reduced at C-1, desaturated at C-4, and isomerized at C-2 to form 2Z,4E,6E-allofarnesene before being cyclized to 2Z,4E-alpha-ionylideneethane; the ionylideneethane was then oxidized to ABA with molecular oxygen. This direct pathway via ionylideneethane means that the biosynthetic pathway to fungal ABA, not only before but also after isopentenyl diphosphate, differs from that to ABA in plants, since plant ABA is biosynthesized using the non-mevalonate and carotenoid pathways.  相似文献   

6.
7.
A new biosynthetic intermediate of ABA, (2Z,4E)-gamma-ionylideneacetaldehyde, was isolated from young mycelia of Cercospora cruenta. Under an (18)O2 atmosphere, an oxygen atom of this endogenous aldehyde was exclusively labeled. Similarly, three (18)O atoms were incorporated into the ABA molecule recovered after prolonged incubation; selectively labeled were one of the carboxyl oxygen atoms and the two on the ring portion of ABA. A feeding experiment with [1-(13)C]glucose proved the exclusive operation of the mevalonate pathway for the formation of both ABA and beta-carotene. These results suggest that (2Z,4E)-gamma-ionylideneacetaldehyde can be a key ABA biosynthetic intermediate formed by the oxidative cleavage of a carotenoid precursor.  相似文献   

8.
Suboptimal nitrogen nutrition, leaf aging, and prior exposure to water stress all increased stomatal closure in excised cotton (Gossypium hirsutum L.) leaves supplied abscisic acid (ABA) through the transpiration stream. The effects of water stress and N stress were partially reversed by simultaneous application of kinetin (N6-furfurylaminopurine) with the ABA, but the effect of leaf aging was not. These enhanced responses to ABA could have resulted either from altered rates of ABA release from symplast to apoplast, or from some post-release effect involving ABA transport to, or detection by, the guard cells. Excised leaves were preloaded with [14C]ABA and subjected to overpressures in a pressure chamber to isolate apoplastic solutes in the exudate. Small quantities of 14C were released into the exudate, with the amount increasing greatly with increasing pressure. Over the range of pressures from 1 to 2.5 MPa, ABA in the exudate contained about 70% of the total 14C, and a compound co-chromatographing with phaseic acid contained over half of the remainder. At a low balancing pressure (1 MPa), release of 14C into the exudate was increased by N stress, prior water stress, and leaf aging. Kinetin did not affect 14C release in leaves of any age, N status, or water status. Distribution of ABA between pools can account in part for the effects of water stress, N stress, and leaf age on stomatal behavior, but in the cases of water stress and N stress there are additional kinetinreversible effects, presumably at the guard cells.Abbreviations and symbols ABA abscisic acid - PA phaseic acid - w water potential  相似文献   

9.
Uptake of 3H-labelled (±)-abscisic acid (ABA) into isolated barley (Hordeum vulgare L.) epidermal cell protoplasts (ECP) was followed over a range of pH values and ABA concentrations. The present results show that ABA uptake is not always linearly correlated with the external concentration of undissociated ABA (ABAH). At pH 7.25, ABA uptake exhibited saturation kinetics with an apparent K m value of 75 mmol·m–3 to tal ABA. This saturable transport component was inhibited by pretreating the protoplasts with 1 mol·m–3 p-chloromercuribenzenesulfonic acid at pH 8.0, conditions that minimized the uptake of this acid sulfhydryl reagent. Moreover, the rate of (±)-[3]HABA uptake was reduced by addition of 0.1 mol·m–3 (±)-ABA to 41%, whereas the same concentration of (±)-ABA was approximately half as effective (46% of the inhibitory effect). Thus, it was concluded that only (±)-ABA competes for an ABA carrier that is located in the epidermal cell plasma membrane. The permeability of the epidermal cell plasma membrane was studied by performing a Collander analysis. At pH 6 the overall plasma-membrane permeability of epidermal cells was similar to that of guard cells but was about two times higher than that of mesophyll cells.Abbreviations ABA abscisic acid - ABA anion of ABA - ABAH undissociated ABA - 2,4-D 2,4-dichlorophenoxyacetic acid - DMO 5,5-dimethyloxazolidine-2,4-dione - ECP deepidermal cell protoplast - Kr partition coefficient - Mr relative molecular mass - NEM N-ethylmaleimide - PCMBS p-chloromercuriben zenesulfonic acid - Ps permeability coefficient We are grateful to Barbara Dierich for expert technical assistance, to Prof. H. Gimmler (Lehrstuhl für Botanik I, Universität Würzburg, FRG) for helpful discussions and to the Deutsche Forschungsgemeinschaft (SFB 251, TP 3) for financial support.  相似文献   

