首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SUMMARY 1. Biomass and production of picophytoplankton, phytoplankton and heterotrophic bacterioplankton were measured in seven lakes, exhibiting a broad range in water colour because of humic substances. The aim of the study was to identify environmental variables explaining the absolute and relative importance of picophytoplankton. In addition, two dystrophic lakes were fertilised with inorganic phosphorus and nitrogen, to test eventual nutrient limitation of picophytoplankton in these systems.
2. Picophytoplankton biomass and production were highest in lakes with low concentrations of dissolved organic carbon (DOC), and DOC proved the factor explaining most variation in picophytoplankton biomass and production. The relationship between picophytoplankton and lake trophy was negative, most likely because much P was bound in humic complexes. Picophytoplankton biomass decreased after the additions of P and N.
3. Compared with heterotrophic bacterioplankton, picophytoplankton were most successful at the clearwater end of the lake water colour gradient. Phytoplankton dominated over heterotrophic bacteria in the clearwater systems possibly because heterotrophic bacteria in such lakes are dependent on organic carbon produced by phytoplankton.
4. Compared with other phytoplankton, picophytoplankton did best at intermediate DOC concentrations; flagellates dominated in the humic lakes and large autotrophic phytoplankton in the clearwater lakes.
5. Picophytoplankton were not better competitors than large phytoplankton in situations when heterotrophic bacteria had access to a non-algal carbon source. Neither did their small size lead to picophytoplankton dominance over large phytoplankton in the clearwater lakes. Possible reasons include the ability of larger phytoplankton to float or swim to reduce sedimentation losses and to acquire nutrients by phagotrophy.  相似文献   

2.
Composition and seasonal dynamics of phytoplankton, bacteria,and zooplankton (including heterotrophic flagellates, ciliates,rotifers and crustaceans) were studied in 55 lakes in NorthernGermany with different trophic status, ranging from mesotrophicto hypertrophic. Mean abundance and biomass of all groups increasedsignificantly with trophic level of the lake, but bacteria andmetazooplankton showed only a weak correlation and a slightincrease with chlorophyll concentration. Composition of phytoplanktonshowed a dominance of cyanobacteria in hypertrophic lakes, whereasthe importance of chrysophytes and dinophytes decreased withan increase in trophic status. Protozoans (heterotrophic flagellatesand ciliates) made up 24% (mesotrophic lakes) to 42% (hypertrophiclakes) of total zooplankton biomass on average, and were dominatedby ciliates (62–80% of protozoan biomass). Seasonally,protozoans can build up to 60% of zooplankton biomass in spring,when heterotrophic flagellates can contribute  相似文献   

3.
SUMMARY 1. The planktonic ciliate communities of eleven organically coloured north and central Florida lakes representing a variety of trophic conditions were examined during 1979–80. The total abundance and biomass of ciliates were not significantly different from comparable clearwater lakes and only minor taxonomic replacements were noted at the order level.
2. Timing of population peaks of oligotrophic lakes was dissimilar to clearwater lakes of the same trophic state, but seasonality in meso-trophic and eutrophic lakes resembled patterns described for comparable clearwater lakes.
3. Various ciliate components were strongly correlated with chlorophyll a concentrations, but only moderately correlated to dominant phytoplankton groups. No significant correlations were found between ciliate components and bacterial abundance.
4. Myxotrophic taxa numerically dominated oligotrophic systems, particularly during midsummer, and accounted for a large percentage of the total ciliate biomass. Estimates of the ciliate contribution to total autotrophic biomass indicate that these zoochlorellae-bearing protozoa may account for much of the autotrophic biomass during midsummer periods in coloured lakes, and thus may lead to an overestimation of phytoplankton standing crops available to zooplankton grazers if chlorophyll a is used as a surrogate measure of algal biomass.  相似文献   

