首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Allogeneic bone marrow chimeras were prepared using reciprocal combinations of AKR and C3H mice. When C3H mice were recipients, the number of thymocytes recoverable from such chimeras (C3H recipient chimeras) was small as compared with that from chimeras for which AKR mice were used as recipients (AKR recipient chimeras) regardless of donor strain. The thymocytes from C3H recipient chimeras showed a profound deficiency in generating proliferative responses to stimulation by anti-CD3 mAb (2C11) or anti-TCR (alpha, beta) mAb (H57-597), even though the expression of CD3 and TCR molecules fell within the same range as that in AKR recipient chimeras. Furthermore, after stimulation with immobilized 2C11, the proportion of IL-2R+ cells in the thymocytes from C3H recipient chimeras was much less than that in AKR recipient chimeras. However, no significant difference in proliferative responses to 2C11 plus PMA, in influx of Ca2+ after stimulation with 2C11 or IL-2 production in response to 2C11 plus PMA or PMA plus A23187 was demonstrated between C3H and AKR recipient chimeras. These findings suggest that the thymocytes from C3H recipient chimeras have a deficiency in the signal transduction system as compared with chimeras for which AKR mice are the recipients. The thymic stromal component involved in this difference in the C3H recipient chimeras is discussed.  相似文献   

2.
Early development of T lineage cells were compared between AKR and C3H mice by using two experimental strategies--neonatal thymectomy (NTx) and bone marrow transplantation (BMT)--between these two strains of mice. After NTx, AKR mice developed less wasting disease and showed better maintenance of several T cell functions. In addition, the response of neonatal spleen cells to PHA and ConA was much greater in AKR mice than in C3H mice. Further, when AKR mice were used as recipients of BMT, cell numbers recovered from thymuses between 2 and 7 weeks after reconstitution were consistently much greater (about 10 times greater) than those from chimeras where C3H mice were used as recipients, regardless of the donor strains of bone marrow cells. However, 4 weeks after BMT the proliferative responses to ConA were consistently higher in the donor-derived thymocytes from chimeras where AKR mice were used as bone marrow donors than in those from chimeras in which C3H were donors. The present findings suggest that these differences may be attributed to characteristics of recipient microenvironment (e.g., thymic stroma) which maintain developing thymocytes and supply them to the peripheral lymphoid tissue. Alternatively the differences may to some degree also be attributable to characteristics of the thymic progenitors themselves, which may determine the rates of maturation of thymocyte functions.  相似文献   

3.
Glycolipids in the thymus of mice after administration of dexamethasone were compared with those in control mice. In parallel with a decrease in the tissue weight due to the disappearance of immature thymocytes in the cortex, the amounts of GlcCer, Gg4Cer and GM1 decreased from 18 h after intraperitoneal administration of dexamethasone, but those of Gb4Cer and Forssman glycolipid did not change, indicating the differential distribution of ganglio- and globo-series glycolipids in the thymus, GlcCer, Gg4Cer and GM1 being on dexamethasone-sensitive cortical thymocytes, and Gb4Cer and Forssman glycolipid on dexamethasone-resistant cells including thymic stromal cells, respectively. At the same time, a characteristic increase in GM3, whose amount per thymus and concentration per mg of thymus were increased 4-fold and 13-fold compared to those in the control mice, respectively, was observed at the onset of the decrease in tissue weight and was due to the increased activity of LacCer sialyltransferase with the enhanced expression of its gene and the concomitant decrease in cytosolic sialidase activity. One can suggest that endogenous accumulation of GM3 is involved in the dexamethasone-induced apoptosis of cortical thymocytes. On radiolabeling of the thymus with CMP-[14C]-NeuAc, the incorporation of radioactivity into GM3 was preferentially observed in the thymuses of dexamethasone-administered mice, but not in those of control mice, suggesting the possible involvement of plasma membrane-associated sialytransferase in GM3 synthesis in the thymuses of dexamethasone-administered mice. Published in 2005.  相似文献   

