首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gliding flight is a postural activity which requires the wings to be held in a horizontal position to support the weight of the body. Postural behaviors typically utilize isometric contractions in which no change in length takes place. Due to longer actin-myosin interactions, slow contracting muscle fibers represent an economical means for this type of contraction. In specialized soaring birds, such as vultures and pelicans, a deep layer of the pectoralis muscle, composed entirely of slow fibers, is believed to perform this function. Muscles involved in gliding posture were examined in California gulls (Larus californicus) and tested for the presence of slow fibers using myosin ATPase histochemistry and antibodies. Surprisingly small numbers of slow fibers were found in the M. extensor metacarpi radialis, M. coracobrachialis cranialis, and M. coracobrachialis caudalis, which function in wrist extension, wing protraction, and body support, respectively. The low number of slow fibers in these muscles and the absence of slow fibers in muscles associated with wing extension and primary body support suggest that gulls do not require slow fibers for their postural behaviors. Gulls also lack the deep belly to the pectoralis found in other gliding birds. Since bird muscle is highly oxidative, we hypothesize that fast muscle fibers may function to maintain wing position during gliding flight in California gulls. J. Morphol. 233:237–247, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

2.
As a postural behavior, gliding and soaring flight in birds requires less energy than flapping flight. Slow tonic and slow twitch muscle fibers are specialized for sustained contraction with high fatigue resistance and are typically found in muscles associated with posture. Albatrosses are the elite of avian gliders; as such, we wanted to learn how their musculoskeletal system enables them to maintain spread-wing posture for prolonged gliding bouts. We used dissection and immunohistochemistry to evaluate muscle function for gliding flight in Laysan and Black-footed albatrosses. Albatrosses possess a locking mechanism at the shoulder composed of a tendinous sheet that extends from origin to insertion throughout the length of the deep layer of the pectoralis muscle. This fascial "strut" passively maintains horizontal wing orientation during gliding and soaring flight. A number of muscles, which likely facilitate gliding posture, are composed exclusively of slow fibers. These include Mm. coracobrachialis cranialis, extensor metacarpi radialis dorsalis, and deep pectoralis. In addition, a number of other muscles, including triceps scapularis, triceps humeralis, supracoracoideus, and extensor metacarpi radialis ventralis, were found to have populations of slow fibers. We believe that this extensive suite of uniformly slow muscles is associated with sustained gliding and is unique to birds that glide and soar for extended periods. These findings suggest that albatrosses utilize a combination of slow muscle fibers and a rigid limiting tendon for maintaining a prolonged, gliding posture.  相似文献   

3.
Electromyographic (EMG) activity was studied in American Kestrels (Falco sparverius) gliding in a windtunnel tilted to 8 degrees below the horizontal. Muscle activity was observed in Mm. biceps brachii, triceps humeralis, supracoracoideus, and pectoralis, and was absent in M. deltoideus major and M. thoracobrachialis (region of M. pectoralis). These active muscles are believed to function in holding the wing protracted and extended during gliding flight. Quantification of the EMG signals showed a lower level of activity during gliding than during flapping flight, supporting the idea that gliding is a metabolically less expensive form of locomotion than flapping flight. Comparison with the pectoralis musculature of specialized gliding and soaring birds suggests that the deep layer of the pectoralis is indeed used during gliding flight and that the slow tonic fibers found in soaring birds such as vultures represents a specialization for endurant gliding. It is hypothesized that these slow fibers should be present in the wing muscles that these birds use for wing protraction and extension, in addition to the deep layer of the pectoralis. © 1993 Wiley-Liss, Inc.  相似文献   

4.
The myosin heavy chain composition of muscle fibers that comprise the red strip of the pectoralis major was determined at different stages of development and following adult denervation. Using a library of characterized monoclonal antibodies we found that slow fibers of the red strip do not react with antibodies to any of the fast myosin heavy chains of the superficial pectoralis. Immunocytochemical analysis of the fast fibers of the adult red strip revealed that they contain the embryonic fast myosin heavy chain rather than the adult pectoral isoform found throughout the adult white pectoralis. This was confirmed using immunoblot analysis of myosin heavy chain peptide maps. We show that during development of the red strip both neonatal and adult myosin heavy chains appear transiently, but then disappear during maturation. Furthermore, while the fibers of the superficial pectoralis reexpress the neonatal isoform as a result of denervation, the fibers of the red strip reexpress the adult isoform. Our data demonstrate a new developmental program of fast myosin heavy chain expression in the chicken and suggest that the heterogeneity of myosin heavy chain expression in adult fast fibers results from repression of specific isoforms by innervation.  相似文献   

