首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We obtained a drug-hypersensitive PC12 mutant cell (PC12m3), in which neurite outgrowth was strongly stimulated by various drugs such as FK506, calcimycin and cAMP, under the condition of NGF treatment. The frequency of neurite outgrowth stimulated by FK506 was approximately 40 times greater than by NGF alone. The effects of FK506 on neurite outgrowth in PC12m3 cells were inhibited by rapamycin, an FK506 antagonist, and by calcimycin, a calcium ionophore. PC12m3 cells had a strong NGF-induced MAP kinase activity, the same as PC12 parental cells. However, FK506-induced MAP kinase activity was detected only in PC12m3 cells. The activation of MAP kinase by FK506 in PC12m3 cells was markedly inhibited by rapamicin and calcimycin. FK506-induced MAP kinase activity was also inhibited by MAP kinase inhibitor U0126. These results demonstrate that drug-hypersensitive PC12m3 cells have a novel FK506-induced MAP kinase pathway for neuritogenesis.  相似文献   

2.
S Ihara  K Nakajima  T Fukada  M Hibi  S Nagata  T Hirano    Y Fukui 《The EMBO journal》1997,16(17):5345-5352
IL-6 induces differentiation of PC12 cells pretreated with nerve growth factor (NGF). We explored the signals required for neurite outgrowth of PC12 cells by using a series of mutants of a chimeric receptor consisting of the extracellular domain of the granulocyte-colony stimulating factor (G-CSF) receptor and the cytoplasmic domain of gp130, a signal-transducing subunit of the IL-6 receptor. The mutants incapable of activating the MAP kinase cascade failed to induce neurite outgrowth. Consistently, a MEK inhibitor, PD98059, inhibited neurite outgrowth, showing that activation of the MAP kinase cascade is essential for the differentiation of PC12 cells. In contrast, a mutation that abolished the ability to activate STAT3 did not inhibit, but rather stimulated neurite outgrowth. This mutant did not require NGF pretreatment for neurite outgrowth. Dominant-negative STAT3s mimicked NGF pretreatment, and NGF suppressed the IL-6-induced activation of STAT3, supporting the idea that STAT3 might regulate the differentiation of PC12 cells negatively. These results suggest that neurite outgrowth of PC12 cells is regulated by the balance of MAP kinase and STAT3 signal transduction pathways, and that STAT3 activity can be regulated negatively by NGF.  相似文献   

3.
4.
Nerve growth factor (NGF) increases expression of nitric oxide synthase (NOS) isozymes leading to enhanced production of nitric oxide (NO). NOS inhibitors attenuate NGF-mediated increases in cholinergic gene expression and neurite outgrowth. Mechanisms underlying this are unknown, but the mitogen-activated protein (MAP) kinase pathway plays an important role in NGF signaling. Like NGF, NO donors activate Ras leading to phosphorylation of MAP kinase. The present study investigated the role of NO in NGF-mediated activation of MAP kinase in PC12 cells. Cells were treated with 50 ng/mL NGF to establish the temporal pattern for rapid and sustained activation phases of MAP kinase kinase (MEK)-1/2 and p42/p44-MAP kinase. Subsequently, cells were pretreated with NOS inhibitors Nomega-nitro-L-arginine methylester and s-methylisothiourea and exposed to NGF for up to 24 h. NGF-induced activation of MEK-1/2 and p42/p44-MAP kinase was not dependent on NO, but sustained phosphorylation of MAP kinase was modulated by NO. This modulation did not occur at the level of Ras-Raf-MEK signaling or require activation of cGMP/PKG pathway. NOS inhibitors did not affect NGF-mediated phosphorylation of MEK. Expression of constitutively active-MEKK1 in cells led to phosphorylation of p42/p44-MAP kinase and robust neurite outgrowth; constitutively active-MKK1 also caused differentiation with neurite extension. NOS inhibitor treatment of cells expressing constitutively active kinases did not affect MAP kinase activation, but neurite outgrowth was attenuated. NOS inhibitors did not alter NGF-mediated nuclear translocation of phospho-MAP kinase, but phosphorylated kinases disappeared more rapidly from NOS inhibitor-treated cells suggesting greater phosphatase activity and termination of sustained activation of MAP kinase.  相似文献   

