共查询到20条相似文献,搜索用时 0 毫秒
1.
Pironcheva G 《Cytobios》1998,95(380):167-171
Saccharomyces cerevisiae (ale strain) grown in batch culture to stationary phase was tested for its tolerance to heat (50 degrees C for 5 min), hydrogen peroxide (0.3 M) and salt (growth in 1.5 M sodium chloride/YPD medium). Yeast cells which have been exposed previously to heat shock are more tolerant to hydrogen peroxide and high salt concentrations (1.5 M NaCl) than the controls. Their fermentative activity as judged by glucose consumption and their viability, as judged by cell number and density have higher levels when compared with cells not previously exposed to heat shock. Experimental conditions facilitated the isolation of S. cerevisiae ale strain, which was tolerant to heat, and other agents such as hydrogen peroxide and sodium chloride. 相似文献
2.
Monoubiquitination is sufficient to signal internalization of the maltose transporter in Saccharomyces cerevisiae 下载免费PDF全文
Monoubiquitination of the 12-transmembrane segment (12-TMS) Saccharomyces cerevisiae maltose transporter promoted the maximal internalization rate of this protein. This modification is similar to that of the 7-TMS alpha-factor receptor but different from that of the 12-TMS uracil and general amino acid permeases. This result shows that binding of ubiquitin-Lys63 chains is not required for maximal internalization of all 12-TMS-containing proteins. 相似文献
3.
Kwolek-Mirek M Bednarska S Zadrąg-Tęcza R Bartosz G 《Cell biology international》2011,35(11):1111-1119
Ester precursors of fluorogenic or chromogenic probes are often employed in studies of yeast cell biology. This study was aimed at a comparison of the ability of several commonly used laboratory wild-type Saccharomyces cerevisiae strains to hydrolyse the following model esters: fluorescein diacetate, 2-naphthyl acetate, PNPA (p-nitrophenyl acetate) and AMQI (7-acetoxy-1-methylquinolinum iodide). In all the strains, the esterase activity was localized mainly to the cytosol. Considerable differences in esterase activity were observed between various wild-type laboratory yeast strains. The phase of growth also contributed to the variation in esterase activity of the yeast. This diversity implies the need for caution in using intracellularly hydrolysed probes for a comparison of yeast strains with various genetic backgrounds. 相似文献
4.
Y.ODA AND K. TONOMURA. 1996. The presence of any one of the five unlinked MAL loci ( MALI, MAL2, MAL3, MAL4 AND MAL6 ) confers the ability fo ferment maltose on the yeast Saccharomyces cerecvisiae . Each locus is composed of three genes encoding maltose permease, α-glucosididase and MAL activator. Chromosomal DNA of seven representative baking strains has been separated by pulse-field gel electrophoresis and probed with three gense in MAL6 locus. The DNA bands to which all of the three MAL derived probes simultaneously hybridized were chromosome VII carrying MAL1 in all of the strains tested, chromosome XI carrying MAL4 in six strains, chromosome III carrying mal2 in three strains and chromosomes II and VIII carrying MAL3 and MAL6 , respectively, in the one strain. The number of MAL loci in bakig strains was comparable to those of brewing strins. 相似文献
5.
Transport of succinate into Saccharomyces cerevisiae cells was determined using the endogenous coupled mitochondrial succinate oxidase system. The dependence of succinate oxidation rate on the substrate concentration was a curve with saturation. At neutral pH the K(m) value of the mitochondrial "succinate oxidase" was fivefold less than that of the cellular "succinate oxidase". O-Palmitoyl-L-malate, not penetrating across the plasma membrane, completely inhibited cell respiration in the presence of succinate but not glucose or pyruvate. The linear inhibition in Dixon plots indicates that the rate of succinate oxidation is limited by its transport across the plasmalemma. O-Palmitoyl-L-malate and L-malate were competitive inhibitors (the K(i) values were 6.6 +/- 1.3 microM and 17.5 +/- 1.1 mM, respectively). The rate of succinate transport was also competitively inhibited by the malonate derivative 2-undecyl malonate (K(i) = 7.8 +/- 1.2 microM) but not phosphate. Succinate transport across the plasma membrane of S. cerevisiae is not coupled with proton transport, but sodium ions are necessary. The plasma membrane of S. cerevisiae is established to have a carrier catalyzing the transport of dicarboxylates (succinate and possibly L-malate and malonate). 相似文献
6.