4.
Major nutrients (N and P) and phytoplankton from 19 large lakes from southern (61°) to northern (69°) Finland were analyzed to detect long-term trends and regional differences. The data sets from June, July and August cover the period from the early 1980s to the present. Altogether >700 phytoplankton and >4000 N, P and Chl a results were used for the study. In 40% of the lakes, the total phosphorus (TP) concentration decreased significantly and in >25% of the lakes a significant reduction was found in the total nitrogen (TN) concentration. At the same time, the phytoplankton biomass declined only in 15% of the lakes and the long-term trends in chlorophyll a more often increased than decreased. A clear gradient from southern to northern Finland and western to eastern Finland was found in the phytoplankton biomass. During the study period, the biomasses of cyanobacteria and centrales (diatoms) decreased whilst there was an increase in the biomass of pennales (diatoms) in one-third of the lakes. The proportion of chlorophytes in the total biomass also increased in >20% of the study lakes. In southern and western Finland, the total biomass and the contribution of cyanobacteria were higher. Centrales made a higher contribution to the total biomass in the north. Pennales and chlorophytes were less abundant and chrysophytes more abundant in the east. Differences in the community composition reflected the gradients in the total nutrients, and particularly in TP. The observations support the assumed role of phosphorus as the key limiting nutrient in large Finnish lakes irrespective of lake′s location. The N:P ratio proved to be a poor predictor of cyanobacteria occurrence in the study lakes.  相似文献   

5.
6.
Relationships among picoplankton, protozoa, phytoplankton, plantnutrients, lake type, drainage basin morphology and land coverwere studied in 45 water bodies in South Island, New Zealandthat ranged from large, deep, ultra-oligotrophic lakes to shallow,macrophyte-dominated ponds and swamps. The biomasses of mostheterotrophic components of the pelagic microbial food webswere positively related to phytoplankton and features of thedrainage basin that enhanced nutrient input, and imply strongresource-driven structuring of pelagic microbial food webs.Prokaryotic picophytoplankton biomass was negatively relatedto indices of eutrophication, and the picoautotroph contributionto total microbial food web biomass declined with increasingtotal phosphorus concentration from 16.5% in deep lakes to <0.02%in swamps and ponds. Biomass ratios of (picoplankton plus protozoa):phytoplanktonranged from 40:60 in swamps and ponds to >70:30 in deep lakes,and indicate the potential importance of microbial food websin carbon transfer to higher trophic levels in deep, less productivelakes. Strong relationships exist between land use in the catchmentand pelagic microbial food web structure and biomass acrossa wide range in size and trophic state of water bodies in heterogeneouslandscapes.  相似文献   

7.
&#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &# 《水生生物学报》2014,38(2):335-341
为了研究太湖夏季浮游细菌群落多样性与水体营养盐的关系,在太湖全湖范围内开展了一次大规模浮游细菌采样调查,分析了太湖不同湖区浮游细菌丰度和多样性组成。研究发现,浮游细菌丰度在不同湖区中存在明显的空间差异,从北部和西部湖区沿湖流向东南方向至湖心和南部沿岸再到东部湖区呈下降趋势,这与太湖水体营养水平从高到低变化趋势一致。浮游细菌丰度与营养盐浓度回归分析结果显示,总磷(TP)与细菌丰度存在较好的正相关(R2=0.6392,n=29,P0.01),而总氮(TN)与细菌丰度无显著相关(R2=0.0663,n=29,P0.05)。因此,磷是太湖夏季浮游细菌生长的限制因子。不同湖区营养盐与浮游细菌群落多样性也具有显著的正相关,随着营养水平的升高,浮游细菌多样性增加。此外,细菌群落的组成在不同湖区间亦具有明显的空间异质性,与不同湖区营养水平空间变化一致。研究结果将有助于人们更好地理解淡水湖泊中微生物循环和生态系统功能。    相似文献   

8.
Romo  Susana  Miracle  Rosa 《Hydrobiologia》1994,275(1):153-164
A long-term phytoplankton study was carried out in the Albufera of Valencia, a shallow hypertrophic lake (surface area 21 km2, mean depth 1 m, total inorganic nitrogen load 155 g m-2 y-1, total inorganic phosphate load 15 g m-2 y-1) from 1980 to 1988. The lake functions as a reservoir for the surrounding rice cultivation. From 1940's to 1988, its phytoplankton assemblage has been altered from a mesotrophic to a hypertrophic character, as consequence of the increasing pollution. For 1980–88, annual variations in the phytoplankton were less pronounced than seasonal changes. The hypertrophic and morphometric features of the lake favoured the stability of the phytoplankton assemblage and chlorophyll a levels during the study period. Seasonal and horizontal distribution of the total phytoplankton abundance and biomass were highly influenced by the hydrological cycle of the lagoon. Compared with other shallow nutrient rich lakes, the Albufera of Valencia is similar to the shallow hypertrophic lakes of the Netherlands.  相似文献   

