首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
海洋氮循环中细菌的厌氧氨氧化   总被引:5,自引:0,他引:5  
细菌厌氧氨氧化过程是在一类特殊细菌的厌氧氨氧化体内完成的以氨作为电子供体硝酸盐作为电子受体的一种新型脱氮反应.厌氧氨氧化菌的发现,改变人们对传统氮的生物地球化学循环的认识:反硝化细菌并不是大气中氮气产生的唯一生物类群.而且越来越多的证据表明,细菌厌氧氨氧化与全球的氮物质循环密切相关,估计海洋细菌的厌氧氨氧化过程占到全球海洋氮气产生的一半左右.由于氮与碳的循环密切相关,因此可以推测,细菌的厌氧氨氧化会影响大气中的二氧化碳浓度,从而对全球气候变化产生重要影响.另外,由于细菌厌氧氨氧化菌实现了氨氮的短程转化,缩短了氮素的转化过程,因此为开发更节约能源、更符合可持续发展要求的废水脱氮新技术提供了生物学基础.  相似文献   

2.
海洋氮循环过程及基于基因组代谢网络模型的预测   总被引:1,自引:0,他引:1  
海洋氮循环在地球元素循环中充当着必不可少的角色。海洋氮循环是由一系列氧化还原反应构成的生物化学过程。固氮作用和氮同化作用为生态系统提供了生物可用氮(铵盐)。硝化作用可进一步将铵盐氧化为硝酸盐,硝酸盐又可以通过反硝化作用转化为氮气。整个氮循环实现了海洋中不同含氮无机盐间的转换。微生物是海洋氮循环的重要驱动者,海洋氮循环的研究可以帮助理解海洋生物与地球环境相互作用及协同演化的机制,从而更好地保护地球生态环境。随着氮循环关键微生物基因组尺度代谢网络模型的发表,研究者可以利用代谢网络模型来研究不同氮循环过程的效率、环境因子对氮循环过程的影响以及解析氮循环及生物网络的内在机理等,从而帮助人们更深入地研究海洋氮转化机制。本文主要综述了海洋氮循环过程中各个转化过程的主要微生物,以及基因组尺度代谢网络模型在分析氮循环中的应用。  相似文献   

3.
【背景】反硝化厌氧甲烷氧化(Denitrifying anaerobic methane oxidation,DAMO)是以硝酸盐或亚硝酸盐为电子受体以甲烷为电子供体的厌氧氧化过程,对认识全球碳氮循环、削减温室气体排放和开发废水脱氮新技术等方面具有重要意义。【目的】认识以硝酸盐和亚硝酸盐为电子受体的DAMO微生物富集过程和结果的差异性。【方法】在序批式反应器(Sequencing batch reaetor,SBR)内接种混合物,分别以硝酸盐和亚硝酸盐为电子受体连续培养800 d,定期检测反应器基质浓度变化、计算转化速率;利用16S rRNA基因系统发育分析研究功能微生物的多样性,利用实时荧光定量PCR技术定量测定功能微生物。【结果】以亚硝酸盐为电子受体的1、3号反应器富集到了DAMO细菌,未检测到DAMO古菌;以硝酸盐为电子受体的2号反应器富集到了DAMO细菌和古菌的混合物;3个反应器的脱氮速率经过初始低速期、快速提升期,最终达到稳定,但2号快速提升期开始时间比1、3号晚了80 d左右,达到稳定的时间更长,稳定最大速率为1、3号的44.7%、40.3%。【结论】硝酸盐和亚硝酸盐对富集产物有决定性影响;以硝酸盐为电子受体富集得到的DAMO古菌和细菌协同体系可以长期稳定共存,DAMO古菌可能是协同体系中脱氮速率的限制性因素。  相似文献   

4.
氨氧化微生物生态学与氮循环研究进展   总被引:40,自引:3,他引:40  
贺纪正  张丽梅 《生态学报》2009,29(1):406-415
氮的生物地球化学循环主要由微生物驱动,除固氮作用、硝化作用、反硝化作用和氨化作用外,近年还发现厌氧氨氧化是微生物参与氮循环的一个重要过程.同时,随着宏基因组学等分子生物技术的快速发展和应用,参与氮循环的新的微生物类群--氨氧化古菌也逐渐被发现.这两个重要的发现大大改变了过去人们对氮循环的认识,就近年有关厌氧氨氧化细菌、氨氧化古菌和氨氧化细菌的生态学研究进展作一简要综述.  相似文献   

