共查询到20条相似文献,搜索用时 0 毫秒
1.
Males of many animals perform ‘copulatory courtship’ during copulation, but the possible reproductive significance of this behaviour has seldom been investigated. In some animals, including the spider Physocyclus globosus (Pholcidae), the female discards sperm during or immediately following some copulations. In this study, we determined which of several variables associated with copulation correlated with paternity success in P. globosus when two males mate with a single female. Then, by determining which of these variables also correlated with sperm dumping, we inferred which variables may affect paternity via the mechanism of sperm dumping. Male abdomen vibration (a copulatory courtship behaviour) and male genitalic squeezing both correlated with both paternity and sperm dumping; so, these traits may be favoured by biased sperm dumping. Biased sperm dumping may also be the mechanism by which possible cryptic female choice favours another male trait that was the subject of a previous study, responsiveness to female stridulation. 相似文献
2.
Eberhard WG 《Evolution; international journal of organic evolution》2001,55(1):93-102
Males of Microsepsis eberhardi and M. armillata use their genitalic surstyli to rhythmically squeeze the female's abdomen with stereotyped movements during copulation. Squeezing movements did not begin until intromission had occurred and, contrary to predictions of the conflict-of-interest hypothesis for genitalic evolution, did not overcome morphological or behavioral female resistance. Contrary to predictions of the lock-and-key hypothesis, female morphology was uniform in the two species and could not mechanically exclude the genitalia of either species of male. The complex pattern of squeezing movements differed between the two species as predicted by the sexual selection hypothesis for genitalic evolution. Also, evolutionarily derived muscles and pseudoarticulations in the male's genitalic surstyli facilitated one type of movement, whose patterns were especially distinct. The data support the hypothesis that the male surstyli evolved to function as courtship devices. 相似文献
3.
Male traits under cryptic female choice in the spotted cucumber beetle (Coleoptera: Chrysomelidae) 总被引:3,自引:2,他引:3
Males of the spotted cucumber beetle (Diabrotica undecimpunctatahowardi) rhythmically stroke females with their antennae duringcopulation. Males that stroke quickly have a higher probabilityof being accepted as a mate. We determined (1) the mechanismby which females prevent unattractive males from passing spermatophores,(2) whether antennal stroking signals to females the likelihoodof receiving a nuptial gift, and (3) if other male traits inaddition to stroking are subjected to sexual selection fromfemale preference. Dissections of pairs flash-frozen in copuladuring and after antennal stroking showed musculature that,when contracted, folded the vaginal duct leading to the female'sbursa copulatrix in a way that prevented complete penetrationby the aedeagus. These muscles were always contracted whilemales were stroking and always relaxed after stroking had ceased.Males accepted as mates did not differ from males that failedto pass a spermatophore in either absolute or relative bodyweight, aedeagus length, or the amount of cucurbitacins (potentialnuptial gifts) sequestered in their spermatophores. Although99% of the beetles that came to cucurbitacin-rich Cucurbitafruits in the field were males, males that had sequesteredcucurbitacins did not stroke females faster than males withno cucurbitacins, and fast-stroking males were not more likelyto find and sequester cucurbitacins than were males that strokedmore slowly. Males with a cucurbitacin slurry painted on theirantennae had no mating advantage over controls. We concludethat females discriminate among males after copulation hasbegun on the basis of antennal stroking displays (or some traitcorrelated with stroking speed) that males perform to enticefemales to relax their bursal sphincter. 相似文献
4.