A variety of proteases have been implicated in yeast PCD (programmed cell death) including the metacaspase Mca1 and the separase Esp1, the HtrA-like serine protease Nma111, the cathepsin-like serine carboxypeptideases and a range of vacuolar proteases. Proteasomal activity is also shown to have an important role in determining cell fate, with both pro- and anti-apoptotic roles. Caspase 3-, 6- and 8-like activities are detected upon stimulation of yeast PCD, but not all of this activity is associated with Mca1, implicating other proteases with caspase-like activity in the yeast cell death response. Global proteolytic events that accompany PCD are discussed alongside a consideration of the conservation of the death-related degradome (both at the level of substrate choice and cleavage site). The importance of both gain-of-function changes in the degradome as well as loss-of-function changes are highlighted. Better understanding of both death-related proteases and their substrates may facilitate the design of future antifungal drugs or the manipulation of industrial yeasts for commercial exploitation. 相似文献
7.
MAL11 and MAL61 encode the inducible high-affinity maltose transporter of Saccharomyces cerevisiae. 总被引:5,自引:5,他引:5 下载免费PDF全文
We have investigated the transport of maltose in a genetically defined maltose-fermenting strain of Saccharomyces cerevisiae carrying the MAL1 locus. Two kinetically different systems were identified: a high-affinity transporter with a Km of 4 mM and a low-affinity transporter with a Km of 70 to 80 mM. The high-affinity maltose transporter is maltose inducible and is encoded by the MAL11 (and/or MAL61) gene of the MAL1 (and/or MAL6) locus. The low-affinity maltose transporter is expressed constitutively and is not related to MAL11 and/or MAL61. Both maltose transporters are subject to glucose-induced inactivation. 相似文献
8.
9.
Solute transport in Saccharomyces cerevisiae can be regulated through mechanisms such as trans-inhibition and/or catabolite inactivation by nitrogen or carbon sources. Studies in hybrid membranes of S. cerevisiae suggested that the maltose transport system Mal61p is fully reversible and capable of catalyzing both influx and efflux transport. This conclusion has now been confirmed by studies in a S. cerevisiae strain lacking the maltase enzyme. Whole cells of this strain, wherein the orientation of the maltose transporter is fully preserved, catalyze fully reversible maltose transport. Catabolite inactivation of the maltose transporter Mal61p was studied in the presence and absence of maltose metabolism and by the use of different glucose analogues. Catabolite inactivation of Mal61p could be triggered by maltose, provided the sugar was metabolized, and the rate of inactivation correlated with the rate of maltose influx. We also show that 2-deoxyglucose, unlike 6-deoxyglucose, can trigger catabolite inactivation of the maltose transporter. This suggests a role for early glycolytic intermediates in catabolite inactivation of the Mal61 protein. However, there was no correlation between intracellular glucose-6-phosphate or ATP levels and the rate of catabolite inactivation of Mal61p. On the basis of their identification in cell extracts, we speculate that (dideoxy)-trehalose and/or (deoxy)-trehalose-6-phosphate trigger catabolite inactivation of the maltose transporter. 相似文献
10.
11.
Meiosis in a temperature-sensitive DNA-synthesis mutant and in an apomictic yeast strain (Saccharomyces cerevisiae). 总被引:3,自引:0,他引:3
P B Moens M Mowat M S Esposito R E Esposito 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》1977,277(955):351-358
It is shown that in the temperature-sensitive yeast mutant (Saccharomyces cerevisiae) spo 11 at the restrictive temperature of 34 degrees C. (1) premeiotic DNA synthesis is nearly completely blocked; (2) the nucleus enters meiotic prophase indicated by the formation of axial cores and polysynaptonemal complexes; (3) the kinetic apparatus functions normally at meiosis I and II; (4) early spore formation occurs in nearly all cells but it is variable and all spores eventually degenerate. It is concluded that chromosome replication is not a prerequisite for the functions listed above. The apomictic yeast strain 4117 produces 2 diploid spores. It is shown that a diploid which produces 2-spored asci, synthesized from 4117, no. 5, and an adenine requiring strain (1) has a normal meiotic prophase with abundant synaptonemal complexes; (2) has only one meiotic spindle; (3) has spores which form red clones more frequently than normal or u.v.-treated vegetative cells form ade/ade red sectors through mitotic recombination. It is concluded that this apomictic yeast has maintained meiotic prophase, but that one of the two meiotic divisions is suppressed. 相似文献
12.
