首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A class of mathematical models involving a convection-reaction partial differential equation (PDE) is introduced with reference to recovering human granulopoiesis after high dose chemotherapy with stem cell support. The stability properties of the model are addressed by means of numerical investigations and analysis. A simplified model with proliferation rate and mobilization rate independent of maturity shows that the model is stable as the maturation rate grows without bounds, but may go through stable and non-stable regimens as the maturation rate varies. It is also shown that the system is stable when parameters are chosen to approximate a real physiological situation. System characteristics do not change profoundly by introduction of a maturity-dependent proliferation and mobilization rate, as is necessary to make the model operate more in accordance with hematological observations. However, by changing the system mitotic responsiveness with respect to changes in cytokine level, the system is still stable but may show persistent oscillations much resembling clinical observations of cyclic neutropenia. Furthermore, in these cases, changes in the model feedback signal caused by, for instance, an impaired effective cytokine elimination by cell receptors may enforce these oscillations markedly.  相似文献   

2.
The objective of this study was the preliminary characterization of the factors from mitotic HeLa cells that can induce meiotic maturation in Xenopus laevis oocytes. We found that this factor is a heat-labile, Ca2+-sensitive, nondialyzable protein with a sedimentation value of 4-5S. Furthermore, no new protein synthesis was found to be required for this mitotic factor to induce maturation in the amphibian oocytes. These data suggest that the factors involved in the breakdown of nuclear membrane and the condensation of chromosomes that are associated with three different phenomena, mitosis, meiosis, and premature chromosome condensation, are very similar in different animal species.  相似文献   

3.
The Golgi apparatus is an intracellular compartment necessary for post-translational modification, sorting and transport of proteins. It plays a key role in mitotic entry through the Golgi mitotic checkpoint. In order to identify new proteins involved in the Golgi mitotic checkpoint, we combine the results of a knockdown screen for mitotic phenotypes and a localization screen. Using this approach, we identify a new Golgi protein C11ORF24 (NP_071733.1). We show that C11ORF24 has a signal peptide at the N-terminus and a transmembrane domain in the C-terminal region. C11ORF24 is localized on the Golgi apparatus and on the trans-Golgi network. A large part of the protein is present in the lumen of the Golgi apparatus whereas only a short tail extends into the cytosol. This cytosolic tail is well conserved in evolution. By FRAP experiments we show that the dynamics of C11ORF24 in the Golgi membrane are coherent with the presence of a transmembrane domain in the protein. C11ORF24 is not only present on the Golgi apparatus but also cycles to the plasma membrane via endosomes in a pH sensitive manner. Moreover, via video-microscopy studies we show that C11ORF24 is found on transport intermediates and is colocalized with the small GTPase RAB6, a GTPase involved in anterograde transport from the Golgi to the plasma membrane. Knocking down C11ORF24 does not lead to a mitotic phenotype or an intracellular transport defect in our hands. All together, these data suggest that C11ORF24 is present on the Golgi apparatus, transported to the plasma membrane and cycles back through the endosomes by way of RAB6 positive carriers.  相似文献   

4.
Steady state human granulopoiesis was modeled by a convection-reaction differential equation of the Rubinow type for the bone marrow granulocyte precursors and an ordinary differential equation for the blood granulocytes. Measured values reported from several laboratories were used as sources for the model proliferation, maturation, and mobilization rates. Due to the large variability in the measured input data, four alternative models were constructed initially, each one with a specific combination of proliferation rate and maturation rate. They were all able to produce output values for the bone marrow neutrophil count and turnover rate close to accepted data, but neither of them could reproduce good values for the differential fractions of the neutrophil precursor stages. The model output was especially sensitive to changes in transit time in the mitotic relative to the postmitotic precursor compartments. When the net proliferation rate was modeled to optimize the bone marrow differential fractions according to published data, the total bone marrow neutrophil count would not fit with published data. However, a composite model optimizing differential fractions, bone marrow neutrophil count, and turnover rate yielded plausible output values and a reduced proliferation rate in the myelocyte stage. This result opens for a possibly substantial apoptosis rate at the myelocyte stage in accordance with results from earlier investigators. However, the result was based on a special choice of precursor transit times, taken from the literature. More precise data concerning granulocyte precursor cycle times, transit times, and differential fractions would radically improve the model's ability to clarify the role of apoptosis during granulocyte production and storage.  相似文献   