《Ethology, Ecology and Evolution》2012,24(1):19-63
Female Macrodactylus costulatus, sericinus, and sylphis mated repeatedly while feeding on flowers and fruits as they matured eggs. Courtship in all species occurred both prior to and following intromission, with most courtship being performed after the male had achieved intromission. Females often prevented males from mounting, and often prevented mounted males from achieving intromission. They also probably often prevented male genitalia from penetrating past the vulva, even after they had allowed them into the genital chamber. Males at least sometimes pushed forcefully at structures both on the surface of the female and within her reproductive tract. Copulation probably involved a combination of force and persuasion. It often failed to result in complete transfer of sperm. Males displayed striking virtuosity in both the morphology and behavior of their genitalia, which assumed at least four different morphological configurations. At least five and perhaps up to eight different functions were performed by male genitalia. Small sacs near the tips of the male parameres were probably used by males as “foot-in-the-door” devices to gain access to the female's genital chamber, while the spiney collar and tongue may have helped open the vulva to allow deeper penetration. The energetic and persistent courtship which occurred after intromission was achieved may lunction at least partly to induce the female to allow the male to reach the deeper stage of penetration necessary for spermatophore formation, and perhaps to permit transfer of sperm to her spermathecal duct. Male courtship behavior included movements of his head, vibration and sweeping movements of his middle legs, rubbing with his abdominal bristles against the female's elytra, strong substrate vibrations of unknown origin in the male's body, and tapping and stroking with his genitalia on the external surface of the female's abdomen while he held her with his specialized front legs. Pairings in the field lasted up to several days, but there was no sign of size biases in either paired males or females. Males were more susceptible to predation by a common predator than were females when beetles were paired. 相似文献
5.
In most species with internal fertilization, male genitalia evolve faster than other morphological structures. This holds true for genital titillators, which are used exclusively during mating in several bushcricket subfamilies. Several theories have been proposed for the sexual selection forces driving the evolution of internal genitalia, especially sperm competition, sexually antagonistic coevolution (SAC), and cryptic female choice (CFC). However, it is unclear whether the evolution of genitalia can be described with a single hypothesis or a combination of them. The study of species‐specific genitalia action could contribute to the controversial debate about the underlying selective evolutionary forces. We studied female mating behaviors in response to experimentally modified titillators in a phylogenetically nested set of four bushcricket species: Roeseliana roeselii, Pholidoptera littoralis littoralis, Tettigonia viridissima (of the subfamily Tettigoniinae), and Letana inflata (Phaneropterinae). Bushcricket titillators have several potential functions; they stimulate females and suppress female resistance, ensure proper ampulla or spermatophore attachment, and facilitate male fixation. In R. roeselii, titillators stimulate females to accept copulations, supporting sexual selection by CFC. Conversely, titillator modification had no observable effect on the female's behavior in T. viridissima. The titillators of Ph. l. littoralis mechanically support the mating position and the spermatophore transfer, pointing to sexual selection by SAC. Mixed support was found in L. inflata, where manipulation resulted in increased female resistance (evidence for CFC) and mating failures by reduced spermatophore transfer success (evidence for SAC). Sexual selection is highly species‐specific with a mosaic support for either cryptic female choice or sexually antagonistic coevolution or a combination of both in the four species. 相似文献
6.
Female remating propensity contingent on sexual cannibalism in sagebrush crickets, Cyphoderris strepitans: a mechanism of cryptic female choice 总被引:1,自引:0,他引:1
Male sagebrush crickets (Cyphoderris strepitans) permit femalesto
engage in an unusual form of sexual cannibalism during copulation:females
feed on males' fleshy hind wings and ingest hemolymphoozing from the wounds
they inflict. These wounds are not fatal,and normally only a portion of the
hind wings are eaten at anyone mating, so that mated males are not precluded
from matingagain. As a result, nonvirgin males have fewer material resources
tooffer females than do virgin males, such that females shouldbe selected to
preferentially mate with high-investment virginmales. We tested the
hypothesis that female mating preferencesfavor males capable of supplying
females with the highest materialinvestment. Our results indicate that both
female diet and opportunitiesfor sexual cannibalism influence female mating
behavior. Femalesmaintained on a low-nutrient diet mounted males
significantlysooner than females maintained on a high-nutrient diet,
indicatingthat a female's overall nutrient intake may determine her
propensityto mate. In addition, females were significantly more reluctantto
mount and mate with males whose hind wings had been surgicallyremoved and
thus were incapable of providing females with awing meal. Finally, females
initially mated to dewinged malesremated with winged males significantly
sooner than femalesallowed to feed freely during their initial mating,
resultingin cryptic female choice of investing males. 相似文献
7.