5.
Slow fibres are typically characterized as functioning in avian postural behaviours such as soaring flight and are described for a number of elite soarers such as vultures, pelicans and albatrosses. Golden Eagles and Bald Eagles also display soaring behaviour, and we examined their flight muscles for the presence of slow fibres. Surprisingly, eagles lack a deep layer to the pectoralis found in other soaring species. Additionally, the pectoralis as well as other shoulder muscles had few to no slow muscle fibres. The lack of functionally meaningful numbers of slow muscle fibres in eagle flight muscles indicates that they must rely on fast fibres for posture; these can function in that role due to their high aerobic capacity and also perhaps a ‘tuning’ of muscle contraction frequency to function more efficiently at isometric contractions.  相似文献   

6.
Studies of medium- and large-bodied avian species have suggested that variation in flight muscle composition is related to differences in flight behavior. For example, slow-twitch or tonic fibers are generally found only in the flight muscles of non-volant or soaring/gliding birds. However, we know comparatively little about fiber composition of the muscles of the smallest birds. Here we describe the fiber composition of muscles from the wings, shoulders, and legs of two small avian species, which also display very high wingbeat frequencies: Anna's hummingbirds (Calypte anna) and zebra finches (Taeniopygia guttata). All flight muscles examined in both species contained exclusively fast oxidative glycolytic (FOG) fibers. These unique results suggest that fast oxidative fibers are both necessary and sufficient for the full range of flight behaviors in these small-bodied birds. Like all other studied birds, the zebra finch gastrocnemius, a tarsometatarsal extensor, contained a mixture of FOG (27.1%), slow oxidative (SO, 12.7%), and fast glycolytic (FG, 60.2%) fibers. By contrast, the hummingbird gastrocnemius lacked FG fibers (85.5% FOG, 14.5% SO), which may reflect the reduced role of the hindlimb during take-off. We further hypothesize that thermogenic requirements constrain fiber type heterogeneity in these small endothermic vertebrates.  相似文献   

7.
Distribution of myosin isoenzymes among skeletal muscle fiber types.   总被引:17,自引:4,他引:13  
Using an immunocytochemical approach, we have demonstrated a preferential distribution of myosin isoenzymes with respect to the pattern of fiber types in skeletal muscles of the rat. In an earlier study, we had shown that fluorescein-labeled antibody against "white" myosin from the chicken pectoralis stained all the white, intermediate and about half the red fibers of the rat diaphragm, a fast-twitch muscle (Gauthier and Lowey, 1977). We have now extended this study to include antibodies prepared against the "head" (S1) and "rod" portions of myosin, as well as the alkali- and 5,5'dithiobis (2-nitrobenzoic acid) (DTNB)-light chains. Antibodies capable of distinguishing between alkali 1 and alkali 2 type myosin were also used to localize these isoenzymes in the same fast muscle. We observed, by both direct and indirect immunofluorescence, that the same fibers which had reacted previously with antibodies against white myosin reacted with antibodies to the proteolytic subfragments and to the low molecular-weight subunits of myosin. These results confirm our earlier conclusion that the myosins of the reactive fibers in rat skeletal muscle are sufficiently similar to share antigenic determinants. The homology, furthermore, is not confined to a limited region of the myosin molecule, but includes the head and rod portions and all classes of light chains. Despite the similarities, some differences exist in the protein compositions of these fibers: antibodies to S1 did not stain the reactive (fast) red fiber as strongly as they did the white and intermediate fibers. Non-uniform staining was also observed with antibodies specific for A2 myosin; the fast red fiber again showed weaker fluorescence than did the other reactive fibers. These results could indicate a variable distribution of myosin isoenzymes according to their alkali-light chain composition among fiber types. Alternatively, there may exist yet another myosin isoenzyme which is localized in the fast red fiber. Those red fibers which did not react with any of the antibodies to pectoralis myosin, did react strongly with an antibody against myosin isolated from the anterior latissimus dorsi (ALD), a slow red muscle of the chicken. The myosin in these fibers (slow red fibers) is, therefore, distinct from the other myosin isoenzymes. In the rat soleus, a slow-twitch muscle, the majority of the fibers reacted only with antibody against ALD myosin. A minority, however, reacted with antiboddies to pectoralis as well as ALD myosin, which indicates that both fast and slow myosin can coexist within the same fiber of a normal adult muscle. These immunocytochemical studies have emphasized that a wide range of isoenzymes may contribute to the characteristic physiological properties of individual fiber types in a mixed muscle.  相似文献   