5.
海洋厌氧氨氧化细菌分子生态学研究进展   总被引:4,自引:0,他引:4  
厌氧氨氧化细菌是能在厌氧的条件下将氨氧化为氮气的一类细菌,这类细菌执行着以前未被人们所认知的一个独特的过程--氧氨氧化过程,据估计厌氧氨氧化过程对于海洋氮气的形成有30%~50%的贡献率;海洋厌氧氨氧化细菌能与氨氧化细菌及氨氧化古菌存在潜在的耦合作用,对于海洋氮循环复杂机制的阐述有着非常重要的意义;同时海洋厌氧氨氧化细菌独特的细胞和基因组结构,也成为了解海洋细菌进化重要的模式微生物之一.本文综述了近年来国内外厌氧氨氧化细菌分子生态学方面的进展,并结合作者的工作对未来的研究进行展望.  相似文献   

6.
氨氧化古菌的生态学研究进展   总被引:6,自引:0,他引:6  
上百年来细菌一直被认为是地球氨氧化过程的主要驱动者,2005年海洋中分离到迄今唯一的非极端环境泉古菌,发现其氧化氨态氮获得能源生长,是氨氧化古菌。氨氧化古菌和细菌对地球氨氧化过程的相对贡献率,是目前全球氮循环研究最重要的微生物生态学问题之一。已有的证据表明古菌在海洋氨氧化过程中发挥了重要作用,细菌则是土壤氨氧化过程的主要驱动者。本文重点探讨了原位自然环境下氨氧化古菌的生态学研究进展。  相似文献   

7.
自然条件变化和人类活动不仅加剧了土壤酸化,扩大了酸性土壤面积,而且严重影响了土壤氮循环。氨氧化过程作为硝化作用的限速步骤,是全球氮循环的核心环节,受到国内外研究者的广泛关注。探究酸性土壤氨氧化作用及其功能微生物对完善氮循环机制和促进土壤养分循环具有重要意义。本文主要综述了土壤中氨氧化代谢途径,对比了氨氧化细菌(ammoniaoxidizing bacteria, AOB)、氨氧化古菌(ammonia-oxidizing archaea, AOA)和全程硝化菌(complete ammoniaoxidizers,Comammox)对酸性土壤氨氧化作用的相对贡献,分析了微生物内源功能差异及pH、底物浓度等外部环境因素对氨氧化微生物丰度、活性和群落结构的影响,最后对氨氧化微生物研究进行了展望,以期为酸性土壤氨氧化作用研究和微生物修复技术应用与实践提供科学参考。  相似文献   

8.
硝酸盐型厌氧铁氧化菌的种类、分布和特性   总被引:2,自引:0,他引:2  
王茹  郑平  张萌  赵和平  周晓馨 《微生物学通报》2015,42(12):2448-2456
硝酸盐型厌氧铁氧化(NAFO)是指微生物在厌氧条件下利用硝酸盐或亚硝酸盐作为电子受体,将低价铁(二价铁或零价铁)氧化为高价铁(三价铁)的过程。具有NAFO代谢能力的微生物称为硝酸盐型厌氧铁氧化菌(NAFOM)。NAFO是微生物领域的重大发现,也是环境领域开发新型脱氮技术和地学领域研究铁、氮循环的理论依据。整理文献报道的NAFOM资料,分析NAFOM系统发育性状,探讨典型NAFOM的生态分布及其营养、代谢特性,以期为NAFOM菌种资源的开发、地球铁素和氮素循环的研究、NAFO过程的优化提供借鉴。  相似文献   