10.
The relationship between endogenous cytokinin content and relative growth rate (RGR) was studied in cultures of Lemna gibba L. G3 supplied with daily doses of mineral nutrients that were increased exponentially over time. At the optimal level of nutrient supply the RGR was 30–35% day-1. The RGR was regulated by adjusting the rate of nitrogen supply, or it was restricted by addition of 0.5 M abscisic acid (ABA). Another approach used to investigate the specific roles of nitrogen (N) and phosphorus (P), was to transfer optimally growing plants to media without N or P but otherwise complete. The plants were harvested at regular intervals for determination of the RGR and levels of cytokinins of the isopentenyladenosine (iPA) and zeatinriboside (ZR) types with an enzyme-linked immunosorbent assay (ELISA). Levels of both iPA- and ZR-type cytokinins decreased when nitrogen was applied to cultures in growth limiting amounts. The cytokinin levels decreased more rapidly than the RGR when either N or P was lacking in the medium, suggesting an early influence of nutrient availability on cytokinin levels which in turn may induce adaptive response by the plant. RGR retardation induced by ABA did not affect cytokinin levels during the first 4 days of the treatment, and the later effects were small. The experiments gave no indication that ABA is involved in the adaptation response of Lemna plants to nutritional stress.Abbreviations ABA - abscisic acid - BAP - benzylaminopurine - ELISA - enzyme-linked-immunosorbent-assay - iP - isopentenyladenine - iPA - isopentenyladenosine - PBS - phosphate-buffered saline - PVP - polyvinylpyrrolidone - RGR - relative growth rate - RN - relative nitrogen addition rate - Z - trans-zeatin - ZR - trans-zeatin riboside  相似文献   

11.
Phosphatidic acid (PA) and phytosphingosine 1-phosphate (phyto-S1P) both are lipid messengers involved in plant response to abscisic acid (ABA). Our previous data indicate that PA binds to sphingosine kinase (SPHK) and increases its phyto-S1P-producing activity. To understand the cellular and physiological functions of the PA-SPHK interaction, we isolated Arabidopsis thaliana SPHK mutants sphk1-1 and sphk2-1 and characterized them, together with phospholipase Dα1 knock-out, pldα1, in plant response to ABA. Compared with wild-type (WT) plants, the SPHK mutants and pldα1 all displayed decreased sensitivity to ABA-promoted stomatal closure. Phyto-S1P promoted stomatal closure in sphk1-1 and sphk2-1, but not in pldα1, whereas PA promoted stomatal closure in sphk1-1, sphk2-1, and pldα1. The ABA activation of PLDα1 in leaves and protoplasts was attenuated in the SPHK mutants, and the ABA activation of SPHK was reduced in pldα1. In response to ABA, the accumulation of long-chain base phosphates was decreased in pldα1, whereas PA production was decreased in SPHK mutants, compared with WT. Collectively, these results indicate that SPHK and PLDα1 act together in ABA response and that SPHK and phyto-S1P act upstream of PLDα1 and PA in mediating the ABA response. PA is involved in the activation of SPHK, and activation of PLDα1 requires SPHK activity. The data suggest that SPHK/phyto-S1P and PLDα1A are co-dependent in amplification of response to ABA, mediating stomatal closure in Arabidopsis.  相似文献   