4.
By using T1 oligonucleotide fingerprinting and mapping techniques, we analyzed the genomic structure of retroviruses produced by thymocytes and splenocytes of reciprocal bone marrow-and thymus-grafted chimeras. We found that the genetic factor(s) derived from NZB mice that suppresses the development of thymic leukemia in (AKR X NZB)F1 mice also prevents the formation of recombinant leukemogenic viruses and the expression of preleukemic changes in the (AKR X NZB)F1 thymocytes. The NZB mouse gene or genes appeared to exert this suppressive effect by acting on the thymic reticuloepithelial cells and not on the thymic lymphocytes of (AKR X NZB)F1 hybrids. Prospective studies with thymic epithelial grafts from young mice showed that the AKR thymic epithelium could mediate the formation and expression of leukemogenic recombinant viruses and preleukemic changes in thymocytes that lead to the development of thymic leukemia, whereas the (AKR X NZB)F1 thymic epithelium was deficient in this regard. Our results also confirmed a previous observation that during in vivo generation of recombinant leukemogenic viruses, the acquisition of polytropic virus-related sequences in the 3' portion of the p15E gene and the U3 region and in the 5' part of the gp70 gene can occur independently.  相似文献   

5.
Lethally irradiated C3Hf mice reconstituted with a relatively low dose (2 × 106) of B6C3F1 bone marrow cells (B6C3F1 → C3Hf chimeras) frequently manifest immunohematologic deficiencies during the first month following injection of bone marrow cells. They show slow recovery of antibody-forming potential to sheep red blood cells (SRBC) as compared to that observed in syngeneic (C3Hf → C3Hf or B6C3F1 → B6C3F1) chimeras. They also show a deficiency of B-cell activity as assessed by antibody response to SRBC following further reconstitution with B6C3F1-derived thymus cells 1 week after injection of bone marrow cells. A significant fraction of B6C3F1 → C3Hf chimeras was shown to manifest a sudden loss of cellularity of spleens during the second week following injection of bone marrow cells even though cellularity was restored to the normal level within 1 week. The splenic mononuclear cells recovered from such chimeras almost invariably showed strong cytotoxicity against target cells expressing donor-type specific H-2 antigens (H-2b) when assessed by 51Cr-release assay in vitro. The effector cells responsible for the observed anti-donor specific cytotoxicity were shown to be residual host-derived T cells. These results indicate strongly that residual host T cells could develop anti-donor specific cytotoxicity even after exposure to a supralethal dose (1050 R) of radiation and that the immunohematologic disturbances observed in short-term F1 to parent bone marrow chimeras (B6C3F1 → C3Hf) were due to host-versus-graft reaction (HVGR) initiated by residual host T cells. The implication of these findings on the radiobiological nature of the residual T cells and the persistence of potentially anti-donor reactive T-cell clones in long-surviving allogeneic bone marrow chimeras was discussed.  相似文献   

6.
Several thymus cell subclasses may be defined on the basis of their sedimentation velocity, their light-scattering properties (a measure of cell volume), or binding of a fluoresceinated anti-Thy 1.2 antiserum. Using a multiparameter fluorescence-activated cell sorter (FACS), cells with distinguishable light-scattering or fluorescence intensity (after staining with fluorescein anti-Thy 1.2) were separable for analysis of intrathymic maturation pathways. Outer thymic cortical large and medium lymphocytes were the only cells labeled within 1 hr after transcapsular diffusion of administered [3H]thymidine. These labeled cells were also entirely contained in the brightest fluorescence intensity (with fluorescein anti-Thy 1.2) subclass. Under conditions of [1H] thymidine “chase” in vivo, label shifted proportionately and apparently in parallel to three “mature” subclasses: (1) small thymocytes with high surface concentrations of Thy 1.2, representing ~ 80% of all thymus cells; (2) slightly larger cells, with very low surface Thy 1.2, which are indistinguishable from cortisone-resistant thymocytes, and which make up less than 10% of all thymus cells; (3) dead or fragile cells.  相似文献   