9.
湖泊微生物反硝化过程及速率研究进展   总被引:2,自引:0,他引:2  
孙小溪  蒋宏忱 《微生物学报》2020,60(6):1162-1176
湖泊中微生物介导的反硝化过程对于区域乃至全球的气候环境变化有着深远的影响。因此,研究湖泊微生物反硝化过程及速率有助于我们深刻理解湖泊氮元素生物地球化学循环规律,全面认识湖泊生境对全球氮循环的贡献。本文综述了湖泊生境中反硝化过程(包括典型的反硝化过程及与其他物质循环耦合的反硝化过程,如与有机氮耦合的共反硝化作用、与碳循环耦合的硝酸盐/亚硝酸盐依赖型厌氧甲烷氧化、与铁循环耦合的硝酸盐依赖型铁氧化、与硫循环耦合的硝酸盐还原硫氧化)的速率、驱动微生物及其影响因素。最后对湖泊反硝化过程研究现状和未来发展方向提出总结与展望。  相似文献   

10.
河流沉积物氮循环主要微生物的生态特征   总被引:3,自引:0,他引:3  
微生物驱动的氮循环过程是全球生物地球化学循环的重要组成部分,由于人类活动的影响,氮循环负荷加剧,氮素的生态平衡和微生物的功能特征也相应地受到干扰。河流生态系统是陆地与海洋联系的纽带,因人类活动过量活性氮的输入导致水体富营养化,明显影响着河流的生态功能以及河口沿岸海洋生态系统的平衡。富含微生物的沉积物对氮素的转化和去除起着至关重要的作用。本文主要介绍河流沉积物氮循环主要功能微生物,包括氨氧化细菌、氨氧化古菌、亚硝酸盐氧化菌、反硝化细菌和厌氧氨氧化细菌的群落特征和生态功能,总结氮相关营养盐、溶氧和季节变化等环境因子,以及河道控制管理措施和污水处理厂扰动等条件下氮循环过程主要功能类群的生态特征和响应关系。指出还需深入全面地研究河流沉积物生态系统氮循环过程的驱动机制和微生物的贡献效率,加强城市河流沉积物微生物功能作用的研究及河道生物修复技术的开发。  相似文献   

11.
Nitrite oxidation is the second step of nitrification. It is the primary source of oceanic nitrate, the predominant form of bioavailable nitrogen in the ocean. Despite its obvious importance, nitrite oxidation has rarely been investigated in marine settings. We determined nitrite oxidation rates directly in 15N-incubation experiments and compared the rates with those of nitrate reduction to nitrite, ammonia oxidation, anammox, denitrification, as well as dissimilatory nitrate/nitrite reduction to ammonium in the Namibian oxygen minimum zone (OMZ). Nitrite oxidation (⩽372 nM NO2 d−1) was detected throughout the OMZ even when in situ oxygen concentrations were low to non-detectable. Nitrite oxidation rates often exceeded ammonia oxidation rates, whereas nitrate reduction served as an alternative and significant source of nitrite. Nitrite oxidation and anammox co-occurred in these oxygen-deficient waters, suggesting that nitrite-oxidizing bacteria (NOB) likely compete with anammox bacteria for nitrite when substrate availability became low. Among all of the known NOB genera targeted via catalyzed reporter deposition fluorescence in situ hybridization, only Nitrospina and Nitrococcus were detectable in the Namibian OMZ samples investigated. These NOB were abundant throughout the OMZ and contributed up to ∼9% of total microbial community. Our combined results reveal that a considerable fraction of the recently recycled nitrogen or reduced NO3 was re-oxidized back to NO3 via nitrite oxidation, instead of being lost from the system through the anammox or denitrification pathways.  相似文献   

12.
海洋微生物的固氮作用是海洋氮素循环中一个关键的环节,对海洋生态系统的氮素供给和初级生产力的提高有着重要的意义。本文从海洋生物固氮的研究历史着手,详述了海洋固氮微生物的多样性及固氮活性研究方法,同时从环境因子的角度,总结了CO2浓度、季节变化、营养盐浓度、污染物及生物物种等环境因子对固氮微生物固氮活性的影响,并对海洋固氮微生物的研究前景进行了展望。  相似文献   

