首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  1. Succinate dehydrogenase is inhibited by citrate and β-hydroxybutyrate in a complex manner, both in mitochondria and submitochondrial particles. Kinetics of inhibition in the particles points to a competitive component in the mechanism involved.
  2. Pyruvate, α-ketoglutarate, malate, and glutamate stimulate oxidation of succinate by mitochondria.
  3. Stimulation by α-ketoglutarate and glutamate is not influenced by the presence of rotenone.
  4. Stimulation by pyruvate is higher in the absence of rotenone and increases significantly in the presence of K+ and valinomycin. Pyruvate supplies in mitochondria reducing equivalents for malate dehydrogenase operating in the reverse direction-reduction of oxaloacetate to malate.
  5. Stimulation by malate is higher in the presence of rotenone.
  相似文献   

2.
The effect of the introduction of a synthetic bypass, providing 2-ketoglutarate to succinate conversion via the intermediate succinate semialdehyde formation, on aerobic biosynthesis of succinic acid from glucose through the oxidative branch of the tricarboxylic acid cycle in recombinant Escherichia coli strains has been studied. The strain lacking the key pathways of acetic, lactic acid and ethanol formation from pyruvate and acetyl-CoA and possessing modified system of glucose transport and phosphorylation was used as a chassis for the construction of the target recombinants. The operation of the glyoxylate shunt in the strains was precluded resulting from the deletion of the aceA, aceB, and glcB genes encoding isocitrate lyase and malate synthases A and G. The constitutive activity of isocitrate dehydrogenase was ensured due to deletion of isocitrate dehydrogenase kinase/phosphatase gene, aceK. Upon further inactivation of succinate dehydrogenase, the corresponding strain synthesized succinic acid from glucose with a molar yield of 24.9%. Activation of the synthetic bypass by the induced expression of Mycobacterium tuberculosis 2-ketoglutarate decarboxylase gene notably increased the yield of succinic acid. Functional activity of the synthetic bypass in the strain with the inactivated glyoxylate shunt and opened tricarboxylic acid cycle led to 2.7-fold increase in succinate yield from glucose. As the result, the substrate to the target product conversion reached 67.2%. The respective approach could be useful for the construction of the efficient microbial succinic acid producers.  相似文献   

3.
  1. With fumarate as the terminal electron acceptor and either H2 or formate as donor, Vibrio succinogenes could grow anaerobically in a mineral medium using fumarate as the sole carbon source. Both the growth rate and the cell yield were increased when glutamate was also present in the medium.
  2. Glutamate was incorporated only into the amino acids of the glutamate family (glutamate, glutamine, proline and arginine) of the protein. The residual cell constituents were synthesized from fumarate.
  3. Pyruvate and phosphoenolpyruvate, as the central intermediates of most of the cell constituents, were formed through the action of malic enzyme and phosphoenolpyruvate synthetase. Fructose-1,6-bisphosphate aldolase was present in the bacterium suggesting that this enzyme is involved in carbohydrate synthesis.
  4. In the absence of added glutamate the amino acids of the glutamate family were synthesized from fumarate via citrate. The enzymes involved in glutamate synthesis were present.
  5. During growth in the presence of glutamate, net reducing equivalents were needed for cell synthesis. Glutamate and not H2 or formate was used as the source of these reducing equivalents. For this purpose part of the glutamate was oxidized to yield succinate and CO2.
  6. The α-ketoglutarate dehydrogenase involved in this reaction was found to use ferredoxin as the electron acceptor. The ferredoxin of the bacterium was reoxidized by means of a NADP-ferredoxin oxidoreductase. Enzymes catalyzing the reduction of NAD, NADP or ferredoxin by H2 or formate were not detected in the bacterium.
  相似文献   