Characterization of an estrogen-binding protein in the yeast Saccharomyces cerevisiae 总被引:4,自引:0,他引:4
A Burshell P A Stathis Y Do S C Miller D Feldman 《The Journal of biological chemistry》1984,259(6):3450-3456
This paper further characterizes the estrogen-binding protein we have described in the cytosol of the yeast Saccharomyces cerevisiae. [3H]Estradiol was used as the radioprobe, and specific binding of cytosol fractions was measured by chromatography on Sephadex minicolumns. Other 3H-steroids did not exhibit specific binding. [3H]Estradiol binding was destroyed by treatment with trypsin, but not RNase, DNase, or phospholipase; N-ethylmaleimide substantially decreased the binding. The yeast did not metabolize estradiol added to the medium, and extraction and chromatography of the bound moiety showed it to be unmetabolized estradiol. Scatchard analysis of cytosol from both a and alpha mating types as well as the a/alpha diploid cell revealed similar binding properties: an apparent dissociation constant or Kd(25 degrees) for [3H]estradiol of 1.6-1.8 nM and a maximal binding capacity or Nmax of approximately 2000-2800 fmol/mg of cytosol protein. Gel exclusion chromatography on Sephacryl S-200 and high performance liquid chromatography suggested a Stokes radius of approximately 30 A. Sucrose gradient centrifugation showed a sedimentation coefficient of approximately 5 S, and the complex did not exhibit ionic dependent aggregation. The estrogen binder in S. cerevisiae differed in its steroidal specificities from classical mammalian estrogen receptors in rat uterus. 17 beta-Estradiol was the best competitor, 17 alpha-estradiol had about 5% the activity, and diethylstilbestrol exhibited negligible binding affinity as did tamoxifen, nafoxidine, and the zearalenones. In summary, a high affinity, stereospecific, steroid-selective binding protein has been demonstrated in the cytosol of the simple yeast S. cerevisiae. We speculate that this molecule may represent a primitive hormone receptor system, possibly for an estrogen-like message molecule. 相似文献
13.
Maltose transport and maltase activities were inactivated during sporulation of a MAL constitutive yeast strain harboring different MAL loci. Both activities were reduced to almost zero after 5 h of incubation in sporulation medium. The inactivation of maltase and maltose permease seems to be related to optimal sporulation conditions such as a suitable supply of oxygen and cell concentration in the sporulating cultures, and occurs in the fully derepressed conditions of incubation in the sporulation acetate medium. The inactivation of maltase and maltose permease under sporulation conditions in MAL constitutive strains suggests an alternative mechanism for the regulation of the MAL gene expression during the sporulation process. 相似文献
14.
Iron-reductases in the yeast Saccharomyces cerevisiae 总被引:2,自引:0,他引:2
Several NAD(P)H-dependent ferri-reductase activities were detected in sub-cellular extracts of the yeast Saccharomyces cerevisiae. Some were induced in cells grown under iron-deficient conditions. At least two cytosolic iron-reducing enzymes having different substrate specificities could contribute to iron assimilation in vivo. One enzyme was purified to homogeneity: it is a flavoprotein (FAD) of 40 kDa that uses NADPH as electron donor and Fe(III)-EDTA as artificial electron acceptor. Isolated mitochondria reduced a variety of ferric chelates, probably via an 'external' NADH dehydrogenase, but not the siderophore ferrioxamine B. A plasma membrane-bound ferri-reductase system functioning with NADPH as electron donor and FMN as prosthetic group was purified 100-fold from isolated plasma membranes. This system may be involved in the reductive uptake of iron in vivo. 相似文献
15.
E. Sandra McFarlane 《Archives of microbiology》1980,124(2-3):243-247
When cells of the yeast, Saccharomyces cerevisiae, were deprived of nitrogen, a condition leading to Gl arrest, there was an immediate increase in the levels of total ribonuclease (RNase) activity within these cells. During starvation, only the cells arrested in Gl showed increased RNase activity. Although the RNase activities of extracts of starved and actively growing cells were similarly influenced by pH, the activities of starved cells were less stable on both storage and heating. Differences were also noted in substrate specificity. The results of this study suggest that arrest within Gl may increase RNase activity. However, all RNases did not appear to be influenced equally, since the total pool of RNase activity from log phase and Gl arrested cells showed differences in stability and substrate specificity.Non-standard abbreviations YNB, MIN
liquid synthetic media (Johnston et al., 1977a)
- YNB-N
nitrogen-free medium
- MIN-S
sulfate-free medium
- TCA
trichloroacetic acid 相似文献
16.