8.
Types of myosin light chains and tropomyosins present in various regions and at different developmental stages of embryonic and posthatched chicken breast muscle (pectoralis major) have been characterized by two-dimensional gel electrophoresis. In the embryonic muscle all areas appear to accumulate both slow and fast forms of mysoin light chains in addition to α and β forms of tropomyosin. During development regional differences in myosin and tropomyosin expression become apparent. Slow myosin subunits become gradually restricted to areas of the anterior region of the muscle and finally become localized to a small red strip found on its anterior deep surface. This red region is characterized by the presence of slow and fast myosin light chains, α-fast, α-slow, and β-tropomyosin. In all other areas of the muscle examined only fast myosin light chains, β-tropomyosin and the α-fast form of tropomyosin, are found. In addition, β-tropomyosin also gradually becomes lost in the posterior regions of the developing breast muscle. In the adult, the red strip area represents less than 1% of the total pectoralis major mass and of the myosin extracted from this area approximately 15% was present as an isozyme that comigrated on nondenaturing gels with myosin from a slow muscle (anterior latissimus dorsi). The red region accumulates therefore fast as well as slow muscle myosin. Thus while the adult chicken pectoralis major is over 99% fast white muscle, the embryonic muscle displays a significant and changing capacity to accumulate both fast and slow muscle peptides.  相似文献   

9.
The ontogeny of a primary flight muscle, the pectoralis, in the little brown bat (Myotis lucifugus: Vespertilionidae) was studied using histochemical, immunocytochemical, and electrophoretic techniques. In fetal and early neonatal (postnatal age 1–6 days) Myotis, histochemical techniques for myofibrillar ATPase (mATPase) and antibodies for slow and fast myosins demonstrated the presence of two fiber types, here called types I and IIa. These data correlated with multiple transitional myosin heavy chain isoforms and native myosin isoforms demonstrated with SDS-PAGE and 4% pyrophosphate PAGE. There was a decrease in the distribution and number of type I fibers with increasing postnatal age. At postnatal age 8–9 days, the adult phenotype was observed with regard to muscle fiber type (100% type IIa fibers) and myosin isoform profile (single adult MHC and native myosin isoforms). This “adult” fiber type profile and myosin isoform composition preceeded adult function by about 2 weeks. For example, little brown bats were incapable of sustained flight until approximately postnatal day 24, and myofiber size did not achieve adult size until approximately postnatal day 25. Although Myotis pectoralis is unique in being composed of 100% type IIa fibers, transitional fiber types and isoforms were present. These transitional forms had been observed previously in other mammals bearing mixed adult muscle fibers and which undergo transitional stages in muscle ontogeny. However, in Myotis pectoralis, this transition transpires relatively early in development. © 1994 Wiley-Liss, Inc.  相似文献   