7.
To elucidate the acquisition of self tolerance in the thymus, full-allogeneic thymic chimeras were constructed. Athymic C3H and BALB/c nude mice were reconstituted with the thymic lobes of BALB/c and B10.BR fetuses, respectively, that were organ cultured for 5 days in the presence of 2'-deoxyguanosine. T cells in these chimeras were tolerized to the host MHC in both MLR and CTL assays. In contrast, T cells in the chimeras exhibited split tolerance for the thymic MHC haplotype. CTL specific for class I MHC of the thymic haplotype were generated not only from the peripheral T cells of the chimeras but also from thymocytes re-populated in the engrafted thymic lobes. However, T cells in these chimeras responded poorly to the class II MHC of the thymic haplotype in a standard MLR assay. In a syngeneic MLR culture upon stimulation with enriched APC of the thymic haplotype, only 22 to 48% of the responses were mediated by CD4+ cells, and proliferations of CD4- cells were prominent. There were no haplotype-specific suppressor cells detected which would cause the unresponsiveness to the thymic class II MHC. These results indicated that the thymic lobes treated with 2'-deoxyguanosine were defective in the ability to induce the transplantation tolerance for the class I MHC expressed on the thymus, although the same thymic lobes were able to induce the transplantation tolerance for the thymic class II MHC.  相似文献   

8.
Spleen cells of inbred mice strains carrying θ-C3H allele have been cultured in the presence of AKR thymus cells and their in vitro primary PFC response against thymic alloantigen θ-AKR was studied.The responses of a magnitude which was comparable with that obtained in previous in vivo experiments were obtained 4 days after stimulation. The strain-dependent variability of the magitude of anti-θ-AKR responses was observed in vitro. RR and C58/J spleen cells produced much more PFC than C57BL/6J and DBA/2J spleen cells. This was in agreement with previous in vivo studies on the genetic control of the anti-θ AKR responses.In the absence of AKR thymus cells, spleen cells of high responders, RR, developed in vitro PFC which released antibodies lytic to AKR thymus cells. Their number was ten-times lower than in stimulated cultures. Spleen cells of all strains tested produced also small numbers of PFC secreting antibodies against θ-identical allogenic thymus cells and even to syngenic thymus cells.  相似文献   

9.
The present study investigates the effect of a partially purified thymus factor, thymosin Fraction 5, and an homogeneous polypeptide component of Fraction 5, thymosin α1, on glucocorticoid resistance and glucocorticoid receptors in mouse thymocytes. Treatment of thymocytes in vitro with thymosin Fraction 5 or α1, results in an increase in the percentage of glucocorticoid-resistant cells. Studies on the specific whole-cell binding of [3H]dexamethasone and steroid competition experiments demonstrate the existence of high-affinity (Kd = 1.0 × 10?8M) specific glucocorticoid receptors in mouse thymocytes. Preincubation with thymosin Fraction 5 or α1 appears to cause a reduction in the specific [3H]dexamethasone binding to intact thymocytes.  相似文献   

10.
Lethally irradiated AKR mice were reconstituted with C57BL/6 bone marrow cells. Though the allogeneic marrow transplantation protected AKR recipients from acute irradiation deaths, the mice given unmanipulated marrow developed severe GVHR disease, and 80% died within 50 days. The thymus and spleen from the recipient mice, following recovery of body weight between the 10th and 20th days, gradually involuted and became miniscule after Day 30. Thymocytes from recipients were found to be entirely of donor cell type by Day 15. Thereafter, however, as the graft versus host reaction (GVHR) developed, changes in sensitivity of the thymocytes to four different alloantisera directed toward donor histocompatibility antigens (H-2b, Thy 1.2, Lyt 1.2, and Lyt 2.2) were observed and these changes were associated with changes in antigen expression or quantity of Thy 1 antigens on the thymocytes. A different pattern of changes was observed in antigen expression on thymocytes in mice given B6 marrow cells that had been pretreated with anti-Thy 1 serum which prevented initiation of graft-vs-host disease and in the mice which received marrow not so treated and which regularly led to graft-vs-host disease. By contrast, the amount of H-2 antigen on the thymocytes from chimeras with or without GVHR was elevated equally. The mechanisms of these changes are discussed.  相似文献   

