共查询到20条相似文献,搜索用时 15 毫秒
1.
Eduardo Costas Rafael Zardoya Jose Bautista Amando Garrido Carmen Rojo Victoria Lpez-Rodas 《Journal of phycology》1995,31(5):801-807
Morphological features are the predominant criteria used to define species of marine dinoflagellates. Taxonomic problems with some toxic groups has led to the implementation of molecular taxonomy techniques and development of a genospecies concept. As a result, the relationships between “morphospecies” and “genospecies” has been questioned. In this study, the genetic differentiation between two sets of closely related morphospecies, Gymnodinium catenatum Graham/Gyrodinium impudicum Fraga and Alexandrium minutum Halim/Alexandrium lusitanicum Balech, were analyzed. The extent of morphological differentiation existing within these two groups is of the same order of magnitude. Analysis of cell surface antigens detected by preadsorbed serum, cell surface glycan moieties detected by lectins and sequencing of the D9 and D10 domains of the Large-subunit ribosomal RNA gene, showed that the extent of genetic differentiation existing between the dinofagellates Gymnodinium catenatum/Gyrodinium impudicum is substantial. Therefore, both morphological and genetic criteria resolve these organisms as two distinct entities. In contrast, Alexandrium minutum/Alexandrium lusitanicum were indistinguishable using the some suite of molecular markers. The findings demonstrated that classifications based on morphological criteria may be incongruous. On a practical level, molecular taxonomy provides useful tools to distinguish between morphologically similar microalgal species and furthermore can prevent misidentification of species such as Gymnodinium catenatum/Gyrodinium impudicum, a frequent occurrence when samples are fixed with Lugol's or formaldehyde solution. 相似文献
2.
Fluorescent DNA probes (cCAT-F1 and cTAM-Fl) complementary to the 3′ end of ribosomal RNA (rRNA) internal transcribed spacer 1 sequences (ITS 1: positions 154–176) of toxic species of Alexandrium catenella (Whedon and Kofoid) Taylor and A. tamarense (Lebour) Taylor were applied to various cultures of the genus Alexandrium and several other phytoplankters using whole-cell fluorescent in situ hybridization. cCAT-F1 and cTAM-F1 reacted with targeted strains of A. catenella (catenella type) and A. tamarense (tamarense type), respectively, and did not react with isolates of A. affine (Inoue et Fukuyo) Balech, A. fraterculus (Balech) Balech, A. insuetum Balech, A. lusitanicum Balech, A. pseudogonyaulux (Biecheler)Horiguchi ex Yuki et Fukuyo comb. nov., nor isolates of Prorocentrum micans Ehrenberg, Amphidinium carterae Hulburt, Heterocapsa triquetra (Ehrenberg) Stein, Gymnodinium mikimotoi Miyake et Kominami ex Oda, Skeletonema costatum (Greville) Cleve, Heterosigma akashiwo (Hada) Hada, and Chattonella antiqua (Hada) Ono. DNase I and RNase A treatment showed that probes hybridized to ribosomal DNA, not rRNA. Probes were localized at the bottom of the U-shaped nucleus, a region that corresponds to the nucleolus. The probes are highly specific for particular strains of A. catenella and A. tamarense and are applicable for identifying these species collected from cultured and possibly natural populations. 相似文献
3.
An electron microscopic examination of large amorphous inclusions located in a variety of photosynthetic thecate dinoflagellates (Alexandrium ostenfeldii (Paulsen) Balech et Tangen, Gonyaulax diegensis Kofoid, Scrippsiella sp., Ceratium longipes (Bailey) Gran, and Prorocentrum micans Ehrenberg) and a nonphotosynthetic thecate species (Amylax sp.) revealed each inclusion to be a food vacuole, the majority of which were ingested ciliate prey. Recognizable features of these ciliates included linear arrays of basal bodies and cilia consistent with oligotrich polykinetid structure, characteristic macronuclei, chloroplasts (evidently kleptoplastids), cup-shaped starch plates, and cylindrical extrusomes. Three species contained (apparent) nonciliate prey: Scrippsiella sp., whose food vacuoles consistently contained unusual and complex extrusome-like cylindrical bodies having a distinctive six-lobed, multilayered structure; P. micans, which contained an unidentified encysted cell; and a single A. ostenfeldii cell, containing a Dinophysis sp. dinoflagellate cell. Several food vacuoles of ciliate origin had a red hue. This, together with the resemblance of A. ostenfeldii cells to planozygotes, suggests that similar structures previously identified as accumulation bodies may in fact be food vacuoles and that feeding may in some cases be associated with sexual processes. 相似文献
4.