9.
This study describes the occurrence, importance and seasonal patterns of picoplankton in two wetlands (TDNP and La Safor), and compares them to a system of fifteen interconnected lakes (Ruidera). In TDNP we performed a six‐year monthly study in three sites of the wetland. Bacterial abundance increased throughout time and the autotrophic picoplankton (APP) range was wide (up to 33 × 106 cells/ml). The annual averaged APP contribution to total picoplankton and phytoplankton biovolumes was 0.5–22% and 0.03–6% respectively. There were large differences among sites in terms of APP absolute and relative abundance and seasonal patterns. In La Safor, the APP relative contribution to picoplankton and phytoplankton biovolumes was 0–25% and 0–40%, respectively, while in the Ruidera lakes was 0–47% and 0–5%, respectively. In the three systems there was a significant correlation between bacterial abundance and chlorophyll a but the slopes of the linear regressions were different. No significant relationships were found of APP abundance and trophic status in the wetlands, but were noted in the lake system. There was no clear relationship of APP contribution to total phytoplankton biomass to the trophic gradient in wetlands. In the lakes, the higher contribution of APP was found in those with higher trophic levels.  相似文献   

10.
We analyzed experimentally the relative contribution of phytoplankton and periphyton in two shallow lakes from the Pampa Plain (Argentina) that represent opposite scenarios according to the alternative states hypothesis for shallow lakes: a clear lake with submerged macrophytes, and a turbid lake with high phytoplankton biomass. To study the temporal changes of both microalgal communities under such contrasting conditions, we placed enclosures in the littoral zone of each lake, including natural phytoplankton and artificial substrata, half previously colonized by periphyton until a mature stage and half clean to analyze periphyton colonization. In the clear vegetated shallow lake, periphyton chlorophyll a concentrations were 3–6 times higher than those of the phytoplankton community. In contrast, phytoplankton chlorophyll a concentrations were 76–1,325 times higher than those of periphyton in the turbid lake. Here, under light limitation conditions, the colonization of the periphyton was significantly lower than in the clear lake. Our results indicate that in turbid shallow lakes, the light limitation caused by phytoplankton determines a low periphyton biomass dominated by heterotrophic components. In clear vegetated shallow lakes, where nitrogen limitation probably occurs, periphyton may develop higher biomass, most likely due to their higher efficiency in nutrient recycling.  相似文献   

11.
While the structuring role of fish in lakes is well studied for the summer season in North temperate lakes, little is known about their role in winter when fish activity and light irradiance potentially are lower. This is unfortunate as the progressing climate change may have strong effects on lake winter temperature and possibly on trophic dynamics too. We conducted an enclosure experiment with and without the presence of fish throughout winter in two shallow lakes with contrasting phosphorus concentrations. In hypertrophic Lake Søbygård, absence of fish led to higher biomass of zooplankton, higher grazing potential (zooplankton:phytoplankton ratio) and, accordingly, lower biomass of phytoplankton and chlorophyll a (Chl a), while the concentrations of total nitrogen (TN), total phosphorus (TP), oxygen and pH decreased. The average size of egg-bearing Daphnia and Bosmina and the minimum size of egg-bearing specimens of the two genera rose. In the less eutrophic Lake Stigsholm, zooplankton and their grazing potential were also markedly affected by fish. However, the decrease in Chl a was slight, and phytoplankton biovolume, pH and the oxygen concentration were not affected. TN was higher when fish were absent. Our results indicate that: (i) there is a notable effect of fish on zooplankton community structure and size during winter in both eutrophic and hypertrophic North temperate lakes, (ii) Chl a can be high in winter in such lakes, despite low light irradiance, if fish are abundant, and (iii) the cascading effects on phytoplankton and nutrients in winter may be more pronounced in hypertrophic lakes. Climate warming supposedly leading to reduced winter mortality and dominance of small fish may enhance the risk of turbid state conditions in nutrient-enriched shallow lakes, not only during the summer season, but also during winter.  相似文献   