12.
Sang J  Zhang A  Lin F  Tan M  Jiang M 《Cell research》2008,18(5):577-588
Using pharmacological and biochemical approaches, the signaling pathways between hydrogen peroxide (H2O2), calcium (Ca^2+)-calmodulin (CAM), and nitric oxide (NO) in abscisic acid (ABA)-induced antioxidant defense were investigated in leaves of maize (Zea mays L.) plants. Treatments with ABA, H2O2, and CaCl2 induced increases in the generation of NO in maize mesophyll cells and the activity of nitric oxide synthase (NOS) in the cytosolic and microsomal fractions of maize leaves. However, such increases were blocked by the pretreatments with Ca^2+ inhibitors and CaM antagonists. Meanwhile, pretreatments with two NOS inhibitors also suppressed the Ca^2+-induced increase in the production of NO. On the other hand, treatments with ABA and the NO donor sodium nitroprusside (SNP) also led to increases in the concentration of cytosolic Ca^2+ in protoplasts of mesophyll cells and in the expression of calmodulin 1 (CaM1) gene and the contents of CaM in leaves of maize plants, and the increases induced by ABA were reduced by the pretreatments with a NO scavenger and a NOS inhibitor. Moreover, SNP-induced increases in the expression of the antioxidant genes superoxide dismutase 4 (SOD4), cytosolic ascorbate peroxidase (cAPX), and glutathione reductase 1 (GR1) and the activities of the chloroplastic and cytosolic antioxidant enzymes were arrested by the pretreatments with Ca^2+ inhibitors and CaM antagonists. Our results suggest that Ca^2+-CaM functions both upstream and downstream of NO production, which is mainly from NOS, in ABA- and H2O2-induced antioxidant defense in leaves of maize plants.  相似文献   

13.
Using a computer model written for whole leaves (Slovik et al. 1992, Planta 187, 14–25) we present in this paper calculations of abscisic acid (ABA) redistribution among different leaf tissues and their compartments in relation to stomatal regulation under drought stress. The model calculations are based on experimental data and biophysical laws. They yield the following results and postulates: (i) Under stress, compartmental pH-shifts come about as a consequence of the inhibition of the pH component of proton-motive forces at the plasmalemma. There is a decrease of net proton fluxes by about 8.6 nmol · s–1 · m–2. (ii) Using stress-induced pH-shifts we demonstrate how stress intensities can be quantified on a molecular basis. (iii) As the weak acid ABA is the only phytohormone which behaves in vivo and in vitro ideally according to the Henderson-Hasselbalch equation, pH-shifts induce a complicated redistribution amongst compartments in the model leaf. (iv) The final accumulation of ABA in guard-cell walls is intensive: up to 16.1-fold compared with only up to 3.4-fold in the guard-cell cytosol. We propose that the binding site of the guard-cell ABA receptor faces the apoplasm. (v) A twoto three-fold ABA accumulation in guard-cell walls is sufficient to induce closure of stomata. (vi) The minimum time lag until stomata start to close is 1–5 min; it depends on the stress intensity and on the guard-cell sensitivity to ABA: the more moderate the stress is, the later stomata start to close or they do not close at all. (vii) In the short term, there is almost no influence of the velocity of pH-shifts on the velocity of the ABA redistribution, (viii) Six hours after the termination of stress there is still an ABA concentration 1.4-fold the initial level in the guard-cell cytosol (delay of ABA relaxation, aftereffect), (ix) The observed induction of net ABA synthesis after onset of stress may be explained by a decrease in cytosolic ABA degradation. About 1 h after onset of stress the model leaf would start to synthesise ABA (and its conjugates) automatically, (x) This ABA net synthesis serves to inform roots via an increased ABA concentration in the phloem sap. The stress-induced ABA redistribution is per se not sufficient to feed the ploem sap with ABA. (xi) The primary target membrane of stress is the plasmalemma, not thylakoids. (xii) The effective stress sensor, which induces the proposed signal chain finally leading to stomatal closure, is located in epidermal cells. Mesophyll cells are not capable of creating a significant ABA signal to guard cells if the epidermal plasmalemma conductance to undissociated molecular species of ABA (HABA) is indeed higher than the plasmalemma conductance of the mesophyll (plasmodesmata open), (xiii) All model conclusions which can be compared with independent experimental data quantitatively fit to them. We conclude that the basic experimental data of the model are consistent. A stress-induced ABA redistribution in the leaf lamina elicits stomatal closure.Abbreviations ABA abscisic acid - CON vacuolar ABA conjugates We are grateful to Prof. U. Heber (Lehrstuhl Botanik I, University of Würzburg, FRG) for stimulating discussions. This work has been performed within the research program of the Sonderforschungsbereich 251 (TP 3 and 4) of the University of Würzburg. It has been also supported by the Fonds der Chemischen Industrie.  相似文献   