Elisa Berdalet 《Journal of phycology》1992,28(3):267-272
Laboratory experiments were conducted to study the effects of agitation on growth, cell division, and nucleic acid dynamics of the dinoflagellate Gymnodinium nelsonii Martin. When cultures were placed on an orbital shaker at 100 rpm, cell division was prevented, cellular volume increased up to 1.5 times that of the nonperturbed cells, the form and location of the cell nucleus were modified, and the RNA and DNA concentrations per cell increased up to 10 times those of the controls. When shaking was stopped after 10 days, cells divided immediately at about 2/3 of the division rate of the unshaken populations, and all the altered parameters were restored. If the agitation continued for more than 20 days, total cell death and disintegration occurred. Several cellular types differing in size and shape were observed in the control and shaken cultures. One possible hypothesis for these results is that failure of the cell to divide results from physical disturbance of the microtubule assemblage associated with chromosome separation during mitosis. My study suggests that small-scale oceanic turbulence of sufficient intensity may inhibit growth of individual dinoflagellate cells, but immediate development of the population may continue when calm weather follows the active mixing period. 相似文献
5.
Isabelle C. Biegala Gabrielle Kennaway Elsa Alverca Jean‐Franois Lennon Daniel Vaulot Nathalie Simon 《Journal of phycology》2002,38(2):404-411
In the marine environment, phytoplankton and bacterioplankton can be physically associated. Such association has recently been hypothesized to be involved in the toxicity of the dinoflagellate genus Alexandrium. However, the methods, which have been used so far to identify, localize, and quantify bacteria associated with phytoplankton, are either destructive, time consuming, or lack precision. In the present study we combined tyramide signal amplification–fluorescent in situ hybridization (TSA‐FISH) with confocal microscopy to determine the physical association of dinoflagellate cells with bacteria. Dinoflagellate attached microflora was successfully identified with TSA‐FISH, whereas FISH using monolabeled probes failed to detect bacteria, because of the dinoflagellate autofluorescence. Bacteria attached to entire dinoflagellates were further localized and distinguished from those attached to empty theca, by using calcofluor and DAPI, two fluorochromes that stain dinoflagellate theca and DNA, respectively. The contribution of specific bacterial taxa of attached microflora was assessed by double hybridization. Endocytoplasmic and endonuclear bacteria were successfully identified in the nonthecate dinoflagellate Gyrodinium instriatum. In contrast, intracellular bacteria were not observed in either toxic or nontoxic strains of Alexandrium spp. Finally, the method was successfully tested on natural phytoplankton assemblages, suggesting that this combination of techniques could prove a useful tool for the simultaneous identification, localization, and quantification of bacteria physically associated with dinoflagellates and more generally with phytoplankton. 相似文献
6.