5.
In this study, we examined the role of specific protein kinase C (PKC) isoforms in the differentiation of PC12 cells in response to nerve growth factor (NGF) and epidermal growth factor (EGF). PC12 cells express PKC-alpha, -beta, -gamma, -delta, -epsilon, -mu, and -zeta. For PKC-delta, -epsilon, and -zeta, NGF and EGF exerted differential effects on translocation. Unlike overexpression of PKC-alpha and -delta, overexpression of PKC-epsilon caused enhanced neurite outgrowth in response to NGF. In the PKC-epsilon-overexpressing cells, EGF also dramatically induced neurite outgrowth, arrested cell proliferation, and induced a sustained phosphorylation of mitogen-activated protein kinase (MAPK), in contrast to its mitogenic effects on control cells or cells overexpressing PKC-alpha and -delta. The induction of neurite outgrowth by EGF was inhibited by the MAPK kinase inhibitor PD95098. In cells overexpressing a PKC-epsilon dominant negative mutant, NGF induced reduced neurite outgrowth and a more transient phosphorylation of MAPK than in controls. Our results suggest an important role for PKC-epsilon in neurite outgrowth in PC12 cells, probably via activation of the MAPK pathway.  相似文献   

6.
The current paradigm for the role of nerve growth factor (NGF) or FGF-2 in the differentiation of neuronal cells implies their binding to specific receptors and activation of kinase cascades leading to the expression of differentiation specific genes. We examined herein the hypothesis that FGF receptors (FGFRs) are involved in NGF-induced neuritogenesis of pheochromocytoma-derived PC12 cells. We demonstrate that in PC12 cells, FGFR expression and activity are modulated upon NGF treatment and that a dominant negative FGFR-2 reduces NGF-induced neuritogenesis. Moreover, FGF-2 expression is modulated by NGF, and FGF-2 is detected at the cell surface. Oligonucleotides that specifically inhibit FGF-2 binding to its receptors are able to significantly reduce NGF-induced neurite outgrowth. Finally, the duration of mitogen-activated protein kinase (MAPK) activity upon FGF or NGF stimulation is shortened in FGFR-2 dominant negative cells through inactivation of signaling from the receptor to the Ras/MAPK pathway. In conclusion, these results demonstrate that FGFR activation is involved in neuritogenesis induced by NGF where it contributes to a sustained MAPK activity in response to NGF.  相似文献   

7.
The c-fes locus encodes a cytoplasmic protein-tyrosine kinase (Fes) previously shown to accelerate nerve growth factor (NGF)-induced neurite outgrowth in rat PC12 cells. Here, we investigated the role of the Rho family small GTPases Rac1 and Cdc42 in Fes-mediated neuritogenesis, which have been implicated in neuronal differentiation in other systems. Fes-induced acceleration of neurite outgrowth in response to NGF treatment was completely blocked by the expression of dominant-negative Rac1 or Cdc42. Expression of a kinase-active mutant of Fes induced constitutive relocalization of endogenous Rac1 to the cell periphery in the absence of NGF, and led to dramatic actin reorganization and spontaneous neurite extension. We also investigated the breakpoint cluster region protein (Bcr), which possesses the Dbl and PH domains characteristic of guanine nucleotide exchange factors for Rho family GTPases, as a possible link between Fes, Rac/Cdc42 activation, and neuritogenesis. Coexpression of a GFP-Bcr fusion protein containing the Fes binding and tyrosine phosphorylation sites (amino acids 162-413) completely suppressed neurite outgrowth triggered by Fes. Conversely, coexpression of full-length Bcr with wild-type Fes in PC12 cells induced NGF-independent neurite formation. Taken together, these data suggest that Fes and Bcr cooperate to activate Rho family GTPases as part of a novel pathway regulating neurite extension in PC12 cells, and provide more evidence for an emerging role for Fes in neuronal differentiation.  相似文献   

8.
The signaling pathway that triggers morphological differentiation of PC12 cells is mediated by extracellular signal-regulated kinase (ERK), the classic mitogen-activated protein (MAP) kinase. However, mediators of the pathway downstream of ERK have not been identified. We show here that phospholipase D2 (PLD2), which generates the pleiotropic signaling lipid phosphatidic acid (PA), links ERK activation to neurite outgrowth in nerve growth factor (NGF)-stimulated PC12 cells. Increased expression of wild type PLD2 (WT-PLD2) dramatically elongated neurites induced by NGF stimulation or transient expression of the active form of MAP kinase-ERK kinase (MEK-CA). The response was activity-dependent, because it was inhibited by pharmacological suppression of the PLD-mediated PA production and by expression of a lipase-deficient PLD2 mutant. Furthermore, PLD2 was activated by MEK-CA, whereas NGF-stimulated PLD2 activation and hypertrophic neurite extension were blocked by an MEK-specific inhibitor. Taken together, these results provide evidence that PLD2 functions as a downstream signaling effector of ERK in the NGF signaling pathway, which leads to neurite outgrowth by PC12 cells.  相似文献   