14.
Two tomato mutants, Lycopersicon esculentum flacca and lateral suppressor, are assigned to map position 59 of chromosome 7. The tight linkage between these two gene loci was detected as a result of attempts to establish whether they would exhibit phenotypic interaction. The possibility that both mutants result in abnormalities of abscisic acid (ABA) accumulation is considered. ABA analysis supports the suggestion that plants homozygous for flacca have a substantially lower concentration but indicates that lateral suppressor homozygotes do not differ from normal in ABA content. An attempt is made to reconcile the results with those of Tucker (1976, New. Phytol. 77, 561–568) by suggesting that lateral suppressor plants may accumulate high levels of an ABA metabolite which is indistinguishable from ABA using the Commelina epidermal strip bioassay.Abbreviations ABA abscisic acid - flc flacca - ls lateral suppressor - La Lanceolate  相似文献   

15.
Aharoni N 《Plant physiology》1978,62(2):224-228
Levels of gibberillins (GAs) and of abscisic acid (ABA) in attached leaves of romaine lettuce (Lactuca sativa L.) declined as the leaf became older. The time course of changes in hormone levels, determined in detached lettuce leaves kept in darkness, revealed that a sharp decline in GAs accompanied by a moderate rise in ABA occurred before the onset of chlorophyll degradation. As senescence advanced, no GAs could be detected and a considerable rise of ABA was observed. A similar sequence of hormonal modifications, but more pronounced, was observed in the course of accelerated senescence induced by either Ethephon or water stress. When kinetin or GA3 was applied to detached leaves, the loss of chlorophyll and the rise in ABA were reduced. Bound GAs were detected in senescent leaves. They were not found in the kinetin-treated leaves, which contained a relatively high level of free GAs. The results suggest that senescence in detached romaine lettuce leaves is connected with a depletion of free GAs and cytokinins, which is thereafter followed by a great surge in ABA.  相似文献   

16.
阳成伟  陈贻竹  彭长连 《广西植物》2002,22(6):534-536-536
经ABA处理的水稻幼苗叶片和对照相比 ,PSII光化学效率 (Fv/Fm)和非光化学猝灭系数 (qN)显著受抑制。经高光处理 1h后 ,ABA处理的水稻幼苗叶片光抑制程度比对照小 ,这暗示ABA对高光光抑制具有一定的光保护作用 ,且间接表明ABA提高水稻幼苗抗光抑制的能力与叶黄素循环密切相关。  相似文献   

17.
The modifications induced by abscisic acid (ABA) on the senescence of oat leaves in darkness have been studied and are compared with its well-known effects in light. Contrary to the action in light, ABA preserves chlorophyll (Chl) in the dark almost as well as kinetin. Chlorophylla is decolorized more extensively thanb, and the content ofb is maintained by ABA almost at its initial level for 4 days. ABA also prevents proteolysis in darkness just as completely as chlorophyll loss, the relationship of both breakdown processes to ABA concentration being strictly log-linear over the range from 1 to 100 M. In line with this action, ABA inhibits formation of the neutral protease in the dark but not in the light. The data suggest that ABA and kinetin operate to preserve chlorophyll and protein by different mechanisms, since their actions are neither independent nor synergistic but actually interfere with one another. In this connection, protein values given by the Lowry and Bradford methods have been compared. In parallel with the effect on senescence, ABA slowly opens the stomata in the dark. This effect increases with time, and by day 3 the stomata in ABA are as open as in leaves on water in light. Thus all these effects of ABA in darkness are strikingly opposite to those commonly observed on leaves in natural lighting. In addition, ABA powerfully inhibits the formation of ethylene in the dark by the detached oat leaves, and this inhibition also tends to increase with time. Finally, a slight antagonism to ABA's action on senescence is exerted byp-coumaric acid in the light but not in the dark.  相似文献   