5.
A male gametophyte-specific monosaccharide transporter in Arabidopsis   总被引:9,自引:0,他引:9  
The AtSTP2 gene (sugar transport protein 2) of Arabidopsis thaliana encodes a high affinity, low specificity monosaccharide carrier that can transport a number of hexoses and pentoses at similar rates. AtSTP2 has 12 putative transmembrane helices and a molecular mass of 55.0 kDa. AtSTP2 expression was localized in AtSTP2 promoter-beta-glucuronidase (GUS) Arabidopsis plants showing AtSTP2-driven GUS activity during pollen maturation and also in germinating pollen. Immunohistochemical studies with anti-AtSTP2 antiserum as well as RNA in situ hybridization analyses modified these results and showed that AtSTP2 expression is confined to the early stages of gametophyte development. Both AtSTP2 mRNA and AtSTP2 protein are first seen at the time of beginning callose degradation and microspore release from the tetrades. AtSTP2 mRNA and AtSTP2 protein are no longer detected after the mitotic divisions and the formation of the trinucleate gametophyte. No AtSTP2 mRNA or AtSTP2 protein is seen in fully developed or germinating pollen. The putative role of AtSTP2 in the uptake of glucose units resulting from callose degradation during pollen maturation is discussed.  相似文献   

6.
Membrane traffic has been shown to be regulated during cell division. In particular, with the use of viral membrane proteins as markers, endoplasmic reticulum (ER)-to-Golgi transport in mitotic cells has been shown to be essentially blocked. However, the effect of mitosis on other steps in the secretory pathway is less clear, because an early block makes examination of following steps difficult. Here, we report studies on the functional characteristics of secretory pathways in mitotic mammalian tissue culture cells by the use of a variety of markers. Chinese hamster ovary cells were transfected with cDNAs encoding secretory proteins. Consistent with earlier results following viral membrane proteins, we found that the overall secretory pathway is nonfunctional in mitotic cells, and a major block to secretion is at the step between ER and Golgi: the overall rate of secretion of human growth hormone is reduced at least 10-fold in mitotic cells, and export of truncated vesicular stomatitis virus G protein from the ER is inhibited to about the same extent, as judged by acquisition of endoglycosidase H resistance. To ascertain the integrity of transport from the trans-Golgi to plasma membrane, we followed the secretion of sulfated glycosaminoglycan (GAG) chains, which are synthesized in the Golgi and thus are not subject to the earlier ER-to-Golgi block. GAG chains are valid markers for the pathway taken by constitutive secretory proteins; both protein secretion and GAG chain secretion are sensitive to treatment with n-ethyl-maleimide and monensin and are blocked at 19 degrees C. We found that the extent of GAG-chain secretion is not altered during mitosis, although the initial rate of secretion is reduced about twofold in mitotic compared with interphase cells. Thus, during mitosis, transport from the trans-Golgi to plasma membrane is much less hindered than ER-to-Golgi traffic. We conclude that transport steps are not affected to the same extent during mitosis.  相似文献   

7.
Summary An equation expressing the specific growth rate of heterotrophic cell populations in terms of yield factor and transport rate is proposed. From this equation expressions are derived for the specific growth rate when the transport of the energy source is growth0limiting. These expressions are applied to cell population growth in the chemostat limited by the transport of the energy source or of other substrates and simple mathematical tools are provided for obtaining estimates of the transport parameters. An equation is derived which predicts that at constant dilution rate in the chemostat the concentration of any substrate (whether or not the source of energy) the transport of which is growth limiting, is a linear function of the concentration of a competitive inhibitor of its transport. With this equation estimates of the Michaelis constants of competitive transport inhibitors can be obtained. The growth rate equation of Monod (1942) is discussed.  相似文献   

8.
During mitosis, the ribbon of the Golgi apparatus is transformed into dispersed tubulo-vesicular membranes, proposed to facilitate stochastic inheritance of this low copy number organelle at cytokinesis. Here, we have analyzed the mitotic disassembly of the Golgi apparatus in living cells and provide evidence that inheritance is accomplished through an ordered partitioning mechanism. Using a Sar1p dominant inhibitor of cargo exit from the endoplasmic reticulum (ER), we found that the disassembly of the Golgi observed during mitosis or microtubule disruption did not appear to involve retrograde transport of Golgi residents to the ER and subsequent reorganization of Golgi membrane fragments at ER exit sites, as has been suggested. Instead, direct visualization of a green fluorescent protein (GFP)-tagged Golgi resident through mitosis showed that the Golgi ribbon slowly reorganized into 1–3-μm fragments during G2/early prophase. A second stage of fragmentation occurred coincident with nuclear envelope breakdown and was accompanied by the bulk of mitotic Golgi redistribution. By metaphase, mitotic Golgi dynamics appeared to cease. Surprisingly, the disassembly of mitotic Golgi fragments was not a random event, but involved the reorganization of mitotic Golgi by microtubules, suggesting that analogous to chromosomes, the Golgi apparatus uses the mitotic spindle to ensure more accurate partitioning during cytokinesis.  相似文献   