9.
We investigated whether artepillin C, a major component of Brazilian propolis, acts as a neurotrophic-like factor in rat PC12m3 cells, in which nerve growth factor (NGF)-induced neurite outgrowth is impaired. When cultures of PC12m3 cells were treated with artepillin C at a concentration of 20 μM, the frequency of neurite outgrowth induced by artepillin C was approximately 7-fold greater than that induced by NGF alone. Artepillin C induced-neurite outgrowth of PC12m3 cells was inhibited by the ERK inhibitor U0126 and by the p38 MAPK inhibitor SB203580. Although artepillin C-induced p38 MAPK activity was detected in PC12m3 cells, phosphorylation of ERK induced by artepillin C was not observed. On the other hand, artepillin C caused rapid activation of ERK and the time course of the activation was similar to that induced by NGF treatment in PC12 parental cells. However, NGF-induced neurite outgrowth was inhibited by artepillin C treatment. Interestingly, inhibition of ERK by U0126 completely prevented artepillin C-induced p38 MAPK phosphorylation of PC12m3 cells. These findings suggest that artepillin C-induced activation of p38 MAPK through the ERK signaling pathway is responsible for the neurite outgrowth of PC12m3 cells.  相似文献   

10.
11.
Rit is one of the original members of a novel Ras GTPase subfamily that uses distinct effector pathways to transform NIH 3T3 cells and induce pheochromocytoma cell (PC6) differentiation. In this study, we find that stimulation of PC6 cells by growth factors, including nerve growth factor (NGF), results in rapid and prolonged Rit activation. Ectopic expression of active Rit promotes PC6 neurite outgrowth that is morphologically distinct from that promoted by oncogenic Ras (evidenced by increased neurite branching) and stimulates activation of both the extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein (MAP) kinase signaling pathways. Furthermore, Rit-induced differentiation is dependent upon both MAP kinase cascades, since MEK inhibition blocked Rit-induced neurite outgrowth, while p38 blockade inhibited neurite elongation and branching but not neurite initiation. Surprisingly, while Rit was unable to stimulate ERK activity in NIH 3T3 cells, it potently activated ERK in PC6 cells. This cell type specificity is explained by the finding that Rit was unable to activate C-Raf, while it bound and stimulated the neuronal Raf isoform, B-Raf. Importantly, selective down-regulation of Rit gene expression in PC6 cells significantly altered NGF-dependent MAP kinase cascade responses, inhibiting both p38 and ERK kinase activation. Moreover, the ability of NGF to promote neuronal differentiation was attenuated by Rit knockdown. Thus, Rit is implicated in a novel pathway of neuronal development and regeneration by coupling specific trophic factor signals to sustained activation of the B-Raf/ERK and p38 MAP kinase cascades.  相似文献   

12.
We have previously shown that N(6)-methyldeoxyadenosine (MDA) is an inducer of differentiation in several tumor cells. Here we show that in addition to its ability to induce neurite-outgrowth in PC12 cells, MDA also significantly enhances the nerve-growth factor-mediated neurite outgrowth of these cells. Thus, MDA acts synergistically with NGF to repress cdc2 and cdk2 synthesis and to enhance tyrosine hydroxylase synthesis. To further elucidate the mechanisms of action of MDA, we investigated the effect of this drug on various signaling pathways. The neuritogenesis observed in PC12 following MDA treatment is mediated through activation of adenylyl cyclase in a PKA independent process and through the recruitment of the p44/p42 MAPK pathway. Furthermore, the adenosine A(2a) receptor antagonist ZM 241385 prevents the MDA-induced neuritogenesis, suggesting that MDA mediates its effect via this adenylyl cyclase-coupled A(2a) receptor. Collectively, these findings suggest that, in PC12 cells, the MDA-induced neuritogenesis requires the recruitment of adenosine A(2a) receptor, the stimulation of adenylate cyclase, and the activation of the p44/42MAP kinase cascade.  相似文献   