4.
  1. The main pathway of the anaerobic metabolism of l-malate in Saccharomyces bailii is catalyzed by a l-malic enzyme.
  2. The enzyme was purified more than 300-fold. During the purification procedure fumarase and pyruvate decarboxylase were removed completely, and malate dehydrogenase and oxalacetate decarboxylase were removed to a very large extent.
  3. Manganese ions are not required for the reaction of malic enzyme of Saccharomyces bailii, but the activity of the enzyme is increased by manganese.
  4. The reaction of l-malic enzyme proceeds with the coenzymes NAD and (to a lesser extent) NADP.
  5. The K m-values of the malic enzyme of Saccharomyces bailii were 10 mM for l-malate and 0.1 mM for NAD.
  6. A model based on the activity and substrate affinity of malic enzyme, the intracellular concentration of malate and phosphate, and its action on fumarase, is proposed to explain the complete anaerobic degradation of malate in Saccharomyces bailii as compared with the partial decomposition of malate in Saccharomyces cerevisiae.
  相似文献   

5.
  • 1.1. Role of NADP-glutamate dehydrogenase in the depletion of citrate was analyzed using permeabilized yeast cells.
  • 2.2. Citrate was converted to 2-oxoglutarate, which was then metabolized to glutamate by NADP-glutamate dehydrogenase in the presence of ammonium ion.
  • 3.3. Formation of 2-oxoglutarate plus glutamate was in good agreement with the concentration of citrate decreased. Glutamate formation can be a good indicator of the depletion of citrate, because 70% of the citrate decreased was converted to glutamate.
  • 4.4. Glycolytic activity was closely correlated with the decrease in citrate under the in situ conditions.
  • 5.5. NADP-glutamate dehydrogenase increased in anaerobically grown yeast cells.
  • 6.6. An effective depletion of citrate by increased synthesis of NADP-glutamate dehydrogenase can explain the lowered mechanism of citrate causing glycolytic stimulation under the anaerobic growth conditions of yeast.
  相似文献   

6.
  • 1.1. Treatment of isolated rat liver mitochondria with methyl methacrylate (MM) produced membrane disruption as evidenced by the release of citrate synthase, and changes in the ultrastructure of mitochondria.
  • 2.2. At concentration 0.1%, MM uncoupled oxidative phosphorylation as evidenced by stimulation of state 4 respiration supported either by pyruvate plus malate or succinate (+rotenone) and ATP-ase activity in intact mitochondria.
  • 3.3. At concentration 1% MM stimulated ATP-ase activity in intact mitochondria and succinate (+rotenone) oxidation at state 4 and was without effect on this substrate oxidation at state 3.
  • 4.4. MM inhibited pyruvate plus malate oxidation either at state 3 or in the presence of uncoupling agents.
  • 5.5. MM inhibited the NADH oxidase of electron transport particles at a concentration which failed to inhibit either succinic oxidase or the NADH-ferricyanide reductase activity.
  • 6.6. The data presented suggest that in the isolated mitochondria MM inhibits NADH oxidation in the vicinity of the rotenone sensitive site of complex I.
  • 7.7. The general conclusion is that MM may block an electron transport and to uncouple oxidative phosphorylation in rat liver mitochondria. The overall in vitro effect would be to prevent ATP synthesis which could result in cell death under in vivo conditions.
  相似文献   

7.
  1. The dye-linked methanol dehydrogenase from Paracoccus denitrificans grown aerobically on methanol has been purified and its properties compared with similar enzymes from other bacteria. It was shown to be specific and to have high affinity for primary alcohols and formaldehyde as substrate, ammonia was the best activator and the enzyme could be linked to reduction of phenazine methosulphate.
  2. Paracoccus denitrificans could be grown anaerobically on methanol, using nitrate or nitrite as electron acceptor. The methanol dehydrogenase synthesized under these conditions could not be differentiated from the aerobically-synthesized enzyme.
  3. Activities of methanol dehydrogenase, formaldehyde dehydrogenase, formate dehydrogenase, nitrate reductase and nitrite reductase were measured under aerobic and anaerobic growth conditions.
  4. Difference spectra of reduced and oxidized cytochromes in membrane and supernatant fractions of methanol-grown P. denitrificans were measured.
  5. From the results of the spectral and enzymatic analyses it has been suggested that anaerobic growth on methanol/nitrate is made possible by reduction of nitrate to nitrite using electrons derived from the pyridine nucleotide-linked dehydrogenations of formaldehyde and formate, the nitrite so produced then functioning as electron acceptor for methanol dehydrogenase via cytochrome c and nitrite reductase.
  相似文献   