11.
We previously described a system in which H-2Kb-restricted C57BL/6 (B6) cytotoxic T lymphocytes (CTL) could be raised that were specific for tumors, such as the thymic lymphoma AKR.H-2b SL1, that were induced by endogenous AKR/Gross murine leukemia virus and that expressed the Gross cell surface antigen. In this study, certain normal lymphoid cells from AKR.H-2b mice were also found to express target antigens defined by such anti-AKR/Gross virus CTL. AKR.H-2b spleen, but surprisingly not thymus, cells stimulated the production of anti-AKR/Gross virus CTL when employed at either the in vivo priming phase or the in vitro restimulation phase of anti-viral CTL induction. This selective stimulation by spleen vs thymus cells was not dependent on the age of the mice over the range (3 to 28 wk) tested. Both AKR.H-2b spleen and thymus cells, however, were able to stimulate the generation of H-2-restricted B6 anti-AKR minor histocompatibility (H) antigen-specific CTL. Thus, AKR.H-2b spleen cells appeared to display the same sets (minor H and virus-associated) of cell surface antigens recognized by CTL as the AKR.H-2b SL1 tumor, whereas AKR.H-2b thymocytes were selectively missing the virus-associated target antigens, a situation analogous to that of cl. 18-5, a variant subclone of AKR.H-2b SL1 insusceptible to anti-AKR/Gross virus CTL. Like AKR.H-2b thymocytes, neither AKR spleen cells or thymocytes nor B6.GIX + thymocytes were able to stimulate the generation of anti-AKR/Gross virus CTL from primed B6 responder cell populations. In contrast, both T cell-enriched and B cell-enriched preparations derived from AKR.H-2b spleen cells were able to stimulate at the in vitro phase of induction, although B cell-enriched preparations were considerably more efficient. The discordant results obtained with AKR.H-2b spleen cells vs thymocytes were confirmed and extended in experiments in which these cells were employed as target cells to directly assess the cell surface expression of virus-associated, CTL-defined antigens. Thus, AKR.H-2b spleen cells, but not thymocytes, were recognized by anti-AKR/Gross virus CTL when fresh normal cells were tested as unlabeled competitive inhibitors, or when mitogen blasts were tested as labeled targets. Fresh or lipopolysaccharide-stimulated B cell-enriched spleen cells were as efficiently recognized as unseparated spleen cell preparations. Unexpectedly, fresh or Lens culinaris hemagglutinin-stimulated T cell-enriched spleen cell preparations, although susceptible to anti-minor H CTL, were almost as poor as targets for anti-viral CTL as were thymocytes. Together, these results demonstrate the H-2-restricted expression of CTL-defined, endogenous, AKR/Gross virus-associated target antigens by normal AKR.H-2b splenic B cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
The existence of a high-affinity, low-capacity 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-binding species was demonstrated in cytosol from rat thymus. It was sensitive to heat and to pronase, trypsin or chymotrypsin but not to DNAase or RNAase, indicating that it was a protein. An excess of unlabelled 2,3,7,8-tetrachlorodibenzofuran or β-naphthoflavone displaced [3H]TCDD from the binder whereas phenobarbital, pregnenolone-16-α-carbonitrile or dexamethasone did not compete. Using a dextra-coated charcoal assay, the apparent dissociation constant (Kd) of the [3H]TCDD-binder complex was determined to 0.36 nM and the apparent maximum amount of binding sites (Bmax) to 68 fmol/mg of cytosolic protein. When analyzed by sucrose density-gradient centrifugation at high ionic strength, the [3H]TCDD-binder complex sedimented at 4?5 S; at low ionic strength the complex sedimented more rapidly, probably due to aggregation. All these data support the interpretation that the demonstrated cytosolic TCDD-binder represents the receptor protein for TCDD, as previously described for rat and mouse liver. Following intravenous administration of [3H]TCDD, a low-capacity [3H]TCDD-macromolecule complex was extractable from thymic cell neuclei; this complex behaved identically to the cytosolic [3H]TCDD-receptor complex when exposed to heat or to hydrolytic enzymes and was therefore alos identified as a protein. The nuclear [3H]TCDD-protein complex sedimented at 4–5 S at high ionic strength. Furthermore, a maximum uptake of [3H]TCDD in thymic nuclei was observed simultaneously with a decline in cytosolic radioactivity (at 3 h post-injection). These findings suggest that the nuclear [3H]TCDD-protein complex represented [3H]TCDD-receptor complex translocated from the cytoplasm. In conclusion, the rat thymus contains a cytosolic TCDD receptor at a concentration similar to that of the rat hepatic receptor. However, in vivo experiments showed that the nuclear uptake of [3H]TCDD (expressed as dpm/mg GNA) in the thymus was only about 6% of that in liver. Further studies are needed for an understanding of the mechanism behind this discrepancy.  相似文献   