13.
14.
The rat pheochromocytoma PC12 cell line has been an invaluable model system for studying neuritogenesis. Nerve growth factor (NGF) elicits multiple aspects of neurite outgrowth in PC12 cells. It is therefore difficult to dissect and assign an individual signaling pathway to each stage of neuritogenesis. We have recently reported the isolation of a variant PC12 cell line, PC12-N1 (N1), which spontaneously extends neuritic processes and exhibits an increased sensitivity to NGF. Here, we show that, under different culture conditions, the cells display three distinct phases of neuritogenesis consisting of neurite initiation, rapid neurite elongation, and a maturation process characterized by the thickening of neurites and increase in cell soma sizes. We demonstrate that signaling through ERK, but not p38 or JNK, is required for the spontaneous neurite initiation and extension. Treatment with low concentrations of NGF induces rapid neurite elongation without affecting neurite branching and cell soma sizes. Such a rapid neurite outgrowth can be blocked by the inhibition of ERK, but not JNK, activities. In the presence of higher concentrations of NGF, the N1 cells undergo further differentiation with many characteristics of mature neurons in culture, e.g. larger cell soma and numerous branches/connections. This process can be completely blocked by inhibiting ERK or JNK activities using specific inhibitors. These results suggest that ERK and JNK signals play different roles in neuritogenesis, and that JNK activity is essential in the late stages of neuritogenesis. Furthermore, our results demonstrate that signaling dosage is important in the activation of a specific pathway, leading to distinctive biological outcomes.  相似文献   

15.
Transient Receptor Potential Canonical (TRPC) channels are implicated in modulating neurite outgrowth. The expression pattern of TRPCs changes significantly during brain development, suggesting that fine-tuning TRPC expression may be important for orchestrating neuritogenesis. To study how alterations in the TRPC expression pattern affect neurite outgrowth, we used nerve growth factor (NGF)-differentiated rat pheochromocytoma 12 (PC12) cells, a model system for neuritogenesis. In PC12 cells, NGF markedly up-regulated TRPC1 and TRPC6 expression, but down-regulated TRPC5 expression while promoting neurite outgrowth. Overexpression of TRPC1 augmented, whereas TRPC5 overexpression decelerated NGF-induced neurite outgrowth. Conversely, shRNA-mediated knockdown of TRPC1 decreased, whereas shRNA-mediated knockdown of TRPC5 increased NGF-induced neurite extension. Endogenous TRPC1 attenuated the anti-neuritogenic effect of overexpressed TRPC5 in part by forming the heteromeric TRPC1-TRPC5 channels. Previous reports suggested that TRPC6 may facilitate neurite outgrowth. However, we found that TRPC6 overexpression slowed down neuritogenesis, whereas dominant negative TRPC6 (DN-TRPC6) facilitated neurite outgrowth in NGF-differentiated PC12 cells. Consistent with these findings, hyperforin, a neurite outgrowth promoting factor, decreased TRPC6 expression in NGF-differentiated PC12 cells. Using pharmacological and molecular biological approaches, we determined that NGF up-regulated TRPC1 and TRPC6 expression via a p75(NTR)-IKK(2)-dependent pathway that did not involve TrkA receptor signaling in PC12 cells. Similarly, NGF up-regulated TRPC1 and TRPC6 via an IKK(2) dependent pathway in primary cultured hippocampal neurons. Thus, our data suggest that a balance of TRPC1, TRPC5, and TRPC6 expression determines neurite extension rate in neural cells, with TRPC6 emerging as an NGF-dependent "molecular damper" maintaining a submaximal velocity of neurite extension.  相似文献   

16.
Prominent neurite outgrowth induced by genipin, a plant-derived iridoid, was substantially inhibited by addition of NG-nitro-L-arginine methyl ester (L-NAME), a nitric oxide (NO) synthase (NOS) inhibitor, and carboxy-PTIO, an NO scavenger, in PC12h cells. Increases of the NADPH-diaphorase activity and neuronal and inducible NOS proteins in cells preceded the neurite outgrowth after addition of genipin to medium. NO donors could induce the neurite outgrowth dose-dependently in the cells. On the other hand, an inhibitor of soluble guanylate cyclase (SGC), which is known to be a stimulatory target of NO, abolished greatly the genipin-induced neurite outgrowth. Addition of extracellular signal-regulated kinase (ERK) kinase inhibitors could almost completely abolish the neurite induction. L-NAME remarkably depressed genipin-stimulated phosphorylation of ERK-1 and -2. A neuritogenic effect of nerve growth factor (NGF) in PC12h cells was also remarkably inhibited by the NOS inhibitor, NO scavenger and SGC inhibitor. These findings suggest that induced NO production followed by cyclic GMP-mediated stimulation of the mitogen-activated protein kinase (MAPK) cascade is implicated in the neuritogenesis by genipin and NGF in PC12h cells.  相似文献   