10.
An antibody to chicken ventricular myosin was found to cross-react by enzyme immunoassay with myosin heavy chains from embryonic chicken pectorials, but not with adult skeletal myosins. This antibody, which was previously shown to label cultured muscle cells from embryonic pectoralis (Cantini et al., J cell biol 85 (1981) 903), was used to investigate by indirect immunofluorescence the reactivity of chicken skeletal muscle cells differentiating in vivo during embryonic development and muscle regeneration. Muscle fibers in 11-day old chick embryonic pectoralis and anterior latissimus dorsi muscles showed a differential reactivity with this antibody. Labelled fibers progressively decreasgd in number during subsequent stages and disappeared completely around hatching. Only rare small muscle fibers, some of which had the shape and location typical of satellite elements, were labelled in adult chicken muscle. A cold injury was produced with dry ice in the fast pectoralis and the slow anterior latissimys dorsi muscles of young chickens. Two days after injury a number of labelled cells was first seen in the intermediate region between the outer necrotic area and the underlying uninjured muscle. These muscle cells rapidly increased in number and size, thin myotubes were seen after 3 days and by 4–5 days a superficial layer of brightly stained newly formed muscle fibers was observed at the site of the injury. Between one and two weeks after the lesion the intensity of staining of regenerated fibers progressively decreased as their size further increased. These findings indicate that an embryonic type of myosin heavy chain is transitorily expressed during muscle regeneration.  相似文献   

11.
Isozymes of myosin have been localized with respect to individual fibers in differentiating skeletal muscles of the rat and chicken using immunocytochemistry. The myosin light chain pattern has been analyzed in the same muscles by two-dimensional PAGE. In the muscles of both species, the response to antibodies against fast and slow adult myosin is consistent with the speed of contraction of the muscle. During early development, when speed of contraction is slow in future fast and slow muscles, all the fibers react strongly with anti-slow as well as with anti-fast myosin. As adult contractile properties are acquired, the fibers react with antibodies specific for either fast or slow myosin, but few fibers react with both antibodies. The myosin light chain pattern slow shows a change with development: the initial light chains (LC) are principally of the fast type, LC1(f), and LC2(f), independent of whether the embryonic muscle is destined to become a fast or a slow muscle in the adult. The LC3(f), light chain does not appear in significant amounts until after birth, in agreement with earlier reports. The predominance of fast light chains during early stages of development is especially evident in the rat soleus and chicken ALD, both slow muscles, in which LC1(f), is gradually replaced by the slow light chain, LC1(s), as development proceeds. Other features of the light chain pattern include an "embryonic" light chain in fetal and neonatal muscles of the rat, as originally demonstrated by R.G. Whalen, G.S. Butler- Browne, and F. Gros. (1978. J. Mol. Biol. 126:415-431.); and the presence of approximately 10 percent slow light chains in embryonic pectoralis, a fast white muscle in the adult chicken. The response of differentiating muscle fibers to anti-slow myosin antibody cannot, however, be ascribed solely to the presence of slow light chains, since antibody specific for the slow heavy chain continues to react with all the fibers. We conclude that during early development, the myosin consists of a population of molecules in which the heavy chain can be associated with a fast, slow, or embryonic light chain. Biochemical analysis has shown that this embryonic heavy chain (or chains) is distinct from adult fast or slow myosin (R.G. Whalen, K. Schwartz, P. Bouveret, S.M. Sell, and F. Gros. 1979. Proc. Natl. Acad. Sci. U.S.A. 76:5197-5201. J.I. Rushbrook, and A. Stracher. 1979. Proc Natl. Acad. Sci. U.S.A. 76:4331-4334. P.A. Benfield, S. Lowey, and D.D. LeBlanc. 1981. Biophys. J. 33(2, Pt. 2):243a[Abstr.]). Embryonic myosin, therefore, constitutes a unique class of molecules, whose synthesis ceases before the muscle differentiates into an adult pattern of fiber types.  相似文献   

12.
Summary The fiber type composition of two fast muscles of the chicken, namely, adductor superficialis (AS) and pectoralis major (PM) was examined by the histochemical myosin ATPase staining and immunochemical techniques using monoclonal antibodies (McAbs). Two new McAbs produced against the myosin of the anterior latissimus dorsi (ALD) muscle of the chicken and named ALD-122 and ALD-83 were characterized to be specific for myosin heavy chain (MHC) and for myosin light chain-1 respectively. They were used in conjunction with previously reported McAbs specific for slow MHC (ALD-47), fast MHC (MF-14) and fast light chain-2 (MF-5). By the histochemical ATPase test most muscle fibers of AS and PM muscles reacted as IIA and IIB respectively. By immunofluorescent staining with the anti-MHC McAbs, ALD-122, and MF-14, the fibers of AS, muscle showed remarkable heterogeneity whereas PM muscle fibers reacted, uniformly. Differences in the myosin light chain composition of AS and PM muscles were also found by SDS-gel electrophoresis and immunoblot analysis with the anti-light chain McAb, ALD-83. The study clearly indicated that the histochemically homogenous (type IIA) AS muscle is composed of several subpopulations of fibers which differ in their myosin composition and that this heterogeneity of the muscle is not simply due to presence of variable amounts of slow myosin in its fibers.  相似文献   