13.
Subsets of proliferating thymocytes were identified in the normal mouse thymus by in vivo labeling with [3H]TdR and by cell separation according to relative amounts of Thy 1 antigen. In order to resolve apparent discrepancies in the literature, parenteral and topical application of [3H]TdR were compared as labeling methods for dividing thymocytes, and limited complement lysis and fluorescence-activated cell sorting were compared as separation principles for high Thy 1 and low Thy 1 thymocyte subsets. The separated cells were further characterized by immunofluorescence for terminal deoxynucleotidyltransferase (TdT), which normally is restricted to cortical thymocytes, and for H2 alloantigens, which are preponderant on medullary thymocytes. Four subsets of proliferating cortical thymocytes were identified after application of [3H]TdR to the thymus capsule. The major subset, which comprised about 92% of dividing cortical thymocytes, had a high Thy 1, low H2 phenotype. Most were also TdT + ve. The three minor subsets of proliferating cortical thymocytes each had a low Thy 1 phenotype, but differed according to H2 and TdT markers. Systemic injection of [3H]TdR also labeled the above subsets of dividing cortical thymocytes, but in addition it detected a subset of proliferating low Thy 1, low H2, TdT — ve cells in the thymus medulla. The latter subset comprised about one-third of the pool of proliferating low Thy 1 cells. In their aggregate the four subsets of low Thy 1 cells constituted approximately 13% of total proliferating thymocytes and 1.1% of total thymocytes. The identification of discrete subsets of proliferating low Thy 1 cells in the thymus cortex as well as in the thymus medulla is compatible with the hypotheses that all thymocytes are descended from low Thy 1 precursors and that separate precursor cell subsets exist for cortical and medullary thymocytes.  相似文献   

14.
Suspensions of dispersed bovine luteal cells prepared by collagenase digestion of luteal tissue specifically bound [3H]Prostaglandin (PG) E1 and [3H]PGF. While the number of sites per cell (~ 1.8 × 105) were about the same for both [3H]PGs, the apparent Kds were different: [3H]PGE1 ? 2.4 nM; [3H]PGF ? 11 nM. The [3H]PGs binding was inhibited in a dose-dependent manner in the presence of increasing concentrations of unlabeled PGs. Potency order for inhibition of [3H]PGE1 binding was: PGE2 > PGE1 > PGF > PGF. The corresponding data for [3H]PGF was: PGF > PGF > PGE2 > PGE1. While [3H]PGE1 and [3H]PGF bind to their own receptors with high affinity, their affinities for each other's binding were extremely low. Thus, these results demonstrate that luteal cells, like plasma membranes isolated from luteal tissue, contain receptors for PGEs and PGF which are discrete with respect to specificity and affinity.  相似文献   