12.
We compiled chemical data and phytoplankton biomass (PB) data (chlorophyll a ) from unproductive lakes in 42 different regions in Europe and North America, and compared these data to inorganic nitrogen (N) deposition over these regions. We demonstrate that increased deposition of inorganic N over large areas of Europe and North America has caused elevated concentrations of inorganic N in lakes. In addition, the unproductive lakes in high N deposition areas had clearly higher PB relative to the total phosphorus (P) concentrations illustrating that the elevated inorganic N concentrations has resulted in eutrophication and increased biomass of phytoplankton. The eutrophication caused by inorganic N deposition indicates that PB yield in a majority of lakes in the northern hemisphere is (was) limited by N in their natural state. We, therefore, suggest that P limitation largely concerns lakes where the balance between N and P has been changed because of increased anthropogenic input of N.  相似文献   

13.
Deepwater sediments and trophic conditions in Florida lakes   总被引:3,自引:2,他引:1  
Flannery  M. S.  Snodgrass  R. D.  Whitmore  T. J. 《Hydrobiologia》1982,91(1):597-602
Sediment cores were taken from near maximum depth in 15 Florida lakes representing a wide range of trophic conditions. Chemical analyses of surface sediments showed Al, Fe, and Ca to be the most abundant elements in all samples, and the ratio of Al to Ca to be smaller for eutrophic lakes. Sediment organic matter increased with trophic state, as did the degree to which it was enriched in nitrogen. Corresponding sediment C/N ratios decreased with increasing lake trophic state and showed significant negative correlation with chlorophylla, total N, and total P in the water column. Concentrations of sedimentary chlorophyll derivatives showed some relation to trophic state but differences in basin morphometry hinder its use as an inter-lake index of chlorophyll production.  相似文献   

14.
We studied the frequency and composition of potential microcystin (MC) producers in 70 Finnish lakes with general and genus-specific microcystin synthetase gene E (mcyE) PCR. Potential MC-producing Microcystis, Planktothrixand Anabaena spp. existed in 70%, 63%, and 37% of the lake samples, respectively. Approximately two-thirds of the lake samples contained one or two potential MC producers, while all three genera existed in 24% of the samples. In oligotrophic lakes, the occurrence of only one MC producer was most common. The combination of Microcystis and Planktothrix was slightly more prevalent than others in mesotrophic lakes, and the cooccurrence of all three MC producers was most widespread in both eutrophic and hypertrophic lakes. The proportion of the three-producer lakes increased with the trophic status of the lakes. In correlation analysis, the presence of multiple MC-producing genera was associated with higher cyanobacterial and phytoplankton biomass, pH, chlorophyll a, total nitrogen, and MC concentrations. Total nitrogen, pH, and the surface area of the lake predicted the occurrence probability of mcyE genes, whereas total phosphorus alone accounted for MC concentrations in the samples by logistic and linear regression analyses. In conclusion, the results suggested that eutrophication increased the cooccurrence of potentially MC-producing cyanobacterial genera, raising the risk of toxic-bloom formation.  相似文献   

15.
We examine macronutrient limitation in New Zealand (NZ) lakes where, contrary to the phosphorus (P) only control paradigm, nitrogen (N) control is widely adopted to alleviate eutrophication. A review of published results of nutrient enrichment experiments showed that N more frequently limited lake productivity than P; however, stoichiometric analysis of a sample of 121 NZ lakes indicates that the majority (52.9%) of lakes have a mean ratio of total nitrogen (TN) to total phosphorus (TP) (by mass) indicative of potential P-limitation (>15:1), whereas only 14.0% of lakes have mean TN:TP indicative of potential N-limitation (<7:1). Comparison of TN, TP, and chlorophyll a data between 121 NZ lakes and 689 lakes in 15 European Union (EU) countries suggests that at the national scale, N has a greater role in determining lake productivity in NZ than in the EU. TN:TP is significantly lower in NZ lakes across all trophic states, a difference that is driven primarily by significantly lower in-lake TN concentrations at low trophic states and significantly higher TP concentrations at higher trophic states. The form of the TN:TP relationship differs between NZ and the EU countries, suggesting that lake nutrient sources and/or loss mechanisms differ between the two regions. Dual control of N and P should be the status quo for lacustrine eutrophication control in New Zealand and more effort is needed to reduce P inputs.  相似文献   

