首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Prostaglandin endoperoxide H synthases 1 and 2, also known as cyclooxygenases (COXs) 1 and 2, convert arachidonic acid (AA) to prostaglandin endoperoxide H(2). Prostaglandin endoperoxide H synthases are targets of nonspecific nonsteroidal anti-inflammatory drugs and COX-2-specific inhibitors called coxibs. PGHS-2 is a sequence homodimer. Each monomer has a peroxidase and a COX active site. We find that human PGHS-2 functions as a conformational heterodimer having a catalytic monomer (E(cat)) and an allosteric monomer (E(allo)). Heme binds tightly only to the peroxidase site of E(cat), whereas substrates, as well as certain inhibitors (e.g. celecoxib), bind the COX site of E(cat). E(cat) is regulated by E(allo) in a manner dependent on what ligand is bound to E(allo). Substrate and nonsubstrate fatty acids (FAs) and some COX inhibitors (e.g. naproxen) preferentially bind to the COX site of E(allo). AA can bind to E(cat) and E(allo), but the affinity of AA for E(allo) is 25 times that for E(cat). Palmitic acid, an efficacious stimulator of human PGHS-2, binds only E(allo) in palmitic acid/murine PGHS-2 co-crystals. Nonsubstrate FAs can potentiate or attenuate actions of COX inhibitors depending on the FA and whether the inhibitor binds E(cat) or E(allo). Our studies suggest that the concentration and composition of the free FA pool in the environment in which PGHS-2 functions in cells, the FA tone, is a key factor regulating PGHS-2 activity and its responses to COX inhibitors. We suggest that differences in FA tone occurring with different diets will likely affect both base-line prostanoid synthesis and responses to COX inhibitors.  相似文献   

2.
The type 3 deiodinase (D3) inactivates thyroid hormone action by catalyzing tissue-specific inner ring deiodination, predominantly during embryonic development. D3 has gained much attention as a player in the euthyroid sick syndrome, given its robust reactivation during injury and/or illness. Whereas much of the structure biology of the deiodinases is derived from studies with D2, a dimeric endoplasmic reticulum obligatory activating deiodinase, little is known about the holostructure of the plasma membrane resident D3, the deiodinase capable of thyroid hormone inactivation. Here we used fluorescence resonance energy transfer in live cells to demonstrate that D3 exists as homodimer. While D3 homodimerized in its native state, minor heterodimerization was also observed between D3:D1 and D3:D2 in intact cells, the significance of which remains elusive. Incubation with 0.5-1.2 m urea resulted in loss of D3 homodimerization as assessed by bioluminescence resonance energy transfer and a proportional loss of enzyme activity, to a maximum of approximately 50%. Protein modeling using a D2-based scaffold identified potential dimerization surfaces in the transmembrane and globular domains. Truncation of the transmembrane domain (DeltaD3) abrogated dimerization and deiodinase activity except when coexpressed with full-length catalytically inactive deiodinase, thus assembled as DeltaD3:D3 dimer; thus the D3 globular domain also exhibits dimerization surfaces. In conclusion, the inactivating deiodinase D3 exists as homo- or heterodimer in living intact cells, a feature that is critical for their catalytic activities.  相似文献   

3.
Glioma-derived growth factor I (GDGF-I) is structurally similar to a platelet-derived growth factor (PDGF) A chain homodimer, whereas PDGF purified from human platelets is a heterodimer of one A and one B chain. Binding experiments revealed that GDGF-I and PDGF bound to a common receptor on human fibroblasts, but also suggested the presence of a second receptor type recognizing only PDGF. In contrast to PDGF, GDGF-I had only a limited mitogenic activity, a low ability to stimulate receptor autophosphorylation and actin reorganization, and no chemotactic activity. GDGF-I did, however, cause transmodulation of EGF receptors, suggesting that it, like PDGF, activates protein kinase C in fibroblasts. These data indicate that different PDGF-like growth factors have different functional activities, which are possibly mediated via different receptors.  相似文献   

4.
Based on the fact that the amino acid sequence of sulfiredoxin (Srx), already known as a redox-dependent sulfinic acid reductase, showed a high sequence homology with that of ParB, a nuclease enzyme, we examined the nucleic acid binding and hydrolyzing activity of the recombinant Srx in Arabidopsis (AtSrx). We found that AtSrx functions as a nuclease enzyme that can use single-stranded and double-stranded DNAs as substrates. The nuclease activity was enhanced by divalent cations. Particularly, by point-mutating the active site of sulfinate reductase, Cys (72) to Ser (AtSrx-C72S), we demonstrate that the active site of the reductase function of AtSrx is not involved in its nuclease function.  相似文献   