8.
  • 1.1. The photoregulation shown by glyceraldehyde 3-phosphate dehydrogenase and glucose 6-phosphate dehydrogenase appears to be independent of the mad gene product(s) and also independent of carotene biosynthesis regulation.
  • 2.2. The photoregulation of malate dehydrogenase appeared to be dependent on the mutation of the mad and car S genes.
  • 3.3. Pyruvate kinase and lactate dehydrogenase may be classified as light-independent.
  • 4.4. The action of ATP and fructose 1,6-bisphosphate on the enzymes studied was generally independent of light/dark grown conditions.
  • 5.5. However, the effect of fructose 1,6-bisphosphate on Phycomyces pyruvate kinase appears to be light-dependent.
  相似文献   

9.
  • 1.1. Halobacterium halobium has two chromatographically distinct forms of glutamate dehydrogenase which differ in their thermolability and other properties. One glutamate dehydrogenase utilizes NAD, the other NADP as a coenzyme.
  • 2.2. The NADP-specific glutamate dehydrogenase (EC 1.4.1.4) was purified 65-fold from crude extracts of H. halobium.
  • 3.3. The Michaelis constants for 2-oxoglutarate (13.3 mM), ammonium (3.1 mM) and NADPH (0.077 mM) indicate that the enzyme catalyzes in vivo the formation of glutamate from ammonium and 2-oxoglutarate.
  • 4.4. The amination of 2-oxoglutarate by NADP-specific glutamate dehydrogenase is optimal at the pH value of 8.0–8.5. The optimal NaCl or KCl concentration for the reaction is 1.6 M.
  • 5.5. None of the several metabolites tested for a possible role in the regulation of glutamate dehydrogenase activity appeared to exert an appreciable influence on the enzyme.
  • 6.6. NAD- and NADP-dependent glutamate dehydrogenases from H. halobium showed apparent molecular weights of 148,000 and 215,000 respectively.
  相似文献   

10.
  1. Malic enzyme was induced by malic acid and malo-lactic enzyme was induced by malic acid and glucose in cells of three strains ofLactobacillus casei that were able to grow on malate as carbon source. Two strains ofStreptococcus faecalis formed malic enzyme only, whereas only malo-lactic enzyme was formed by a glucose requiring strain ofStreptococcus lactis.
  2. Given sequential induction, cells ofLactobacillus casei M40 were found to contain malic enzyme and malo-lactic enzyme simultaneously.
  3. Malic enzyme and malo-lactic enzyme have been separated by chromatography on Sephadex G-200. These two enzymes have a different pH optimum, different affinities for substrates, form different end products from malate, and have molecular weights of 120000 and 150000 daltons respectively.
  相似文献   

11.
  • 1.1. Malate dehydrogenase has been purified from the foot muscle of Patella caerulea by ion-exchange chromatography on DEAE-cellulose, affinity chromatography on Blue Agarose and gel filtration on Sephadex G-150.
  • 2.2. The yield was 23.5% of the initial activity with a final specific activity of 257 U/mg of protein.
  • 3.3. The apparent mol. wt of the native enzyme is approx. 75,000 and it consists of two subunits of mol. wts in the range of 36,000–39,000.
  • 4.4. The enzyme exhibits hyperbolic kinetics with respect to oxaloacetate, NADH and l-malate. The Km values were determined to be 0.055 mM for oxaloacetate, 0.010 mM for NADH and 0.37 mM for l-malate. The pH optima are around 8.4 for the reduction of oxaloacetate and 9.2–9.6 for the reduction of oxaloacetate and 9.2–9.6 for the l-malate oxidation. Vmax and Km values for oxaloacetate change in an opposite manner with respect to pH values.
  • 5.5. Of the various compounds tested, only α-ketoglutarate, citrate and adenylate phosphates were found to inhibit the enzyme activity.
  • 6.6. From the above properties it appears that the reaction of cytoplasmic malate dehydrogenase of P. caerulea foot muscle is a key reaction in the anaerobic pathway and it occurs with the production of malate.
  相似文献   