9.
The aim of this confocal microscopy study was to determine whether the pattern of CellTracker Green 5-chloromethylfluorescein diacetate (CMFDA) staining changes during meiotic maturation and fertilization in vitro of mouse oocytes. At different times during meiotic maturation and fertilization, oocytes, zygotes and two-cell embryos were stained with CMFDA to demonstrate intracellular glutathione S-transferase activity. After washing in CMFDA-free medium, most oocytes, zygotes and embryos were stained with dihydroethidium (HE) to visualize DNA structures. Meiotic maturation and fertilization in vitro of mouse oocytes were associated with changes in the pattern of intracellular CMFDA staining. In particular, accumulations of CMFDA-positive membranes were observed around the nucleus of germinal vesicle (GV) oocytes, overlaying the sperm nucleus as well as overlaying the first mitotic spindle if this approached the plasma membrane. Staining of oocytes and zygotes with the probes 3,3'-dihexyloxacarbocyanine iodine [DiOC6(3)], which stains all the intracellular membranes, and rhodamine 123, which stains active mitochondria, demonstrated that the intracellular structures evidenced by CMFDA staining did not correspond to accumulations of mitochondria. Exposure of oocytes and zygotes to the microtubule-disrupting agent nocodazole or the actin-depolymerizing drug cytochalasin D revealed an autonomous microfilament-dependent transport and relocation of CMFDA-positive membranes during meiotic maturation and fertilization. Such a transport of CMFDA-positive membranes may be envisaged as a protective shield built to prevent damage to DNA from endogenous and exogenous mutagen metabolites.  相似文献   

10.
The bacterium Azospirillum brasilense has been frequently studied in laboratory experiments. It performs movements in space where long forward and backward runs on a straight line occur simultaneously with slow changes of direction of the line. A model is presented in which a correlated random walk on a line is joined to diffusion on a sphere of directions. For this transport system, a hierarchy of moment approximations is derived, ranging from a hyperbolic system with four dependent variables to a scalar damped wave equation (telegraph equation) and then to a single diffusion equation for particle density. The original parameters are compounded in the diffusion quotient. The effects of these parameters, such as particle speed or turning rate, on the diffusion coefficient are discussed in detail.  相似文献   

11.
The cellular mechanisms used to generate sufficient microtubule polymer mass to drive the assembly and function of the mitotic spindle remain a matter of great interest. As the primary microtubule nucleating structures in somatic animal cells, centrosomes have been assumed to figure prominently in spindle assembly. At the onset of mitosis, centrosomes undergo a dramatic increase in size and microtubule nucleating capacity, termed maturation, which is likely a key event in mitotic spindle formation. Interestingly, however, spindles can still form in the absence of centrosomes calling into question the specific mitotic role of these organelles. Recent work has shown that the human centrosomal protein, Cep192, is required for both centrosome maturation and spindle assembly thus providing a molecular link between these two processes. In this article, we propose that Cep192 does so by forming a scaffolding on which proteins involved in microtubule nucleation are sequestered and become active in mitotic cells. Normally, this activity is largely confined to centrosomes but in their absence continues to function but is dispersed to other sites within the cell.  相似文献   

12.
The widely used steady‐state model of Farquhar et al. (Planta 149: 78–90, 1980) for C3 photosynthesis was developed on the basis of linear whole‐chain (non‐cyclic) electron transport. In this model, calculation of the RuBP‐regeneration limited CO2‐assimilation rate depends on whether it is insufficient ATP or NADPH that causes electron transport limitation. A new, generalized equation that allows co‐limitation of NADPH and ATP on electron transport is presented herein. The model is based on the assumption that other thylakoid pathways (the Q‐cycle, cyclic photophosphorylation, and pseudocyclic electron transport) interplay with the linear chain to co‐contribute to a balanced production of NADPH and ATP as required by stromal metabolism. The original model assuming linear electron transport limited either by NADPH or by ATP, predicts quantum yields for CO2 uptake that represent the highest and the lowest values, respectively, of the range given by the new equation. The applicability of the new equation is illustrated for a number of C3 crop species, by curve fitting to gas exchange data in the literature. In comparison with the original model, the new model enables analysis of photosynthetic regulation via the electron transport pathways in response to environmental stresses.  相似文献   