15.
Sequential appearance of T cell subpopulations occurs in the thymocytes of irradiated C3H/He mice (H-2k, Mls-1b2a, Thy-1.2) after transplantation with bone marrow cells of AKR/J mice (H-2k, Mls-1a2b, Thy-1.1) (AKR----C3H chimeras). The donor-derived thymocytes of AKR----C3H chimeras on day 14 after bone marrow transplantation (BMT) contained a large number of blastlike CD4+CD8+ cells which represent relatively immature thymocytes, whereas those on day 21 after BMT consisted of small sized CD4+,CD8+ cells which represent a great part in normal thymocytes. To define the developmental stage at which clonal deletion of self-reactive T cells occurs in adult thymus, we followed the fate of V beta 6- or V beta 11-bearing T cells in the donor-derived thymocytes at the early stage of AKR----C3H chimeras. Mature thymocytes expressing high intensity of V beta 6 or V beta 11, which are involved in recognition of Mls-1a or MHC I-E gene products, respectively, were deleted from the donor-derived thymocytes on day 21. Immature thymocytes expressing low intensity of V beta 6 in CD3low thymocyte fraction decreased in proportion, whereas those expressing low intensity of V beta 11 rather increased in proportion in the donor-derived thymocytes of AKR----C3H chimeras from day 14 to day 21 after BMT. These results suggest that the clonal deletion of V beta 6-positive cells occurs just at the stage of immature CD3lowCD4+CD8+ cells, whereas the clonal deletion of V beta 11-positive cells may begin at the transitional stage from CD3lowCD4+CD8+ cells to CD3high single positive cells. Timing of negative selection of thymocytes may vary in distinct T cells capable of recognizing different self-Ag.  相似文献   

16.
The mitogenic activity of heterologous rabbit anti-mouse brain sera (RAMB) was investigated. By complement-dependent cytotoxicity and indirect immunofluorescence, RAMB was T-cell specific. Mitogenic activity was assessed by determination of [3H]thymidine incorporation into DNA. RAMB was mitogenic for spleen cells for Thy 1.1- and Thy 1.2-positive mouse strains. Maximal mitogenic responsiveness to RAMB occurred on Day 3 of culture. The incorporation of [3H]uridine into RNA and [3H]leucine into protein and percentage of blast cells in culture were also significantly increased following RAMB stimulation. The mitogenic activity of RAMB was abrogated by adsorption of the sera with BALB/c or AKR thymocytes or brains or with RL♂ 1.3+, a Thy 1.2-bearing T-cell lymphoma of BALB/c origin. In contrast, the mitogenic activity was not removed when RAMB sera were absorbed with RL♂ 1.4?, a variant of RL♂ 1 which appears to specifically lack cell surface Thy 1 determinants. These data suggest that the mitogenic activity of RAMB is Thy 1 directed. RAMB mitogenicity is T-cell dependent. Spleen cells from normal and heterologous nu/+ mice respond to RAMB, while spleen cells from nu/nu mice do not respond. Normal thymocytes and cortisone-resistant thymocytes do not respond mitogenically to RAMB. The response of unseparated spleen cells to RAMB is also macrophage dependent. Nylon-wool column-purified splenic T cells respond to high concentrations of RAMB in the absence of exogenous macrophages but do not respond to lower concentrations of RAMB unless exogenous macrophages are added to the cultures. Nylon-wool-adherent cells, which are B-cell enriched and relatively T-cell depleted, also respond to RAMB, suggesting that in the presence of even small numbers of T cells, B cells can be recruited into the response.  相似文献   

17.
The percentages of labelled lymphocytes in smear preparations of mouse thymus were higher than those in similar preparations of mesenteric lymph nodes with either generally labelled tritiated deoxycytidine, [3H]CdR, or tritiated thymidine, [3H]TdR. Lymphocytes in the thymus cortex and in germinal centres of mesenteric lymph nodes were intensely labelled with [3H]CdR, whereas with [3H]TdR lymphocytes in the peripheral region of thymus and medullary cords of mesenteric lymph nodes were heavily labelled. The majority of lymphocytes in thymic cortex and germinal centres of mesenteric lymph nodes were labelled weakly with [3H]TdR. Thus, labelling patterns with [3H]CdR differed from those with [3H]TdR in lymphoid tissues of the mouse. Mouse lymphocytes can utilize [3H]CdR as a precursor molecule for cytosine and thymine in DNA. The ratio of radioactivity of thymine to that of cytosine was measured biochemically in DNA extracted from lymphocytes labelled with [3H]CdR. This radioactivity ratio in thymus was higher than that in mesenteric lymph nodes. These results suggest that the metabolic activities of utilizing CdR for DNA synthesis differ within lymphocyte populations in various lymphoid tissues in the mouse.  相似文献   