12.
  • 1.1. The reductive carboxylation of 2-oxoglutarate was found to proceed in mitochondria of rat epididymal fat pads and rabbit perirenal adipose tissue at a rate similar to that in liver mitochondria.
  • 2.2. In rat fat pads the incorporation of 14C from [5-14C]2-oxoglutarate into fatty acids via the carboxylation was suppressed by butylmalonate by 30%.
  • 3.3. 2-Oxoglutarate and glutamate stimulated the incorporation into fatty acids of 14C from [2-14C]acetate in rat fat pads with the simultaneous reduction of tissue NADP. These effects persisted after inhibition of succinate dehydrogenase by malonate.
  • 4.4. It is concluded that in adipose tissue 2-oxoglutarate carboxylation proceeds in both the cytoplasm and mitochondria. Therefore, it can supply carbon atoms as well as NADPH for fatty acid synthesis.
  相似文献   

13.
  1. The lipid composition of mitochondria isolated from a fatty acid desaturase mutant ofSaccharomyces cerevisiae may be extensively manipulated by growing the organism on defined supplements of unsaturated fatty acid (UFA).
  2. The fatty acid composition of the mitochondrial lipids closely follows that of the whole cells from which the mitochondria are isolated. UFA-depleted mitochondria contain normal levels of sterols, neutral lipids and total phospholipids, but have much lower levels of phosphatidyl inositides.
  3. UFA-depleted mitochondria possess a full complement of cytochromes, oxidase both NAD-linked and flavoprotein-linked substrates at normal rates, and have levels of succinate and malate dehydrogenases similar to those of UFA-supplemented mitochondria. However, UFA-depletion has a marked effect on the ability of cytochromec to reactivate the NADH oxidase activity of cytochromec-depleted mitochondria.
  4. The efficiency of oxidative phosphorylation decreases progressively with the UFA content of the mitochondria, and oxidative phosphorylation is completely lost in mitochondria containing approximately 20% UFA.
  5. The incorporation of UFA into the lipids of UFA-depleted mitochondriain vivo results in a recoupling of oxidative phosphorylation. Recoupling is insensitive to both chloramphenicol and cycloheximide, indicating that all the proteins necessary for oxidative phosphorylation are present in UFA-depleted mitochondria, and that the less of oxidative phosphorylation is a purely lipid lesion.
  6. ATPase activity is apparently unaffected by UFA-depletion, but32Pi-ATP exchange activity is lost in mitochondria which have been extensively depleted in UFA.
  7. Valinomycin stimulates the respiration of UFA-supplemented mitochondria in media containing potassium, but has no effect on the respiration of UFA-depleted mitochondria, suggesting that active transport of potassium is lost as a result of UFA-depletion.
  相似文献   

14.
  1. The present paper deals with the chemolithotrophic growth of a Gram-positive hydrogen bacterium strain 11/x which shows the characteristic features of some coryneform bacteria.
  2. Like other hydrogen bacteria, the strain 11/x is a facultative chemolithotroph and grows on many organic substrates faster than in a mineral medium under an atmosphere of knallgas+CO2. Fully induced, autotrophically grown cells, subcultured mixotrophically on fructose show additive growth.
  3. Cell-free extracts of autotrophically grown cells are able to reduce methylene blue, dichlorophenolindophenol, phenazine methosulphate, menadione, and FMN with hydrogen. Conditions for direct NAD(P) reduction could not be found.
  4. Hydrogenase is formed under autotrophic as well as mixotrophic conditions. In the latter case the rate of hydrogenase formation is diminished depending on the organic substrate. Heterotrophically grown cells do not have any detectable hydrogenase activity. For the induction of hydrogenase in those cells a nitrogen source is a prerequisite.
  5. The formation of ribulose-1,5-diphosphate carboxylase and phosphoribulokinase seems to be regulated in a way similar to that of hydrogenase: the enzymes could only be detected in autotrophically and mixotrophically grown cells but not in those grown heterotrophically.
  相似文献   