13.
Interaction of chromatin-associated Plk1 and Mcm7   总被引:3,自引:0,他引:3  
Plk1 is a multifunctional protein kinase involved in regulation of mitotic entry, chromosome segregation, centrosome maturation, and mitotic exit. Plk1 is a target of DNA damage checkpoints and aids resumption of the cell cycle during recovery from G2 arrest. The polo-box domain (PBD) of Plk1 interacts with phosphoproteins and localizes Plk1 to some mitotic structures. In a search for proteins that interact with the PBD of Plk1, we identified two of the minichromosome maintenance (MCM) proteins, Mcm2 and Mcm7. Co-immunoprecipitation and immunoblot analysis showed an interaction between full-length Plk1 and all other members of the MCM2-7 protein complex. Endogenous Plk1 co-immunoprecipitates with basal forms of Mcm7 as well as with slower migrating forms of Mcm7, induced in response to DNA damage. The strongest interaction between endogenous Plk1 and Mcm7 was detected in a soluble chromatin fraction. These findings suggest a new function for Plk1 in coordination of DNA replication and mitotic events.  相似文献   

14.
Gut thoughts on the Golgi complex   总被引:3,自引:1,他引:2  
The new millennium coincides within 1 year of Camillo Golgi's centennial celebrations. It is quite remarkable that the structure and formation of this organelle is as controversial today as was its mere existence from Golgi's time to the 1950s, when EM approaches were introduced. Since the late 1950s, two opposing models of Golgi structure and function have split the Golgi scientific community, namely vesicular transport versus organelle maturation. Although a few years ago Golgi maturation seemed to be 'out for the count', it has recently seen an almost messianic revival. In this review, I argue that this large-scale desertion from the vesicle transport model to the maturation camp is premature. I propose an alternative, dynamic steady-state model, in which transient tubular connections function in parallel to vesicular transport and that the biosynthetic pathway is made up of three major distinct compartments: the ER, the Golgi and the TGN.  相似文献   

15.
The work has been performed on 62 CBA mice. In the ventricular zone and in the external granular layer of the cerebellar anlage of embryos (13-17 days of the intrauterine development) mitotic index, labelled nuclei index, part of labelled mitoses have been counted. Parameters of the mitotic cycle of the matrix cells have been calculated by means of the graphic method. The proliferative pool value has been calculated. At malnutrition the cerebellar anlage structure retards in its maturation from the norm. For the matrix zones of the cerebellar anlage, higher indices of the proliferative activity are specific. At the same time, duration of the mitotic cycle of the matrix cells increases by 15-17%. It is possible, that retardation of histogenesis of the mouse cerebellar anlage, when developing under conditions of alimentary insufficiency depends on decreased rate of cell proliferation, as a result of prolonged mitotic cycle of the matrix cells.  相似文献   

16.
A mathematical model for cell kinetics, based on a random walk, is developed. the model allows variations with time of the rates of passage of proliferating cells through the four phases of the mitotic cycle. Circadian variations in the mitotic and labelling indices of the Syrian hamster cheek pouch epithelium have previously been observed, and the random walk model has been used to simulate this phenomenon. Assuming that all basal cells are proliferative and that these cells leave the basal layer randomly throughout the mitotic cycle to become differentiated cells, it was found that the experimentally observed circadian rhythms of the mitotic and labelling indices could be reproduced in the model by postulating a circadian rhythm in the rate of passage of cells through the G1 and S phases only. Moreover, the growth activity of cells in both the G1 and S phases appears to reach a peak during the dark hours of the light-dark cycle, and to fall off rapidly in the early hours of daylight. the postulate of Møller, Larsen & Faber (1974) that injection of the animals with tritiated thymidine causes a shortening of the G2 phase duration has been qualitatively confirmed by using the random walk model to simulate the FLM and MI curves after injection with tritiated thymidine.  相似文献   