16.
淡水湖泊浮游藻类对富营养化和气候变暖的响应   总被引:8,自引:0,他引:8  
水体富营养化和气候变暖是淡水生态系统面临的两大威胁。文章分别阐述了富营养化和气候变暖对淡水湖泊浮游藻类直接和间接效应, 并总结气候变暖可能通过影响水体理化性质、水生植物组成、食物链结构从而直接或间接改变浮游藻类生物量或群落结构。作者重点分析了气候变暖下湖泊生态系统蓝藻水华暴发机制, 比较了不同湖泊蓝藻对气候变暖和富营养化响应的异同点, 发现气候变暖和富营养化对湖泊生态系统影响存在相似性, 表现在均促进湖泊由清水-浊水稳态转变、增加蓝藻水华发生频率和强度。然而二者对湖泊浮游藻类影响的相对重要性取决于分层型湖泊和混合型湖泊的差异性、不同营养型湖泊和不同类群蓝藻组成差异性。作者认为, 开展气候变暖和富营养化下, 湖泊浮游藻类功能群响应研究亟待进行。  相似文献   

17.
1. This synthesis examines 35 long‐term (5–35 years, mean: 16 years) lake re‐oligotrophication studies. It covers lakes ranging from shallow (mean depth <5 m and/or polymictic) to deep (mean depth up to 177 m), oligotrophic to hypertrophic (summer mean total phosphorus concentration from 7.5 to 3500 μg L?1 before loading reduction), subtropical to temperate (latitude: 28–65°), and lowland to upland (altitude: 0–481 m). Shallow north‐temperate lakes were most abundant. 2. Reduction of external total phosphorus (TP) loading resulted in lower in‐lake TP concentration, lower chlorophyll a (chl a) concentration and higher Secchi depth in most lakes. Internal loading delayed the recovery, but in most lakes a new equilibrium for TP was reached after 10–15 years, which was only marginally influenced by the hydraulic retention time of the lakes. With decreasing TP concentration, the concentration of soluble reactive phosphorus (SRP) also declined substantially. 3. Decreases (if any) in total nitrogen (TN) loading were lower than for TP in most lakes. As a result, the TN : TP ratio in lake water increased in 80% of the lakes. In lakes where the TN loading was reduced, the annual mean in‐lake TN concentration responded rapidly. Concentrations largely followed predictions derived from an empirical model developed earlier for Danish lakes, which includes external TN loading, hydraulic retention time and mean depth as explanatory variables. 4. Phytoplankton clearly responded to reduced nutrient loading, mainly reflecting declining TP concentrations. Declines in phytoplankton biomass were accompanied by shifts in community structure. In deep lakes, chrysophytes and dinophytes assumed greater importance at the expense of cyanobacteria. Diatoms, cryptophytes and chrysophytes became more dominant in shallow lakes, while no significant change was seen for cyanobacteria. 5. The observed declines in phytoplankton biomass and chl a may have been further augmented by enhanced zooplankton grazing, as indicated by increases in the zooplankton : phytoplankton biomass ratio and declines in the chl a : TP ratio at a summer mean TP concentration of <100–150 μg L?1. This effect was strongest in shallow lakes. This implies potentially higher rates of zooplankton grazing and may be ascribed to the observed large changes in fish community structure and biomass with decreasing TP contribution. In 82% of the lakes for which data on fish are available, fish biomass declined with TP. The percentage of piscivores increased in 80% of those lakes and often a shift occurred towards dominance by fish species characteristic of less eutrophic waters. 6. Data on macrophytes were available only for a small subsample of lakes. In several of those lakes, abundance, coverage, plant volume inhabited or depth distribution of submerged macrophytes increased during oligotrophication, but in others no changes were observed despite greater water clarity. 7. Recovery of lakes after nutrient loading reduction may be confounded by concomitant environmental changes such as global warming. However, effects of global change are likely to run counter to reductions in nutrient loading rather than reinforcing re‐oligotrophication.  相似文献   