15.
  • 1.1. Isolated mitochondria from rat liver were incubated in the presence of [U-14C]palmitate, ATP, CoA, carnitine, EGTA (ethylene glycol bis (β-aminoethyl ether) N,N′-tetraacetic acid) and varying amounts of calcium.
  • 2.2. When a KCl-based incubation medium was used, the oxidation of palmitate was inhibited when the concentration of free calcium was increased from about 0.1–10μM.
  • 3.3. When a sucrose-based incubation medium was used, the basal rate of palmitate oxidation was about half of that observed with the KCl-medium and calcium had a stimulatory effect.
  • 4.4. With the KCl-medium the rate of oxygen consumption was inhibited by calcium with α-ketoglutarate as well as palmitate as the respiratory substrate.
  • 5.5. No inhibitory effect of calcium was observed with succinate or β-hydroxybutyrate.
  • 6.6. With the KCl-medium and with α-ketoglutarate as the respiratory substrate, state 3 respiration but not state 4 respiration was inhibited by calcium.
  • 7.7. When the sucrose-medium was used, state 3 respiration was first inhibited by calcium, but this inhibition was gradually relieved and the respiratory rate finally became higher than it was before calcium addition.
  相似文献   

16.
  1. Washed cell suspensions of Bdellovibrio bacteriovorus harvested shortly after lysis of their substrate organisms and shaken in buffer have a constant and high endogenous respiration rate for a bout 6 h which then declines sharply to a rate approximately 10% of the original. Viability of cell suspensions shows little change over the first 4–6 h and then decreases by some 50% in 10 h.
  2. Over the first 5–6 h of starvation there is a loss of about 50% of total cell carbon. This loss is distributed about equally between CO2 and small molecules released into the suspending buffer. The protein and nucleic acid contents of the cells decrease concomitantly from time zero during starvation while DNA content remains constant. Ribosomal profiles show a rapid degradation of ribosomes.
  3. In the presence of glutamate or glutamate plus a balanced amino acid mixture, loss of cell material and loss of viability is partially or completely prevented. There is extensive protein turnover when glutamate and an amino acid mixture are available to the bdellovibrio.
  4. The pattern of changes observed in B. bacteriovorus during starvation is compared to reported changes in other species of bacteria, and the significances of its high endogenous respiration and sensitivity to starvation are discussed.
  相似文献   

17.
  1. Comparisons were made of the effects of salt on the exponential growth rates of two unicellular algae,Dunaliella tertiolecta (marine) andDunaliella viridis (halophilic).
  2. The algae contained glycerol in amounts which varied directly with the salt concentration of the growth media. The highest measured glycerol content ofD. tertiolecta was approximately equivalent to 1.4 molal and occurred in algae grown in 1.36 M sodium chloride. The highest glycerol content measured inD. viridis was approximately equivalent to 4.4 molal and occurred in algae grown in 4.25 M sodium chloride. Lower concentrations of free glucose, which varied inversely with extracellular salt concentration, were also detected.
  3. It is inferred that Na+ is effectively excluded from the two algae. There was some evidence of a moderate uptake of K+.
  4. Comparisons were made of erude preparations of the glucose-6-phosphate dehydrogenase and an NADP-specific glycerol dehydrogenase from each species and of the effects of salt and glycerol on the activities of these enzymes. It is concluded that the different salt tolerances of the two algae cannot be explained by generalized differences between their enzyme proteins.
  5. Although intracellular glycerol must necessarily contribute to the osmotic status of the algae, its primary function in influencing their salt relations is considered to be that of a compatible solute, whereby glycerol maintains enzyme activity under conditions of high extracellular salt concentration and hence low (thermodynamic) water activity.
  相似文献   