18.
The murine retrovirus SL3-3 causes malignant transformation of thymocytes and thymic lymphoma in mice of the AKR and NFS strains when they are inoculated neonatally. The objective of the present study was to identify the primary target cells for the virus in the thymuses of these mice. Immunohistochemical studies of the thymus after neonatal inoculation of the SL3-3 virus showed that cells expressing the viral envelope glycoprotein (gp70+ cells) were first seen at 2 weeks of age. These virus-expressing cells were found in the cortex and at the corticomedullary junction in both mouse strains. The gp70+ cells had the morphology and immunophenotype of dendritic cells. They lacked macrophage-specific antigens. Cell separation studies showed that bright gp70+ cells were detected in a fraction enriched for dendritic cells. At 3 weeks of age, macrophages also expressed gp70. At that time, both gp70+ dendritic cells and macrophages were found at the corticomedullary junction and in foci in the thymic cortex. At no time during this 3-week period was the virus expressed in cortical and medullary epithelial cells or in thymic lymphoid cells. Infectious cell center assays indicated that cells expressing infectious virus were present in small numbers at 2 weeks after inoculation but increased at 5 weeks of age by several orders of magnitude, indicating virus spread to the thymic lymphoid cells. Thus, at 2 weeks after neonatal inoculation of SL3-3, thymic dendritic cells are the first cells to express the virus. At 3 weeks of age, macrophages also express the virus. In subsequent weeks, the virus spreads to the thymocytes. This pathway of virus expression in the thymus allows the inevitable provirus integration in a thymocyte that results in a clonal lymphoma.  相似文献   

19.
When rat thymocytes are cultured for 3 days in serum-free medium and are stimulated to divide by interleukin 2 (IL 2), concanavalin A, or sodium periodate oxidation, addition to the medium of 10–25 mMd-ribose, 2-deoxy-d-ribose, or N-acetyl-d-galactosamine inhibits by 40% or more the incorporation of [3H]thymidine. d-ribose and lectin-free IL 2 generated from sodium periodate oxidation of rat spleen cells were used to study the characteristics of this inhibition and to test possible mechanisms of inhibition. Viability of thymocytes cultured with d-ribose is similar to that of cells cultured without this sugar. In order to be inhibitory, d-ribose has to be added to the cultures within the first 24 hr, and the inhibition can be prevented if the sugar is removed 18–24 hr after the start of culture. d-Ribose does not block the absorption of IL 2 by unstimulated rat thymocytes or by concanavalin A-generated thymic or splenic blast cells. When thymocytes are cultured with d-ribose for 24 hr, inactivated with mitomycin C, and then cultured for 3 days with fresh mitogenically stimulated cells, [3H]thymidine incorporation into the latter is not altered. This suggests that the sugar does not generate suppressor cells or suppressor supernates. d-Ribose does not appear to be a general metabolic inhibitor since [3H]leucine incorporation into thymocyte proteins and the release of [3H]leucine into medium after a 2-hr. [3H]leucine pulse are not altered by d-ribose. Trivial or artifactual effects (nonspecific cytotoxicity, changes in thymidine transport, or changes in isotonicity of the culture medium) cannot explain the inhibition. A hypothetical mechanism of inhibition is discussed.  相似文献   

20.
Changes in chicken embryo thymus after partial decerebration (including the hypophysis) and after hypophyseal or thymic allograft were investigated. Chicken embryos were partially decerebrated at 36–40 h of incubation and on day 12 received a hypophysis or a thymus allograft from 18-day-old donor embryos. The thymuses of normal, sham-operated and partially decerebrate embryos were collected on day 12 and 18. The thymuses of the grafted embryos were collected on day 18. The samples were examined with histological method and tested for the anti-PCNA and anti-CD3 immune-reactions. After partial decerebration, the thymic cortical and medullary compartments diminished markedly in size. Anti-PCNA and anti-CD3 revealed a reduced immunereaction, verified also by statistical analysis. In hypophyseal or grafted embryos, the thymic morphological compartments improved, the anti-PCNA and anti-CD3 immune-reactions recovered much better after the thymic graft, probably due to the thymic growth factors and also by an emigration of thymocytes from the same grafted thymus.Key words: hypophysectomy, hypophyseal and thymic allograft, chicken embryonal thymus, PCNA, CD3 markers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号