13.
Regenerating areas of adult chicken fast muscle (pectoralis major) and slow muscle (anterior latissimus dorsi) were examined in order to determine synthesis patterns of myosin light chains, heavy chains and tropomyosin. In addition, these patterns were also examined in muscle cultures derived from satellite cells of adult fast and slow muscle. One week after cold-injury the regenerating fast muscle showed a pattern of synthesis that was predominately embryonic. These muscles synthesized the embryonic myosin heavy chain, beta-tropomyosin and reduced amounts of myosin fast light chain-3 which are characteristic of embryonic fast muscle but synthesized very little myosin slow light chains. The regenerating slow muscle, however, showed a nearly complete array of embryonic peptides including embryonic myosin heavy chain, fast and slow myosin light chains and both alpha-fast and slow tropomyosins. Peptide map analysis of the embryonic myosin heavy chains synthesized by regenerating fast and slow muscles showed them to be identical. Thus, in both muscles there is a return to embryonic patterns during regeneration but this return appears to be incomplete in the pectoralis major. By 4 weeks postinjury both regenerating fast and slow muscles had stopped synthesizing embryonic isoforms of myosin and tropomyosin and had returned to a normal adult pattern of synthesis. Adult fast and slow muscles yielded a satellite cell population that formed muscle fibers in culture. Fibers derived from either population synthesized the embryonic myosin heavy chain in addition to alpha-fast and beta-tropomyosin. Thus, muscle fibers derived in culture from satellite cells of fast and slow muscles synthesized a predominately embryonic pattern of myosin heavy chains and tropomyosin. In addition, however, the satellite cell-derived myotubes from fast muscle synthesized only fast myosin light chains while the myotubes derived from slow muscle satellite cells synthesized both fast and slow myosin light chains. Thus, while both kinds of satellite cells produced embryonic type myotubes in culture the overall patterns were not identical. Satellite cells of fast and slow muscle appear therefore to have diverged from each other in their commitment during maturation in vivo.  相似文献   

14.
To investigate whether immunocytochemical localization of muscle-specific aldolase can be used for fiber phenotype determination, we produced specific antibodies against the enzyme and studied its distribution in adult chicken skeletal muscles by indirect immunofluorescence microscopy. Monoclonal antibodies against the myosin heavy chains of fast-twitch (MF-14) and slow-tonic (ALD-58) muscle fibers were also used to correlate aldolase levels with the fiber phenotype. The goat anti-aldolase antibody was found to be specific for the A form of aldolase, as evidenced by sodium dodecyl sulfate gel electrophoresis, immunotitration experiments, and immunoblot analysis. The antibody reacted strongly with the fast-twitch myofibers of normal pectoralis and posterior latissimus dorsi muscles; the phenotype of these muscle fibers was confirmed by a positive immunofluorescent reaction after incubation with MF-14 antibody. By contrast, the slow-tonic myofibers of normal anterior latissimus dorsi, which react positively with ALD-58 antibody, reacted weakly with anti-aldolase antibodies. In denervated chicken muscles, reaction to anti-aldolase antibodies was markedly reduced in fast-twitch fibers, although reaction to MF-14 was not diminished. By contrast, in dystrophic muscle, fast-twitch fibers showed reduced reactivity to anti-aldolase and marked to moderate reduction in MF-14 reactivity. Our results show that: (a) in normal muscles, reactivity to anti-aldolase matches the phenotype obtained by using anti-fast or anti-slow myosin heavy chain antibodies, and therefore can serve to identify mature fibers as fast or slow; and (b) in denervated or dystrophic muscles, the intracellular expressions of aldolase and fast-twitch myosin heavy chains are regulated independently.  相似文献   