Maged P. Mansour John K. Volkman Anne E. Jackson Susan I. Blackburn 《Journal of phycology》1999,35(4):710-720
The fatty acid and sterol compositions of five species of marine dinoflagellates (Scrippsiella sp. Symbiodinium microadriaticum Freud, Gymnodinium sp., Gymnodinium sanguineum Hirasaki, and Fragilidium sp.) are reported. All contained the major fatty acids that are considered common in dinoflagellates, but the proportions were quite variable, and some species contained low contents of some polyunsaturated fatty acids. Concentration ranges for the major fatty acids were: 16:0 (9.0%–24.8%), 18:4(n-3) (2.5%–11.5%), 18:5(n-3) (7.0%–43.1%), 20:5(n-3) (EPA) (1.8%–20.9%), and 22:6(n-3) (DHA) (9.9%– 26.3%). Small amounts of novel very-long-chain highly unsaturated C28 fatty acids occurred in all species. Each dinoflagellate contained a complex mixture of 4-methyl sterols and 4-desmethyl sterols. Four species contained cholesterol, although the amounts were highly variable (from 0.2% of total sterols in Scrippsiella sp. to 45.6% in Fragilidium sp.). All but G. sanguineum contained the 4-methyl sterol dinosterol, and all species contained sterols lacking a double bond in the ring system (i.e. stanols); in Scrippsiella sp. cholestanol composed 24.3% of the total sterols. Other common features of the 4-methylsterol profiles were the presence of 23,24-dimethyl alkylation and unsaturation at Δ22 in the side chain. In Scrippsiella sp., four steroidal ketones were identified: cholestanone, dinosterone, 4α,23,24-trimethyl-5α-cholest-8(14)-en-3-one, and dinostanone. The structures of these corresponded to the major sterols in this species, suggesting that the sterols and steroidal ketones are biosynthetically linked. Steroidal ketones were not detected in the other species. Although fatty acid profiles can be used to distinguish among algal classes, they were not useful for differentiating among dinoflagellate species. In contrast, whereas some taxonomic groupings of dinoflagellates display similar sterol patterns, others, such as the gymnodinoids studied here, clearly do not. The combination of fatty acid, sterol, and steroidal ketone profiles may be useful complementary chemotaxonomic tools for distinguishing morphologically similar species. The identification of steroidal ketones supports earlier suggestions that certain dinoflagellates might be a significant source of such components in marine environments. 相似文献
7.
Christopher A. Scholin Michel Herzog Mitchell Sogin Donald M. Anderson 《Journal of phycology》1994,30(6):999-1011
A fragment of the large-subunit (LSU) ribosomal RNA gene (rDNA) from the marine dinoflagellates Alexandrium tamarense (Lebour) Balech, A. catenella (Whedon et Kofoid) Balech, A. fundyense Balech, A. affine (Fukuyo et Inoue) Balech, A. minutum Halim, A. lusitanicum Balech, and A. andersoni Balech was cloned and sequenced to assess inter- and intraspecific relationships. Cultures examined were from North America, western Europe, Thailand, Japan, Australia, and the ballast water of several cargo vessels and included both toxic and nontoxic isolates. Parsimony analyses revealed eight major classes of sequences, or “ribotypes,” indicative of both species- and strain-specific genetic markers. Five ribotypes subdivided members of the A. tamarense/catenella/ fundyense species cluster (the “tamarensis complex”) but did not correlate with morphospecies designations. The three remaining ribotypes were associated with cultures that clearly differ morphologically from the tamarensis complex. These distinct sequences were typified by 1) A. affine, 2) A. minutum and A. lusitanicum, and 3) A. andersoni. LSU rDNA from A. minutum and A. lusitanicum was indistinguishable. An isolate's ability to produce toxin, or lack thereof, was consistent within phylogenetic terminal taxa. Results of this study are in complete agreement with conclusions from previous work using restriction fragment-length polymorphism analysis of small subunit rRNA genes, but the LSU rDNA sequences provided finer-scale species and population resolution. The five divergent lineages of the tamarensis complex appeared indicative of regional populations; representatives collected from the same geographic region were the most similar, regardless ofmorphotype, whereas those from geographically separated populations were more divergent even when the same morphospecies were compared. Contrary to this general pattern, A. tamarense and A. catenella from Japan were exceptionally heterogeneous, displaying sequences associated with Australian, North American, and western European isolates. This diversity may stem from introductions of A., tamarense to Japan from genetically divergent sources in North America and western Europe. Alexandrium catenella from Japan and Australia appeared identical, suggesting that these two regional populations share a recent, common ancestry. One explanation for this genetic continuity was suggested by A. catenella cysts transported from Japan to Australia via ships' ballast water: the cysts contained LSU rDNA sequences that were indistinguishable from those of known populations of A. catenella in both Japan and Australia. Ships ballasted in South Korea and Japan have also fostered a dispersal of viable A. tamarense cysts to Australia, but their LSU rDNA sequences indicated they are genetically distinct from A. tamarense/catenella previously found in Australia and genetically distinct from each other, as well. Human-assisted dispersal is a plausible mechanism for inoculating a region with diverse representatives of the tamarensis complex from geographically and genetically distinct source populations. The D1-D2 region of Alexandrium LSU rDNA is a valuable taxo-nomic and biogeographic marker and a useful genetic reference for addressing dispersal hypotheses. 相似文献
8.
9.