5.
Although esterification of free cholesterol to cholesteryl ester in the liver is known to be catalyzed by the enzyme acyl-coenzyme A:cholesterol acyltransferase, ACAT, the neutral cholesteryl ester hydrolase (nCEH) that catalyzes the reverse reaction has remained elusive. Because cholesterol undergoes continuous cycling between free and esterified forms, the steady-state concentrations in the liver of the two species and their metabolic availability for pathways, such as lipoprotein assembly and bile acid synthesis, depend upon nCEH activity. On the basis of the general characteristics of the family of rat carboxylesterases, we hypothesized that one member, ES-4, was a promising candidate as a hepatic nCEH. Using under- and overexpression approaches, we provide multiple lines of evidence that establish ES-4 as a bona fide endogenous nCEH that can account for the majority of cholesteryl ester hydrolysis in transformed rat hepatic cells and primary rat hepatocytes.  相似文献   

6.
Cullins are members of a family of scaffold proteins that assemble multisubunit ubiquitin ligase complexes to confer substrate specificity for the ubiquitination pathway. Cullin3 (Cul3) forms a catalytically inactive BTB-Cul3-Rbx1 (BCR) ubiquitin ligase, which becomes functional upon covalent attachment of the ubiquitin homologue neural-precursor-cell-expressed and developmentally down regulated 8 (Nedd8) near the C terminus of Cul3. Current models suggest that Nedd8 activates cullin complexes by providing a recognition site for a ubiquitin-conjugating enzyme. Based on the following evidence, we propose that Nedd8 activates the BCR ubiquitin ligase by mediating the dimerization of Cul3. First, Cul3 is found as a neddylated heterodimer bound to a BTB domain-containing protein in vivo. Second, the formation of a Cul3 heterodimer is mediated by a Nedd8 molecule, which covalently attaches itself to one Cul3 molecule and binds to the winged-helix B domain at the C terminus of the second Cul3 molecule. Third, complementation experiments revealed that coexpression of two distinct nonfunctional Cul3 mutants can rescue the ubiquitin ligase function of the BCR complex. Likewise, a substrate of the BCR complex binds heterodimeric Cul3, suggesting that the Cul3 complex is active as a dimer. These findings not only provide insight into the architecture of the active BCR complex but also suggest assembly as a regulatory mechanism for activation of all cullin-based ubiquitin ligases.  相似文献   

7.
8.
9.
Peroxisomes function in beta-oxidation of very long and long-chain fatty acids, dicarboxylic fatty acids, bile acid intermediates, prostaglandins, leukotrienes, thromboxanes, pristanic acid, and xenobiotic carboxylic acids. These lipids are mainly chain-shortened for excretion as the carboxylic acids or transported to mitochondria for further metabolism. Several of these carboxylic acids are slowly oxidized and may therefore sequester coenzyme A (CoASH). To prevent CoASH sequestration and to facilitate excretion of chain-shortened carboxylic acids, acyl-CoA thioesterases, which catalyze the hydrolysis of acyl-CoAs to the free acid and CoASH, may play important roles. Here we have cloned and characterized a peroxisomal acyl-CoA thioesterase from mouse, named PTE-2 (peroxisomal acyl-CoA thioesterase 2). PTE-2 is ubiquitously expressed and induced at mRNA level by treatment with the peroxisome proliferator WY-14,643 and fasting. Induction seen by these treatments was dependent on the peroxisome proliferator-activated receptor alpha. Recombinant PTE-2 showed a broad chain length specificity with acyl-CoAs from short- and medium-, to long-chain acyl-CoAs, and other substrates including trihydroxycoprostanoyl-CoA, hydroxymethylglutaryl-CoA, and branched chain acyl-CoAs, all of which are present in peroxisomes. Highest activities were found with the CoA esters of primary bile acids choloyl-CoA and chenodeoxycholoyl-CoA as substrates. PTE-2 activity is inhibited by free CoASH, suggesting that intraperoxisomal free CoASH levels regulate the activity of this enzyme. The acyl-CoA specificity of recombinant PTE-2 closely resembles that of purified mouse liver peroxisomes, suggesting that PTE-2 is the major acyl-CoA thioesterase in peroxisomes. Addition of recombinant PTE-2 to incubations containing isolated mouse liver peroxisomes strongly inhibited bile acid-CoA:amino acid N-acyltransferase activity, suggesting that this thioesterase can interfere with CoASH-dependent pathways. We propose that PTE-2 functions as a key regulator of peroxisomal lipid metabolism.  相似文献   