15.
The African penguin (Spheniscus demersus) is an endangered seabird that resides on the temperate southern coast of Africa. Like all penguins it is flightless, instead using its specialized wings for underwater locomotion termed ‘aquatic flight’. While musculature and locomotion of the large Antarctic penguins have been well studied, smaller penguins show different biochemical and behavioural adaptations to their habitats. We used histochemical and immunohistochemical methods to characterize fibre type composition of the African penguin primary flight muscles, the pectoralis and supracoracoideus. We hypothesized the pectoralis would contain predominantly fast oxidative–glycolytic (FOG) fibres, with mainly aerobic subtypes. As the supracoracoideus and pectoralis both power thrust, we further hypothesized these muscles would have a similar fibre type complement. Our results supported these hypotheses, also showing an unexpected slow fibre population in the deep parts of pectoralis and supracoracoideus. The latissimus dorsi was also examined as it may contribute to thrust generation during aquatic flight, and in other avian species typically contains definitive fibre types. Unique among birds studied to date, the African penguin anterior latissimus dorsi was found to consist mainly of fast fibres. This study shows the African penguin has specialized flight musculature distinct from other birds, including large Antarctic penguins.  相似文献   

16.
Following skeletal muscle injury, new fibers form from resident satellite cells which reestablish the fiber composition of the original muscle. We have used a cell culture system to analyze satellite cells isolated from adult chicken and quail pectoralis major (PM; a fast muscle) and anterior latissimus dorsi (ALD; a slow muscle) to determine if satellite cells isolated from fast or slow muscles produce one or several types of fibers when they form new fibers in vitro in the absence of innervation or a specific extracellular milieu. The types of fibers formed in satellite cell cultures were determined using immunoblotting and immunocytochemistry with monoclonal antibodies specific for avian fast and slow myosin heavy chain (MHC) isoforms. We found that satellite cells were of different types and that fast and slow muscles differed in the percentage of each type they contained. Primary satellite cells isolated from the PM formed only fast fibers, while up to 25% of those isolated from ALD formed fibers that were both fast and slow (fast/slow fibers), the remainder being fast only. Fast/slow fibers formed from chicken satellite cells expressed slow MHC1, while slow MHC2 predominated in fast/slow fibers formed from quail satellite cells. Prolonged primary culture did not alter the relative proportions of fast to fast/slow fibers in high density cultures of either chicken or quail satellite cells. No change in commitment was observed in fibers formed from chicken satellite cell progeny repeatedly subcultured at high density, while fibers formed from subcultured quail satellite cell progeny demonstrated increasing commitment to fast/slow fiber type formation. Quail satellite cells cloned from high density cultures formed colonies that demonstrated a similar change in commitment from fast to fast/slow, as did serially subcloned individual satellite cell progeny, indicating that the observed change from fast to fast/slow differentiation resulted from intrinsic changes within a satellite cell. Thus satellite cells freshly isolated from adult chicken and quail are committed to form fibers of at least two types, satellite cells of these two types are found in different proportions in fast and slow muscles, and repeated cell proliferation of quail satellite cell progeny may alter satellite cell progeny to increasingly form fibers of a single type.  相似文献   

17.
Spread-wing postures of birds often have been studied with respect to the function of behavior, but ignored with regard to the mechanism by which the birds accomplish posture. The double-crested cormorant, Phalacrocorax auritus, was used as a model for this study of spread-wing posture. Those muscles capable of positioning and maintaining the wing in extension and protraction were assayed histochemically for the presence of slow (postural) muscle fibers. Within the forelimb of Phalacrocorax, Mm. coracobrachialis cranialis, pectoralis thoracicus (cranial portion), deltoideus minor, triceps scapularis, and extensor metacarpi radialis pars dorsalis and ventralis were found to contain populations of slow-twitch or slow-tonic muscle fibers. These slow fibers in the above muscles are considered to function during spread-wing posture in this species. J Morphol 233:67–76, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