Small-sized vegetative cells were found to co-occur with normal-sized cells in populations of the European bloom-forming dinoflagellate Gymnodinium cf. nagasakiense Takayama et Adachi, currently known as Gyrodinium aureolum Hulburt, but not in populations of the closely related Japanese species Gymnodiniumn agasakiense. We examined how cell size differentiation may influence growth and cell cycle progression under a 12:12-h light: dark cycle in the European taxon, as compared to the Japanese one. Cell number and volume and chlorophyll red fluorescence in both species varied widely during the photocycle. These variations generally appeared to be related lo the division period, which occurred at night, as indicated by the variations of the fraction of binucleated cells (mitotic index) as well as the distribution of cellular DNA content. “Small” cells of G. cf. nagasakiense divided mainly during the first part of the dark period, although a second minor peak of dividing cells could occur shortly before light onset. In contrast, “large” cells displayed a sharp division peak that occurred 9 h after the beginning of the dark period. The lower degree of synchrony of “small” cells could be a consequence of their faster growth. Alternatively, these data may suggest that cell division is lightly controlled by an endogenous clock in “large” cells and much more loosely controlled in “small” cells. Cells of the Japanese species, which were morphologically similar to “large” cells of the European taxon, displayed an intermediate growth pattern between the two cell types of G. cf. nagasakiense, with a division period that extended to most of the dark period. 相似文献
10.
Two distinct small-subunit ribosomal RNA genes (SSU rDNAs), termed the “A gene” and “B gene,” were recently found in the toxic dinoflagellate Alexandrium fundyense Balech. A restriction fragment length polymorphism (RFLP) assay was developed to rapidly detect the A and B genetic markers. SSU rDNA from 58 cultures with species designations of A. tamarense (Lebour) Balech, A. catenella (Whedon et Kofoid) Balech, A. fundyense, A. affine (Fukuyo et Inoue)Balech, A. minutum Halim, A. lusitanicum Balech, and A. andersoni Balech were screened. These cultures represent toxic and non-toxic isolates from North America, western Europe, Thailand, Japan, Australia, and the ballast water of several cargo ships. The RFLP assay revealed five distinct groups. Three subdivided the A. tamarense/catenella/fundyense“species complex” into clusters defined by geographic origin, not by morphospecies designations. The fourth group consisted of A. affine, whereas the fifth group was represented by A. minutum, A. lusitanicum, and A. andersoni. The B gene was only found in A. tamarense, A. catenella, and A. fundyense, but not in all isolates. However, all North American isolates of this closely related group harbored this gene, and it also was found in some A. tamarense from scattered locations in Japan and in the ballast water of one ship that operated exclusively between Japan and Australia. Isolates without the B gene appeared to have only a single class of SSU rDNA. The B sequence was not essential for toxin production, but thus far those organisms harboring it were toxic. The A. tamarense/catenella/fundyense complex is composed of genetically distinct populations, within which may exist two or all three of the mophotypically defined species. The B gene is a promising taxonomic and biogeographic marker and may be useful for tracking the regional and/or global dispersal of particular populations. 相似文献
11.
Maria A. Faust 《Journal of phycology》1990,26(3):548-558
Two new dinoflagellate species, Prorocentrum hoffmannianum and Prorocentrum ruetzlerianum, and four known species, Prorocentrum emarginatum Fukuyo 1981, Prorocentrum mesicanum Tafall 1942, Prorocentrum concavum Fukuyo 1981, and Prorocentrum lima (Ehr.) Dodge 1975, from floating detritus and sediments in a subtropical mangrove island, Twin Cays, Belize, Central America are described from scanning electron micrographs. Differences in the following characters of surface micromorphology separated the species: ornamentation of thecal plates (shape, size, and number of valve pores and areolae) and the architecture of the periflagellar area and intercalary band. 相似文献
12.