18.
Soil columns in which the root system was divided into threeequal layers, each 24 cm in diameter and 33 cm high were usedto examine the influence of drying different proportions ofthe root system on the water relations, gas exchange and abscisicacid (ABA) concentration of lupin (Lupinus cosentinii Guss.cv. Eregulla) leaves. The treatments imposed were (i) all threelayers adequately watered (control), (ii) the upper layer unwateredwith the remaining layers kept adequately watered, (iii) thetwo upper layers unwatered with the basal layer kept adequatelywatered, (iv) all three layers unwatered. The treatments wereapplied at 56 d after sowing (DAS), and continued for 21 d inthe treatment in which the three layers were dried and for 36d in the other three treatments. After 21 d, the soil matricpotential in the layers that were unwatered had decreased toemdash 1.3MPa, compared to - 0.03 MPa in the adequately-wateredlayers. Within 8 d of cessation of watering, plants with the entireroot system in drying soil had significantly lower stomatalconductances, lower rates of net photosynthesis, and higherleaf ABA contents than did adequately-watered plants. Whilethe leaf osmotic potential decreased within 8 d of cessationof watering, the leaf water potential did not change for thefirst 15 d after water was withheld. After withholding waterfrom all layers, the shoot dry matter was 63% lower than thatin the adequately-watered plants. In the two partially-droughtedtreatments, 17% and 48% of the root length was subjected todrying. Compared to the adequately-watered plants, drying upto 50% of the root system for 36 d, in the two partially-droughtedtreatments, did not reduce stomatal conductance, net photosynthesis,or plant growth. Similarly, there was no significant effecton leaf water potential or osmotic potential. When either theupper or upper and middle layers of soil were dried, the ABAcontent of the leaves for most of the drying period was slightly,but not significantly, higher than in leaves of the adequately-wateredplants. The results suggest that lupins with a well-established rootsystem can utilize localized supplies of available soil waterto maintain leaf gas exchange despite appreciable portions ofthe root system being in dry soil. In contrast to other studies,the results also suggest that when only a portion of the soilvolume is dry and adequate water is available in the wet zone,root signals do not influence stomatal conductance and leafgas exchange of lupin. Key words: Abscisic acid, gas exchange, lupins, split-roots, water deficit  相似文献   

19.
Changes in abscisic acid and its metabolites were followed through two drought cycles in Pseudotsuga menziesii (Mirb.) Franco seedlings to determine the metabolic pathway of the hormone and its relationship to branch (stomatal) conductance. Three year-old, intact seedlings were water-stressed, watered, and restressed over a period of 30 days. Water potential was sampled with a pressure chamber and branch conductance with a steady-state porometer. Needle content of abscisic acid and 2- trans -abscisic acid and their saponifiable conjugates were quantified with gas-liquid chromatography. The typical water potential threshold in branch conductance, decreasing abruptly at -2.0 MPa, corresponded to an increase in abscisic acid content of 240 ng g−1. The relationship between abscisic acid and water potential was not definitive, though the general trend was an increase in the hormone with intensifying stress until water potential was -5.0 MPa, when concentration sharply declined. No adjustment to stress was observed in the relationships, but stress during the second cycle progressed more slowly. A linear relationship between abscisic acid and its conjugate indicated the importance of the interconversion of the two compounds for storage and supply of the free acid.  相似文献   

20.
Quantitative determinations by gas chromatography-mass spectrometry ofindole-3-acetic acid (IAA) and abscisic acid (ABA) in growing leaves ofColeusblumei plants show parallel declines in leaf concentrations of bothhormones,except in leaf number 3 (about three-fourths of full size) where IAA level wasthe lowest of those measured. Expansion of the most recently unfurled leaf tofull size serves, in effect, to dilute both IAA and ABA about 1.7 to 1.Althoughabsolute levels of leaf IAA varied as much as an order of magnitude from onebatch of plants to another, ABA levels were proportional to the IAA level withan overall correlation coefficient of 0.91. Evidence, both correlative andcausal, for the determination of ABA status by IAA—and of IAA status byABA—in leaves and other developing organs is summarized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号