It has been reported by several laboratories that maltose transport in Saccharomyces cerevisiae consists of two components with high- and low-affinity constants for maltose. We have investigated the characteristics of the low-affinity component and have found that it shows an abnormal behavior without similarity to any transport mechanism described in this organism. The results strongly indicate that this apparent transport activity is due not to a genuine transport process but to nonspecific binding of maltose to the cell wall and plasma membrane. 相似文献
17.
Nojima Y Kibayashi A Matsuzaki H Hatano T Fukui S 《The Journal of General and Applied Microbiology》1999,45(1):1-6
To establish the molecular bases for development of a microbiological system approaching excretive fermentation of useful lipids, a mutant strain that accumulates lipids in the medium was isolated from the laboratory yeast Saccharomyces cerevisiae. Following the mutagenesis to strain YP1, a long chain fatty acid utilizer with ethylmethane sulfonate, the mutant strain, STG1, was selected from about 80,000 colonies. The analysis of extracellular lipids and the monitoring of leakage of intracellular proteins indicated that strain STG1 secreted lipids containing triacylglycerols into the extracellular space without cell lysis. Genetic studies clarified that this mutation was recessive and was complemented by wild-type genomic DNA fragments. STG1 was considered to be a good tool for elucidation of the molecular mechanism for transmembrane lipid transport. 相似文献
18.
Separate compartments of the yeast cell possess their own exopolyphosphatases differing from each other in their properties and dependence on culture conditions. The low-molecular-mass exopolyphosphatases of the cytosol, cell envelope, and mitochondrial matrix are encoded by the PPX1 gene, while the high-molecular-mass exopolyphosphatase of the cytosol and those of the vacuoles, mitochondrial membranes, and nuclei are presumably encoded by their own genes. Based on recent works, a preliminary classification of the yeast exopolyphosphatases is proposed. 相似文献
19.
Syun-ichi Yamakawa Ryosuke Yamada Tsutomu Tanaka Chiaki Ogino Akihiko Kondo 《Applied microbiology and biotechnology》2010,87(1):109-115
We successfully demonstrated batch ethanol fermentation repeated ten times from raw starch with high ethanol productivity. We constructed a yeast diploid strain coexpressing the maltose transporter AGT1, α-amylase, and glucoamylase. The introduction of AGT1 allows maltose and maltotriose fermentation as well as the improvement of amylase activities. We also found that α-amylase activity during fermentation was retained by the addition of 10 mM calcium ion and that the highest α-amylase activity was 9.26 U/ml during repeated fermentation. The highest ethanol productivity was 2.22 g/l/h at the fourth batch, and after ten cycles, ethanol productivity of more than 1.43 g/l/h was retained, as was α-amylase activity at 6.43 U/ml. 相似文献
20.
Bourbouloux A Shahi P Chakladar A Delrot S Bachhawat AK 《The Journal of biological chemistry》2000,275(18):13259-13265
A high affinity glutathione transporter has been identified, cloned, and characterized from the yeast Saccharomyces cerevisiae. This transporter, Hgt1p, represents the first high affinity glutathione transporter to be described from any system so far. The strategy for the identification involved investigating candidate glutathione transporters from the yeast genome sequence project followed by genetic and physiological investigations. This approach revealed HGT1 (open reading frame YJL212c) as encoding a high affinity glutathione transporter. Yeast strains deleted in HGT1 did not show any detectable plasma membrane glutathione transport, and hgt1Delta disruptants were non-viable in a glutathione biosynthetic mutant (gsh1Delta) background. The glutathione repressible transport activity observed in wild type cells was also absent in the hgt1Delta strains. The transporter was cloned and kinetic studies indicated that Hgt1p had a high affinity for glutathione (K(m) = 54 micrometer)) and was not sensitive to competition by amino acids, dipeptides, or other tripeptides. Significant inhibition was observed, however, with oxidized glutathione and glutathione conjugates. The transporter reveals a novel class of transporters that has homologues in other yeasts and plants but with no apparent homologues in either Escherichia coli or in higher eukaryotes other than plants. 相似文献