The influence of photoadaptive state on the spectral dependency of the maximum quantum yield for carbon fixation was determined for two red tide dinoflagellates, Heterocapsa pygmaea Loeblich, Schmidt, et Sherley and Prorocentrum minimum Pavillard. Cultures were acclimated to green, blue, red, and white light. The spectral dependency in the light-limited slope of the photosynthesis–irradiance curves (α) was measured with carbon action spectra that, when divided by the spectrally weighted absorption coefficient, provided estimates of the maximum quantum yield (φmax) for carbon fixation. Values of φmax varied with wavelength within each culture condition as well as between different culture conditions. The degree to which the spectral dependency in φmax was influenced by the presence of photoprotective carotenoids and/or energy imbalances between photosystems I and II was assessed for both dinoflagellates. The impact of photoprotective pigmentation on the spectral dependency of φmax was most significant for cells grown under high light conditions reflecting the enrichment of diadinoxanthin. Energy imbalances between the photosystems was assessed by quantifying enhancement effects on spectral φmax in the presence of background illumination. Under our experimental conditions, enhancement effects on carbon action spectra were evident for H. pygmaea under nearly all growth conditions but were not detectable for P. minimum under any growth condition. We hypothesize that sensitivity to enhancement effects reflected differences in the structure of the photosynthetic machinery of these two peridinin-containing dinoflagellates. While measurements of φmax are sensitive to the color of the light within an incubator, the relative impact on the spectral dependency of a was less than the wavelength dependency associated with the cellular absorption properties. Finally we used our data to validate an approach proposed by others to aid in the correction of photosynthetic measurements where the in situ spectral light field cannot be easily mimicked. The average error using this approach was 8%, which was significantly less than the error associated with ignoring the spectral dependency in α. 相似文献
13.
Some, but not all, marine pennate diatoms of the genus Pseudo-nitzschia H. Peragallo are associated with the production of domoic acid, a naturally occurring amino acid responsible for amnesic shellfish poisoning. Distinguishing between potentially toxic and nontoxic representatives of this genus is time-consuming and difficult because it demands scanning electron microscopy of cleaned frustules. The objective of this work is to speed and ease identification of these organisms by using whole-cell (in situ) hybridization and species-specific large-subunit ribosomal RNA (LSU rRNA)-targeted oligonucleotide probes. Toward that end, cultures of P. australis Frenguelli, P. pungens (Grunow) Hasle, P. multiseries (Hasle) Hasle, P. fraudulenta (P. T. Cleve) Heiden, P. heimii Manguin, P. delicatissima (P. T. Cleve) Heiden, P. pseudo-delicatissima (Hasle) Hasle, and P. americana (Hasle) Fryxell were screened with a suite of 15 putative species-specific probes. Of those, a subset of eight probes was found that distinguished each species tested. In addition, Pseudo-nitzschia chloroplasts were labeled with a probe directed against a eubacterial-conserved sequence. Identification of new cultures based on their reactivity toward a set of probes agreed with species designations as defined by morphological criteria. Whole-cell hybridization is a rapid, simple, and cost-effective technique for discriminating among cultured Pseudo-nitzschia species. 相似文献
14.
We detected lectin-like compounds and lectin receptors in microalgae by hemagglutination, competitive inhibition with sugars, and reactivity with lectins isolated from other sources. Cell extracts from eight species of Dinophyceae and from one species each of Raphidophyceae and Bacillariophyceae exhibited hemagglutination toward trypsinized rabbit erythrocytes. In addition, the culture media of the dinoflagellate Alexandrium cohorticula and the raphidophyte Chattonella antiqua displayed similar hemagglutination. These activities were not inhibited by any monosaccharides or oligosaccharides tested but were inhibited by some specific glycoproteins. This suggests that the active factors were lectin-like compounds. Upon exposing intact, healthy cells of 12 species of Dinophyceae and one species each of Raphidophyceae, Cryptophyceae, Bacillariophyceae, and Chlorophyceae to lectins isolated from either macroalgae or terrestrial plants, most species were adversely affected. The negative effects included one or more of the following: impaired motility, disappearance of motility, agglutination, abnormal morphology, and cell rupture or lysis. Some species, even after freezing, thawing, and washing with saline solution, still agglutinated with macroalgal or terrestrial plant lectins. This study suggests that lectins and carbohydrate-containing lectin receptors may commonly occur on the cell surfaces of various species of microalgae. 相似文献
15.