18.
  1. Culture filtrates of heterotrophic bacteria were tested for their stimulatory effect on nitrification of three strains of Nitrobacter.
  2. Yeast extract-peptone solution, in which Pseudomonas fluorescens had grown, after removal of the cells was added to autotrophically growing cultures of Nitrobacter agilis; it caused a stimulated nitrite oxidation and growth of Nitrobacter agilis.
  3. The degree of stimulation depended on: a) the proportion of the culture filtrate to the autotrophic medium; b) the composition of the complex medium in which Pseudomonas fluorescens had been grown; c) the time the heterotrophic bacterium had been grown in the complex medium.
  4. The stimulatory effect was highest with Nitrobacter agilis, less with Nitrobacter winogradskyi and negligible with Nitrobacter K 4.
  5. It was possible to adapt nitrifying cells of Nitrobacter agilis to higher concentrations of yeast extract and peptone. After the nitrite had been completely oxidized the cell-N still increased up to 30% before growth stopped.
  相似文献   

19.
  • 1.1. Bactrocera latifrons fruit flies recovered from four solanaceous fruits (Capsicum annuum, Lycopersicon esculentum, Solanum pseudocapsicum and Solanum melongena) in Peninsular Malaysia were analyzed for a total of 15 gene-enzyme systems comprising 21 loci.
  • 2.2. Eleven loci—aAdh, Aldox, Ald, Est-F, Est-S, Hk-F, Ldh, cMdh, Me, Pep-A and Pep-C—were invariant.
  • 3.3. Of the polymorphic loci, cathodal alcohol dehydrogenase, glucose phosphate isomerase, glycerol-3-phosphate dehydrogenase, hydroxybutyrate dehydrogenase, isocitrate dehydrogenase, anodal malate dehydrogenase and phosphoglucomutase were represented by two alleles each, while hexokinase-S, peptidase-B and phosphogluconate dehydrogenase were represented by three alleles each.
  • 4.4. The proportion of polymorphic loci ranged from 0.28 to 0.33, while the mean heterozygosity ranged from 0.04 to 0.13.
  • 5.5. The genetic variability is associated with the host range.
  相似文献   

20.
  1. When growing with cyclodextrins, Klebsiella pneumoniae M 5 al produces extracellular cyclodextrin glucanotransferase in amounts comparable to those obtained during the growth with potato starch.
  2. Intracellular cyclodextrin glucanotransferase-activity was demonstrated to be present in the homogenates of cells grown with cyclodextrins. In addition, an amylomaltase-like enzyme and the maltodextrin phosphorylase could be pointed out. The cyclodextrins are metabolized to glucose-1-phosphate and glucose by the concerted actions of these three enzymes. paraGlucose-1-phosphate is liberated from cyclohexaamylose by the actions of purified cyclodextrin glucanotransferase and purified maltodextrin phosphorylase. The liberation of the sugar phosphate is increased fivefold by addition of glucose as an acceptor. This sugar, however, retards the formation of glucose-1-phosphate from the cyclic compound by the enzymes of the cell extract: In the presence of glucose the amylomaltase is incapable of synthesizing substrates for the phosphorylase from maltose. This experimental result clearly demonstrates that the amylomaltase is involved in the disproportionation of maltosaccharides arising from the cyclodextrins.
  3. A NADP+-specific glucose dehydrogenase was demonstrated to be present in the cell extracts. This enzyme, which is activated by ADP, may control the energy-depending pool of free glucose. Glucose originates from the disproportionation of maltosaccharides catalyzed by the glucanotransferases.
  4. A glucose-1-phosphate-hydrolysing phosphatase, which is shown to be present in the cell extract, seems to be without physiological significance for the metabolism of the cyclodextrins.
  5. Preliminary permeation studies make it probable that the cyclodextrins are transported into the cells as such and degraded only within the cells.
  6. A scheme for the metabolism of cyclodextrins in Klebsiella pneumoniae M 5 al is proposed.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号