13.
从典型硝化细菌到全程氨氧化微生物:发现及研究进展   总被引:3,自引:1,他引:3  
生物硝化过程在全球氮循环中起关键性作用,被认为由氨氮氧化成亚硝酸盐和亚硝酸盐氧化成硝酸盐两个步骤组成,分别由氨氧化微生物(Ammonia oxidizing microorganisms,AOM)和硝化细菌(Nitrite oxidizing bacteria,NOB)催化完成。AOM包括氨氧化细菌(Ammonia oxidizing bacteria,AOB)和氨氧化古菌(Ammonia oxidizing archaea,AOA),AOB与AOA分布广泛,两者的相对丰度和氨氮浓度密切相关。2015年底,3个硝化螺菌属(Nitrospira)谱系Ⅱ的NOB被证实含有AOM的特征功能酶,包括氨单加氧酶(AMO)和羟胺脱氢酶(HAO),并证明NOB同时具有氨氧化和亚硝酸盐氧化的能力,命名为全程氨氧化微生物(Complete ammonia oxidizer,Comammox)。根据AMO的α亚基基因amoA的相似性将Comammox分为两大分支clade A和clade B。它们广泛分布于自然环境和人工系统,包括土壤(稻田、森林)、淡水(湿地、河流、湖泊沉积物、蓄水层)、污水处理厂和自来水厂等。本文综述了Comammox的发现及其最新的研究进展,并展望了Comammox作为氮循环关键功能菌群的研究方向和应用前景。  相似文献   

14.
厌氧氨氧化细菌的研究进展   总被引:2,自引:0,他引:2  
厌氧氨氧化是指微生物在无氧条件下,以NO_2~–为电子受体,将NH_4~+氧化成N_2的过程,该过程主要由浮霉菌门下的厌氧氨氧化细菌参与。厌氧氨氧化细菌广泛存在于海洋生态系统、淡水生态系统、陆地生态系统及其他一些特殊生境中,其在废水生物脱氮和地球氮循环中扮演着重要角色。本文从厌氧氨氧化细菌的发现历程、种类、特性、代谢途径、分布、检测方法及应用上进行了较为全面的总结;最后对厌氧氨氧化细菌研究前沿问题和未来发展方向进行了探讨与展望。  相似文献   

15.
Aeration phase length control and step-feed of wastewater are used to achieve nitrogen removal from wastewater via nitrite in sequencing batch reactors (SBR). Aeration is switched off as soon as ammonia oxidation is completed, which is followed by the addition of a fraction of the wastewater that the SBR receives over a cycle to facilitate denitrification. The end-point of ammonia oxidation is detected from the on-line measured pH and oxygen uptake rate (OUR). The method was implemented in an SBR achieving biological nitrogen and phosphorus removal from anaerobically pre-treated abattoir wastewater. The degree of nitrite accumulation during the aeration period was monitored along with the variation in the nitrite oxidizing bacteria (NOB) population using fluorescence in situ hybridization (FISH) techniques. It is demonstrated that the nitrite pathway could be repeatedly and reliably achieved, which significantly reduced the carbon requirement for nutrient removal. Model-based studies show that the establishment of the nitrite pathway was primarily the result of a gradual reduction of the amount of nitrite that is available to provide energy for the growth of NOB, eventually leading to the elimination of NOB from the system.  相似文献   

16.
“海洋生态系统工程师”是能够塑造栖息地并使其他海洋生物受益的海洋生物种类。海洋中的植物、动物和微生物中均存在为其他生物种类塑造栖息地的“海洋生态系统工程师”,它们的生态作用是其发挥生态功能的基础。本文基于国内外相关文献,系统阐述了“海洋生态系统工程师”生态作用的相关研究进展,并对今后的主要研究方向和内容提出建议。“海洋生态系统工程师”能够在特定的海洋环境中发挥积极作用,但一旦成为入侵种可能会对入侵海域产生负面影响;有些“海洋生态系统工程师”在发挥积极作用的同时也会在不同程度上带来负面影响。今后,应加强海洋生物床、海洋生物礁、海洋生物膜和复合生态系统工程等研究,有效利用“海洋生态系统工程师”的积极作用并防控其负面影响,实现对海洋的综合开发利用和保护。  相似文献   