10.
GEX1 is a plasma membrane protein that is conserved among plant species, and has previously been shown to be expressed in sperm cells and some sporophytic tissues. Here we show that GEX1 is also expressed in the embryo sac before cellularization, in the egg cell after cellularization, in the zygote/embryo immediately after fertilization and in the pollen vegetative cell. We functionally characterize GEX1 in Arabidopsis thaliana, and show that it is a versatile protein that performs functions during male and female gametophyte development, and during early embryogenesis. gex1-1/+ plants, which synthesize a truncated GEX1 mRNA encoding a protein lacking the predicted cytoplasmic domain, but still targeted to the plasma membrane, had embryos that arrested before the pre-globular stage. gex1-3/+ plants, carrying a null GEX1 allele, had defects during male and female gametophyte development, and during early embryogenesis. Using an antisense GEX1 transgenic line we demonstrate that the predicted GEX1 extracellular domain is sufficient and necessary for GEX1 function during the development of both gametophytes. The predicted cytoplasmic domain is necessary for correct early embryogenesis and mediates homodimer formation at the plasma membrane. We propose that dimerization of GEX1 in the zygote might be an upstream step in a signaling cascade regulating early embryogenesis.  相似文献   

11.
12.
Members of the ATP-binding cassette (ABC) transporters share the same basic architecture, with a four-core domain made of two transmembrane plus two nucleotide-binding domains. However, a supramolecular organization has been detected in some ABC transporters, which might be relevant to physiological regulation of substrate transport. Here, the oligomerization status of a bacterial half-ABC multidrug transporter, BmrA, was investigated. Each BmrA monomer containing a single cysteine residue introduced close to either the Walker A or the ABC signature motifs was labeled using two probes, 2-(4-maleimidoanilino)naphthalene-6-sulfonic acid (fluorescence donor) or 4-dimethylaminophenylazophenyl-4'-maleimide (fluorescence acceptor). Reconstitution into proteoliposomes of BmrA monomers labeled separately with either the fluorescence donor or the fluorescence acceptor allowed measurement of time-resolved fluorescence resonance energy transfer between the two probes, showing that efficient reassociation of the singly labeled BmrA monomers occurred upon reconstitution. The efficiency of energy transfer studied as a function of increasing concentration of BmrA-labeled with the fluorescence acceptor argues for a dimeric association of BmrA instead of a tetrameric one. Furthermore, the efficiency of energy transfer allowed estimation of the distances between the two bound probes. Results suggest that, in the resting state, BmrA in a lipid bilayer environment preferentially adopts a closed conformation similar to that found in the BtuCD crystal structure and that the presence of different effectors does not substantially modify its global conformation.  相似文献   

13.

Background and Aims

Rice (Oryza sativa) has the rare ability to germinate and elongate a coleoptile under oxygen-deficient conditions, which include both hypoxia and anoxia. It has previously been shown that ALCOHOL DEHYDROGENASE 1 (ADH1) is required for cell division and cell elongation in the coleoptile of submerged rice seedlings by means of studies using a rice ADH1-deficient mutant, reduced adh activity (rad). The aim of this study was to understand how low ADH1 in rice affects carbohydrate metabolism in the embryo and endosperm, and lactate and alanine synthesis in the embryo during germination and subsequent coleoptile growth in submerged seedlings.

Methods

Wild-type and rad mutant rice seeds were germinated and grown under complete submergence. At 1, 3, 5 and 7 d after imbibition, the embryo and endosperm were separated and several of their metabolites were measured and compared.

Key results

In the rad embryo, the rate of ethanol fermentation was halved, while lactate and alanine concentrations were 2·4- and 5·7- fold higher in the mutant than in the wild type. Glucose and fructose concentrations in the embryos increased with time in the wild type, but not in the rad mutant. The rad mutant endosperm had lower amounts of the α-amylases RAMY1A and RAMY3D, resulting in less starch degradation and lower glucose concentrations.