This paper presents a comprehensive examination of the taxonomy of the genus Ostreopsis Schmidt. The morphology of six species of marine dinoflagellates, Ostreopsis siamensis Schmidt 1902. Ostreopsis lenticularis Fukuyo 1981, Ostreopsis ovata Fukuyo 1981, Ostreopsis heptagona Norris, Bomber, et Balech 1985, Ostreopsis mascarenensis Quod 1994, and Ostreopsis labens Faust et Morton 1995 from three geographical regions (Japan, Southwest Indian Ocean, and the Caribbean) and three marine habitats (sand, water column, and macroalgal surfaces) are described from scanning electron micrographs. Differences in the following morphological characteristics differentiated the species: cell shape and size, and ornamentation of the epitheca, cingulum, and hypotheca. The thecal plate formula of the six Ostreopsis species is Po, 3′, 7″, 6C, 6S?, Vp, Rp, 5′″, 1p, 2″″, with differences in thecal plate size and shape. The cingulum in ventral view has two prominent structures: a ventral plate (Vp) with a ventral pore (Vo) and a ridged plate (Rp) that distinguishes Ostreopsis species from any other dinoflagellate taxa. This paper also includes ecological and toxicity information regarding the six Ostreopsis species. 相似文献
16.
17.
Augustine T. Chan 《Journal of phycology》1978,14(4):396-402
Cell division rates and chlorophyll a and protein contents for ten diatom and dinoflagellate species were measured. Species were chosen to include a wide range of cell size in terms of both cell volume and cell protein: from 0.004 ng protein/cell for a small Chaetoceros sp. to 2.2 ng protein/cell for Prorocentrum micans Ehrenberg. Experiments were conducted in batch or semi-continuous cultures at 21 C under continuous illumination from 8–256 μEin .m-2'.s-1. Light saturation of cell division occurred at 32–80 μEin m-1 s-1 for all species, with no observable difference between the two phylogenetic groups. When the light-saturated cell division rates were plotted against cell size as protein/cell, the diatoms and dinoflagellates fell on two separate lines with the diatoms having higher rates. Chl a /protein ratios (μg/μg) decreased with increasing irradiance. The diatoms had higher chl a per unit protein. The relationship between cell division rate and the chl a/protein ratio is discussed. 相似文献
18.
Ribulose bisphosphate carboxylase / oxygenase (Rubisco) from the dinoflagellates Symbiodinium sp. Freudenthal and Amphidinium carterae Hulburt rapidly loses activity following cell lysis. Evidence presented indicates that this is not due to proteolysis. Using the tight binding inhibitor [14C] carboxyarabinitol bisphosphate as a marker, the Rubisco large subunit (LSu) from Symbiodinium sp. was purified. The subunit molecular weight was 56 kDa, while non-denaturing polyacrylamide gel electrophoresis indicated that the purified protein had a molecular weight significantly less than that expected of the intact hexadecameric protein. No trace of the small subunit was apparent. The initial loss of carboxylase activity following cell lysis may be due to instability of the quaternary structure of the enzyme. Antibodies prepared to the purified LSU cross-reacted with LSus from other dinoflagellates but not with the LSus of higher plants, diatoms, and other chromophytic algae. This suggests that the LSu of at least some dinoflagellates is antigenically different from that of other eukaryotes. 相似文献
19.
The dinoflagellate Gymnodinium sp., which preys specifically on cells of the red microalga Porphyridium sp., possesses enzymes that degrade exocellular polysaccharides of the Porphyridium sp. A crude extract of Gymnodinium sp. was applied to this polysaccharide, and the degradation products were characterized by charge and size separations. Charge separation revealed the presence of a fraction that was not found in the native polysaccharide. This fraction, which was eluted from an anion-exchange resin with water alone, was composed mostly of glucose and xylose (in a 1:1 weight ratio). Size separation of the degradation products revealed three fractions; the molecular weight of the main one was 5 × 106 daltons, whereas that of the native polysaccharide was 7 × 106 daltons. The carbohydrate composition of these fractions was determined. Although the main product of degradation had a relatively high molecular weight, its viscosity was significantly reduced relative to the native polysaccharide. Additional enzymatic degradation is required for further exploration of the structure of the exocellular polymer of Porphyridium sp. 相似文献
20.
Gyrodinium estuariale Hulburt has ultrastructural features typical for a dinoflagellate including a particularly well developed pusule and numerous prominent trichocysts. The amphiesma is relatively simple with thecal vesicles containing thecal membranes. The epicone is embellished with two concentric raised ridges reminiscent of the form typical for more heavily thecate genera. 相似文献