17.
NDEL1 is a binding partner of LIS1 that participates in the regulation of cytoplasmic dynein function and microtubule organization during mitotic cell division and neuronal migration. NDEL1 preferentially localizes to the centrosome and is a likely target for cell cycle-activated kinases, including CDK1. In particular, NDEL1 phosphorylation by CDK1 facilitates katanin p60 recruitment to the centrosome and triggers microtubule remodeling. Here, we show that Aurora-A phosphorylates NDEL1 at Ser251 at the beginning of mitotic entry. Interestingly, NDEL1 phosphorylated by Aurora-A was rapidly downregulated thereafter by ubiquitination-mediated protein degradation. In addition, NDEL1 is required for centrosome targeting of TACC3 through the interaction with TACC3. The expression of Aurora-A phosphorylation-mimetic mutants of NDEL1 efficiently rescued the defects of centrosomal maturation and separation which are characteristic of Aurora-A-depleted cells. Our findings suggest that Aurora-A-mediated phosphorylation of NDEL1 is essential for centrosomal separation and centrosomal maturation and for mitotic entry.  相似文献   

18.
Aurora A kinase localizes to centrosomes and is required for centrosome maturation and spindle assembly. Here we describe a microtubule-independent role for Aurora A and centrosomes in nuclear envelope breakdown (NEBD) during the first mitotic division of the C. elegans embryo. Aurora A depletion does not alter the onset or kinetics of chromosome condensation, but dramatically lengthens the interval between the completion of condensation and NEBD. Inhibiting centrosome assembly by other means also lengthens this interval, albeit to a lesser extent than Aurora A depletion. By contrast, centrosomally nucleated microtubules and the nuclear envelope-associated motor dynein are not required for timely NEBD. These results indicate that mitotic centrosomes generate a diffusible factor, which we propose is activated Aurora A, that promotes NEBD. A positive feedback loop, in which an Aurora A-dependent increase in centrosome size promotes Aurora A activation, may temporally couple centrosome maturation to NEBD during mitotic entry.  相似文献   

19.
Summary The frequency of mitotic chiasmata is compared in endoreduplicated and non-endoreduplicated Bloom's syndrome fibroblasts and in endoreduplicated Fanconi's anemia lymphocytes. The incidence of mitotic chiasmata in BS diplochromosomes is greatly increased over that in diploid BS cells and is much higher than in FA or normal diplochromosomes. The distribution of chiasmata among the BS diplochromosomes is not significantly different from that expected if crossing-over occurs at random along the chromosomes. This is in contrast to the distribution of chiasmata in chromosomes of diploid BS cells which is highly non-random among chromosomes and chromosome regions (Kuhn 1976). Mitotic crossing-over is increased in endoreduplicated cells from all sources compared to diploid cells, but the incidence is highest in endoreduplicated BS cells. This provides evidence against the idea that the high rate of mitotic crossing-over in diploid BS lymphocytes is primarily due to an increase in chromosome pairing. BS chromosomes apparently have a greater tendency to undergo mitotic exchange than normal or FA cells, both in diplo-chromosomes and in accidentally paired homologous segments in diploid cells.  相似文献   

20.
Aurora-A is a serine/threonine protein kinase that plays a role in cell-cycle regulation. The activity of this kinase has been shown to be required for regulating multiple stages of mitotic progression in somatic cells. In this study, the changes in aurora-;A expression were revealed in mouse oocytes using Western blotting. The subcellular localization of aurora-A during oocyte meiotic maturation, fertilization, and early cleavages as well as after antibody microinjection or microtubule assembly perturbance was studied with confocal microscopy. The quantity of aurora-A protein was high in the germinal vesicle (GV) and metaphase II (MII) oocytes and remained stable during other meiotic maturation stages. Aurora-A concentrated in the GV before meiosis resumption, in the pronuclei of fertilized eggs, and in the nuclei of early embryo blastomeres. Aurora-A was localized to the spindle poles of the meiotic spindle from the metaphase I (MI) stage to metaphase II stage. During early embryo development, aurora-A was found in association with the mitotic spindle poles. Aurora-A was not found in the spindle region when colchicine or staurosporine was used to inhibit microtubule organization, while it accumulated as several dots in the cytoplasm after taxol treatment. Aurora-A antibody microinjection decreased the rate of germinal vesicle breakdown (GVBD) and distorted MI spindle organization. Our results indicate that aurora-A is a critical regulator of cell-cycle progression and microtubule organization during mouse oocyte meiotic maturation, fertilization, and early embryo cleavage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号