Conclusions

These results suggest that ADH1 is essential for sugar metabolism via glycolysis to ethanol fermentation in both the embryo and endosperm. In the endosperm, energy is presumably needed for synthesis of the amylases and for sucrose synthesis in the endosperm, as well as for sugar transport to the embryo.  相似文献   

14.
A mutant HpaII methyltransferase functions as a mutator enzyme.   总被引:4,自引:0,他引:4       下载免费PDF全文
DNA (cytosine-5)-methyltransferases can cause deamination of cytosine when the cofactor S-adenosylmethionine (AdoMet) is limiting and thus function as sequence-specific C-->U mutator enzymes. Here we explored whether mutations causing inactivation of the cofactor binding activity of the HpaII methyltransferase, thus mimicking conditions of limiting AdoMet concentration, could convert a DNA methyltransferase to a C-->U mutator enzyme. We created two mutator enzymes from the HpaII methyltransferase (F38S and G40D) which both showed enhanced cytosine deamination activities in vitro and in vivo. Interestingly, the G:U mispairs generated by these enzymes were not repaired completely in bacteria equipped with uracil-DNA glycosylase-initiated repair machinery, giving rise to a potent mutator phenotype. This is the first report showing the creation of mutator enzymes from a DNA methyltransferase and the demonstration of their mutagenicity in living cells.  相似文献   

15.
<正>Nitrogen(N)is one of the most important nutrients for plants.Its availability is a major limiting factor in crop productivity and yield.Since thegreen revolutionin the middle of the 20th century,the amount of N fertilizer used in agriculture has risen dramatically worldwide,resulting in a significant reduction of nitrogen use efficiency(NUE)and serious economic,environmental,and public health con-  相似文献   

16.
We have applied a recently developed HPLC-MS enzymatic assay to investigate the cryptic peptides generated by the action of the insulin-degrading enzyme (IDE) on some neuropeptides (NPs) involved in the development of tolerance and dependence to opioids. Particularly, the tested NPs are generated from the NPFF precursor (pro-NPFF (A)): NPFF (FLFQPQRF) and NPAF (AGEGLSSPFWSLAAPQRF). The results show that IDE is able to cleave NPFF and NPAF, generating specific cryptic peptides. As IDE is also responsible for the processing of many other peptides in the brain (amyloid beta protein among the others), we have also performed competitive degradation assays using mixtures of insulin and the above mentioned NPs. Data show that insulin is able to slow down the degradation of both NPs tested, whereas, surprisingly, NPAF is able to accelerate insulin degradation, hinting IDE as the possible link responsible of the mutual influence between insulin and NPs metabolism.  相似文献   

17.
18.
19.
Gene and SNP annotation are among the first and most important steps in analyzing a genome. As the number of sequenced genomes continues to grow, a key question is: how does the quality of the assembled sequence affect the annotations? We compared the gene and SNP annotations for two different Bos taurus genome assemblies built from the same data but with significant improvements in the later assembly. The same annotation software was used for annotating both sequences. While some annotation differences are expected even between high-quality assemblies such as these, we found that a staggering 40% of the genes (>9,500) varied significantly between assemblies, due in part to the availability of new gene evidence but primarily to genome mis-assembly events and local sequence variations. For instance, although the later assembly is generally superior, 660 protein coding genes in the earlier assembly are entirely missing from the later genome''s annotation, and approximately 3,600 (15%) of the genes have complex structural differences between the two assemblies. In addition, 12–20% of the predicted proteins in both assemblies have relatively large sequence differences when compared to their RefSeq models, and 6–15% of bovine dbSNP records are unrecoverable in the two assemblies. Our findings highlight the consequences of genome assembly quality on gene and SNP annotation and argue for continued improvements in any draft genome sequence. We also found that tracking a gene between different assemblies of the same genome is surprisingly difficult, due to the numerous changes, both small and large, that occur in some genes. As a side benefit, our analyses helped us identify many specific loci for improvement in the Bos taurus genome assembly.  相似文献   

20.
A monoclonal antibody (3A3) raised against a rat neural cell line (PC12) was shown previously to bind to the surfaces of these cells, inhibiting substratum adhesion. Immunochemical and other data indicated that the heterodimer recognized by 3A3 was a member of the integrin family of adhesive receptors and had a beta 1 subunit. The relationship of the alpha subunit to other integrins was unknown. Here we show that 3A3 recognizes in rat tissues a heterodimer (approximately 185 kDa, approximately 110 kDa; unreduced) that is electrophoretically and immunochemically indistinguishable from the antigen in PC12 cells. Immunoaffinity purification of the heterodimer from neonatal rats and protein microsequencing indicate that the alpha subunit is identical at 11 or 13 N-terminal residues with VLA-1, an integrin on human hematopoietic cells. Monoclonal antibody 3A3 inhibits the attachment of rat astrocytes to laminin or collagen but not to fibronectin or polylysine. These data suggest strongly that the integrin recognized by 3A3 is the rat homologue of VLA-1, i.e., alpha 1 beta 1, and that alpha 1 beta 1 is a dual laminin/collagen receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号