18.
Canonical correspondence analysis (CCA) was used to explore the relationship between measured environmental variables and surficial diatom (Bacillariophyceae) assemblages in alkaline lakes from southeastern Ontario. Total nitrogen (TN), watershed area, alkalinity, and maximum depth each explain significant (P ≤ 0.05) directions of variance in the distribution of diatom taxa. TN was highly correlated to total phosphorus (TP) (r = 0.92), chlorophyll a (r = 0.86), and Secchi depth (r =0.77). When a series of CCAs were run with the first axis constrained to each of these variables in turn, the ratio of the eigenvalue of the first axis to that of the second axis (λ1/λ2) was highest for TN, indicating that TN best explained the distribution of the diatom assemblages in this set of lakes. Furthermore, results of Monte Carlo permutation tests indicated that these four variables did not act independently on the diatom assemblages. Therefore, TN was selected to represent these four closely related variables to infer lake trophic status. Weighted-averaging regression and calibration (with classical deshrinking) were used to develop transfer functions to infer TN from the relative abundances of 83 diatom taxa recovered from the surficial sediments of 51 lakes. There was a good correlation between diatom-inferred TN concentrations and measured TN concentrations (r2= 0.75, n = 51). The weighted-averaging regression and calibration model was used to infer lake trophic status (represented by TN) from diatom assemblages presented in the sediments from Little Round Lake, Ontario. These data were used in conjunction with historical land-use data in order to quantify the sequence and extent of nutrient enrichment related to human activity in the watershed area.  相似文献   

19.
Seasonal dynamics of picophytoplankton in Lake Kinneret, Israel   总被引:1,自引:0,他引:1  
1. Picophytoplankton (picocyanobacteria and picoeukaryotes) communities in Lake Kinneret were studied from 1988 to 1992. No prochlorophytes were observed in the lake. 2. Picocyanobacteria were a prominent and ubiquitous component of the phytoplankton, being present at all depths throughout the year, with concentrations ranging from 2 ± 10–8 ± 105 cells ml?1. Low cell numbers in winter and spring were followed at the end of the annual dinoflagellate bloom by maximal abundances in summer-autumn in the epilimnion. High cell numbers (> 104 cells ml?1) were sometimes also found in the anaerobic hypolimnion. Net growth rates for picocyanobacteria ranged from 0.29 to 0.60 divisions day?1. 3. Picoeukaryotes were a very minor constituent of the picoplankton, mostly present in winter and spring, and sometimes at the end of autumn, with concentrations ranging from 44 to 5700 cells ml?1. Higher cell numbers tended to occur in the near surface water layers. In August-September, picoeukaryotes were found only in the hypolimnion. In December, the occurrence of picoeukaryotes in the deep water layers probably resulted from advection with cold water currents from the Jordan river. Net growth rates for picoeukaryotes ranged from 0.26 to 0.43 divisions day?1. 4. Overall, the contribution of picophytoplankton to the phytoplankton standing crop in Lake Kinneret was limited; picocyanobacteria and picoeukaryotes accounted for no more than 7.0 and 0.1% of total algal biomass (semiannual average), respectively. 5. Picophytoplankton cell numbers in pelagic waters were usually similar to those in shallower lake stations. 6. Picocyanobacteria appear to be an autochthonous population, whereas picoeukaryotes are probably brought annually by the Jordan River and do not maintain themselves in the lake.  相似文献   

20.
Hoyer  Mark V.  Canfield  Daniel E. 《Hydrobiologia》1994,279(1):107-119
Data from 46 Florida lakes were used to examine relationships between bird abundance (numbers and biomass) and species richness, and lake trophic status, lake morphology and aquatic macrophyte abundance. Average annual bird numbers ranged from 7 to 800 birds km–2 and bird biomass ranged from 1 to 465 kg km–2. Total species richness ranged from 1 to 30 species per lake. Annual average bird numbers and biomass were positively correlated to lake trophic status as assessed by total phosphorus (r = 0.61), total nitrogen (r = 0.60) and chlorophyll a (r = 0.56) concentrations. Species richness was positively correlated to lake area (r = 0.86) and trophic status (r = 0.64 for total phosphorus concentrations). The percentage of the total annual phosphorus load contributed to 14 Florida lakes by bird populations was low averaging 2.4%. Bird populations using Florida lakes, therefore, do not significantly impact the trophic status of the lakes under natural situations, but lake trophic status is a major factor influencing bird abundance and species richness on lakes. Bird abundance and species richness were not significantly correlated to other lake morphology or aquatic macrophyte parameters after the effects of lake area and trophic status were accounted for using stepwise multiple regression. The lack of significant relations between annual average bird abundance and species richness and macrophyte abundance seems to be related to changes in bird species composition. Bird abundance and species richness remain relatively stable as macrophyte abundance increases, but birds that use open-water habitats (e.g., double-crested cormorant, Phalacrocorax auritus) are replaced by species that use macrophyte communities (e.g., ring-necked duck, Aythya collaris).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号