17.
木质素在海洋中的生物转化及其对海洋碳循环的影响   总被引:1,自引:0,他引:1  
彭倩楠  林璐 《微生物学报》2020,60(9):1959-1971
微型生物参与的海洋碳汇是海洋重要的储碳途径,可调节全球气候变化。木质素是地球上第二大光合而成的碳库,其在海洋中的生物地球化学过程与海洋碳循环密切相关。异养微生物所主导的代谢活动是木质素生物转化的主要途径。近年来,迅速发展的高通量测序技术与传统微生物技术相结合,在探索自然生境中木质素代谢菌群,发现木质素代谢新物种,挖掘相关功能基因等方面已取得一系列成果。然而绝大多数的研究主要集中于陆地生态系统,对于海洋生态系统的研究仍较少。陆源有机碳在海洋中的转化过程仍是一个"谜",故解析海洋木质素碳转化是海洋碳循环研究的重要任务。本文综述了参与海洋木质素转化的功能微生物、木质素代谢机理以及微生物碳代谢活动与海洋碳汇过程的内在联系,为今后的研究提供参考。  相似文献   

18.
陆地和淡水生态系统新型微生物氮循环研究进展   总被引:1,自引:0,他引:1  
祝贵兵 《微生物学报》2020,60(9):1972-1984
氮生物地球化学循环是地球物质循环的重要枢纽,是决定陆地生态系统生产力水平、水资源安全、温室气体生成排放的关键过程。氮循环是由微生物介导的一系列复杂过程,不同形态、价态氮化合物的转化分别由相应的功能微生物驱动完成。随着厌氧氨氧化、完全氨氧化等新型氮转化过程的相继报道和发现更新了人们对氮循环的认识。本文综述了陆地和淡水生态系统中厌氧氨氧化(anammox)、硝酸盐异化还原为铵(DNRA)、完全氨氧化(comammox)等新型氮循环过程的发生机制、热区分布及环境效应,并总结了这三种氮循环的相互关系。  相似文献   

19.
短程硝化(partial nitrification, PN)是一种绿色低碳的生物脱氮创新技术,伴随厌氧氨氧化(anaerobic ammonia oxidation, Anammox)污水脱氮技术的进一步推广,短程硝化作为提供其电子受体的重要环节,已成为了污水脱氮领域的研究热点。氨氧化菌(ammonia-oxidizing bacteria,AOB)和亚硝酸盐氧化菌(nitrite-oxidizing bacteria, NOB)是该技术的核心竞争微生物,掌握这两类微生物的生态学特征,借助生态学理论和手段调控AOB淘汰NOB,提高种群的可预测性,对于实现稳定高效的短程硝化具有重要意义。本文基于生态学角度介绍了AOB和NOB基础分类、生理性能及生态位分离,重点综述了短程硝化系统中AOB和NOB的生长动力学、群落构建、环境因素和相互作用,最后对这两类微生物的未来研究重点和研究方法进行了展望,为短程硝化工艺的快速启动和稳定运行提供理论指导。  相似文献   

20.
祝贵兵 《生态学报》2011,31(6):1487-1493
随着海洋生态系统中的厌氧氨氧化反应和氨氧化古菌的发现,自然生态系统的氮循环过程被重新认识,但是目前尚无在陆地深层的相关报道。结合同位素示踪与分子生物学技术探索了稻田深层土壤中anammox与AOA的存在及特性。结果表明,在沼渣处理废水浇灌的高含氮稻田深层土壤中,anammox与AOA共存。通过构建克隆文库发现,此土壤中厌氧氨氧化菌的生物多样性相对较低,35个克隆序列只分为4个独立操作单元(OTU),代表序列与Genebank数据库中已探明的厌氧氨氧化菌Candidatus 'Kuenenia stuttgartiensis’的同源性超过95%;对氨氧化古菌的分析发现,20个克隆子共得到5个OTU,其与基因库中土壤/沉积物进化分支关系最近,序列的同源性部分超过98%。同位素示踪的初步结果表明,anammox产生的氮气占此土壤总氮气生成量的24.1%-29.8%。AOA与anammox的共存为anammox反应的广泛存在与发生提供了新思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号