17.
18.
The purpose of this study was to examine, using glycogen synthase kinase (GSK) inhibitors, whether GSK-3 is involved in cyclosporine A (CsA)- and FK506-induced apoptosis in PC12 cells. CsA and FK506 increased apoptotic cell death with morphological changes characterized by cell shrinkage and nuclear condensation or fragmentation. Nerve growth factor (NGF) completely blocked cell death. Caspase-3 activation was accompanied by CsA- and FK506-induced cell death and inhibited by NGF. GSK-3 inhibitors such as alsterpaullone and SB216763 prevented CsA- and FK506-induced apoptosis. These results suggest that CsA and FK506 induce caspase-dependent apoptosis and that GSK-3 activation is involved in CsA- and FK506-induced apoptosis in PC12 cells.  相似文献   

19.
Mouse N1E-115 cells grown on a laminin matrix exhibit neurite outgrowth in response to serum deprivation. Treatment of cells with an antibody against beta(1) integrin inhibits neurite outgrowth. Thus, beta(1) integrin is involved in the neuritogenesis of N1E-115 cells on a laminin matrix. Integrin-linked kinase (ILK), a recently identified cytoplasmic serine/threonine protein kinase that binds to the cytoplasmic domain of beta(1) integrin, has an important role in transmembrane signal transduction via integrins. We report that ILK is expressed in N1E-115 cells, the expression levels of which are constant under both normal and differentiating conditions. A stable transfection of a kinase-deficient mutant of ILK (DN-ILK) results in inhibition of neurite outgrowth in serum-starved N1E-115 cells grown on laminin. On the other hand, a transient expression of wild type ILK stimulated neurite outgrowth. The ILK activity in the parental cells was transiently activated after seeding on the laminin matrix, whereas that in the DN-ILK-transfected cells was not. These results suggest that transient activation of ILK is required for neurite outgrowth in serum-starved N1E-115 cells on laminin. Under the same conditions, p38 mitogen-activated protein (MAP) kinase, but neither MAP kinase/extracellular signal-regulated kinase kinase (MEK) nor extracellular signal-regulated kinases (ERK), was transiently activated after N1E-115 cell attachment to laminin, but not in the DN-ILK-expressed cells. The time course of p38 MAP kinase activation was very similar to that of ILK activation. Furthermore, a p38 MAP kinase inhibitor, SB203580, significantly blocked neurite outgrowth. Thus, activation of p38 MAP kinase is involved in ILK-mediated signal transduction leading to integrin-dependent neurite outgrowth in N1E-115 cells.  相似文献   

20.
v-Crk is a member of a class of SH2 and SH3-containing adaptor proteins that have been implicated in regulating the TrkA receptor tyrosine kinase and potentiating Nerve Growth Factor (NGF)-mediated neurite outgrowth in pheochromocytoma (PC12) cells (Hempstead et al, Mol. Cell Biol. 14: 1964 - 1971). Given the fact that NGF induces both differentiation and survival by binding to TrkA, we examined the rate of apoptotic cell death elicited by NGF-withdrawal in native, v-Crk, and TrkA-expressing PC12 cells. While more than 50% of native PC12 cells underwent apoptosis within 48 h of NGF withdrawal, the v-Crk and TrkA-expressing cells were much more resistant to apoptosis under these conditions, whereby approximately 70 and 95%, respectively, of the cells were alive. The ability of v-Crk to delay apoptosis required prior NGF-dependent differentiation, since naive undifferentiated v-Crk expressing PC12 cells or cells that express v-Crk mutants that are defective in NGF signaling were not protected from apoptosis during growth factor withdrawal. Moreover, addition of 50 ng/ml EGF to serum and NGF deprived v-Crk expressing cells, which also causes neurite outgrowth, promoted complete and long-term survival, although such EGF replacement had no neurotrophic effect on wild-type PC12 cells or PC12 cells overexpressing Human Bcl-2. These experiments suggest that v-Crk potentiation of a receptor tyrosine kinase under conditions of growth factor deprivation is essential for preventing apoptosis. However, unlike native PC12 cells, neither v-Crk or TrkA-expressing PC12 cells exhibited a G1 arrest when incubated for 2 weeks in NGF. Thus, v-Crk and TrkA may protect NGF deprived PC12 by preventing cell cycle arrest and hence an aborted entry into a defective cell cycle. Moreover, during NGF-withdrawal, v-CrkPC12 cells exhibited down regulation in MAP kinase and JNK activities while in native cells, these activities increased within 6 - 8 h after NGF deprivation. Thus, unlike v-Crk-mediated augmentation of differentiation, sustained activation of MAP kinase may not be required for v-Crk-induced cell survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号