18.
Continuous stimulation of a rabbit fast muscle at 10 Hz changes its physiological and biochemical parameters to those of a slow muscle. These transformations include the replacement of myosin of one type by myosin of another type. Two hypotheses could explain the cellular basis of these changes. First, if fibers were permanently programmed to be fast or slow, but not both, a change from one muscle type to another would involve atrophy of one fiber type accompanied by de novo appearance of the other type. Alternatively, preexisting muscle fibers could be changing from the expression of one set of genes to the expression of another. Fluorescein-labeled antibodies against fast (AF) and slow (AS) muscle myosins of rabbits have been prepared by procedures originally applied to chicken muscle. In the unstimulated fast peroneus longus muscle, most fibers stained only with AF; a small percentage stained only with AS; and no fibers stained with both antibodies. In stimulated muscles, most fibers stained with both AF and AS; with increasing time of stimulation, there was a progressive decrease in staining intensity with AF and a progressive increase in staining intensity with AS within the same fibers. These results are consistent with a theory that individual preexisting muscle fibers can actually switch from the synthesis of fast myosin to the synthesis of slow myosin.  相似文献   

19.
The adaptation of a slow (soleus, Sol) and a fast (medial gastrocnemius, MG) skeletal muscle to spaceflight was studied in five young male rats. The flight period was 12.5 days and the rats were killed approximately 48 h after returning to 1 g. Five other rats that were housed in cages similar to those used by the flight rats were maintained at 1 g for the same period of time to serve as ground-based controls. Fibers were classified as dark or light staining for myosin adenosine triphosphatase (ATPase). On the average, the fibers in the Sol of the flight rats atrophied twice as much as those in the MG. Further, the fibers located in the deep (close to the bone and having the highest percentage of light ATPase and high oxidative fibers in the muscle cross section) region of the MG atrophied more than the fibers located in the superficial (away from the bone and having the lowest percentage of light ATPase and high oxidative fibers in the muscle cross-section) region of the muscle. Based on quantitative histochemical assays of single muscle fibers, succinate dehydrogenase (SDH) activity per unit volume was unchanged in fibers of the Sol and MG. However, in the Sol, but not the MG, the total amount of SDH activity in a 10-microns-thick section of a fiber decreased significantly in response to spaceflight. Based on population distributions, it appears that the alpha-glycerophosphate dehydrogenase (GPD) activities were elevated in the dark ATPase fibers in the Sol, whereas the light fibers in the Sol and both fiber types in the MG did not appear to change. The ratio of GPD to SDH activities increased in the dark (but not light) fibers of the Sol and was unaffected in the MG. Immunohistochemical analyses indicate that approximately 40% of the fibers in the Sol of flight rats expressed a fast myosin heavy chain compared with 22% in control rats. Further, 31% of the fibers in the Sol of flight rats expressed both fast and slow myosin heavy chains compared with 8% in control rats. Immunohistochemical changes in the MG were minimal. These data suggest that the magnitude and direction of enzymatic activity and cell volume changes are dependent on the muscle, the region of the muscle, and the type of myosin expressed in the fibers. Further, the ability of fibers to maintain normal or even elevated activities per unit volume of some metabolic enzymes is remarkable considering the marked and rapid decrease in fiber volume.  相似文献   

20.
The preparation of rabbit antibodies uniquely specific for the alkali 1 (A1) and alkali 2 (A2) light chains of chicken pectoralis myosin has led to the direct isolation of two homodimeric species of myosin: A1-myosin and A2-myosin, molecules which contain the same light chain on each head. The existence of a heterodimeric species, containing both A1 and A2 light chains, was also inferred. The three types of alkali light chain isoenzymes occur in approximately equal amounts in adult chicken pectoralis muscle.The specificities of the antibodies were determined by modified Farr and solid phase radioimmunoassays, as well as by antibody-affinity chromatography. The determinants in myosin that are recognized by the purified antibodies appear to be confined to the N-terminal sequences of the alkali light chains. As a result of this narrow specificity, these immunological reagents can be used to characterize the distribution of A1 and A2 within the myosin molecule, and to localize the individual light chains within the muscle.By labeling the antibodies with a fluorescent marker we have shown that A1 and A2 are present within each myofibril, as well as within the same fiber (Lowey et al., 1979a). Moreover, by using goat anti-rabbit immunoglobulin to enhance the visualization of the primary antibodies against the light chains, we have demonstrated in the electron microscope that A1 and A2 co-exist along the length of each myofilament. This observation suggests that whatever functional differences may exist among the alkali light chain isoenzymes, they must operate within the constraints of a single filament.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号