Repeated mating by females of many species occurs at frequenciesin excess of those needed to acquire additional sperm for fertilizingova. I tested three alternative hypotheses for the rate of rematingby females of the courtship-feeding tree cricket, Oecanthusnigricornis Walker, by manipulating diet quality and courtshipfeeding and measuring the time to remating by the female inrelation to four aspects of male phenotype (age, condition,fluctuating asymmetry, and size). First, in courtship-feedingspecies, remating may be due to selection to increase the amountof nutritional resources provided by males, with nutrient-deprivedfemales remating more quickly. Second, remating may functionas a mechanism of postcopulatory mate choice, with females rematingquickly when the quality of a previous mate is low. Third, quicknessof remating may be the consequence of precopulatory mate choiceprior to future matings, with females remating more quicklywith high-quality males, regardless of the quality of priormates. Females on a low-quality diet remated quickly, did notvary remating speed with the phenotype of their first mate,and did not differentially reject prospective second mates withdifferent phenotypes. In contrast, both the degree of coyness(measured as the frequency of mate rejection) and the intensityof female choice (measured as the size differential betweenaccepted and rejected mates) increased with diet quality. Theseresults support both the material-benefits and the precopulatorymate-choice hypotheses for remating speed of female tree crickets.There was mixed support for the postcopulatory choice hypothesis:females on the high-quality diet remated more slowly after firstmating with relatively large males, in support of the postcopulatorychoice hypothesis; however, the remating interval of femaleson the high-quality diet decreased with the condition of thefirst mate, opposite to the prediction of the postcopulatorychoice hypothesis 相似文献
8.
Theoretical analyses of selection on mutations affecting female responsiveness to male traits suggested that sexually antagonistic selection and traditional female choice are not exclusive alternatives. They can act simultaneously on the same female traits, and can either reinforce or act against each other. These analyses do not yield theoretical predictions regarding the relative frequency and importance of the two types of selection on female responsiveness, as the balance between them is affected by complex factors, including the frequency distribution of male traits, and the mechanisms of male action. Male–female interactions differ from many other evolutionary interactions involving potential evolutionary conflict, in that male and female genomes are irretrievably mixed in their offspring, thus increasing the possibility of indirect payoffs to one participant from the traits of its partner. 相似文献
9.
Female mate choice across mating stages and between sequential mates in flour beetles 总被引:3,自引:0,他引:3
Few studies have examined how female premating choice correlates with the outcome of copulatory and post-copulatory processes. It has been shown that polyandrous Tribolium castaneum females discriminate among males before mating based on olfactory cues, and also exert cryptic choice during mating through several mechanisms. This study tested whether a male's relative attractiveness predicted his insemination success during copulation. Bioassays with male olfactory cues were used to rank two males as more and less attractive to females; each female was then mated to either her more attractive male followed by less attractive male, or vice versa. Dissections immediately after second copulations revealed a significantly higher percent of successful inseminations for females that remated with more attractive males compared with those that remated with less attractive males. These results indicate that cryptic female choice during copulation reinforces precopulatory female choice in T. castaneum, and suggest that females could use cryptic choice to trade up to more attractive males, possibly gaining better phenotypic or genetic quality of sires. 相似文献
10.
William G. Eberhard Gerlind U.C. Lehmann 《Evolution; international journal of organic evolution》2019,73(12):2415-2435
Rapid divergence in external genital structures occurs in nearly all animal groups that practice internal insemination; explaining this pattern is a major challenge in evolutionary biology. The hypothesis that species‐specific differences in male genitalia evolved under sexual selection as courtship devices to influence cryptic female choice (CFC) has been slow to be accepted. Doubts may stem from its radical departure from previous ideas, observational difficulties because crucial events occur hidden within the female's body, and alternative hypotheses involving biologically important phenomena such as speciation, sperm competition, and male‐female conflicts of interest. We assess the current status of the CFC hypothesis by reviewing data from two groups in which crucial predictions have been especially well‐tested, Glossina tsetse flies and Roeseliana (formerly Metrioptera) roeselii bushcrickets. Eighteen CFC predictions have been confirmed in Glossina and 19 in Roeseliana. We found data justifying rejection of alternative hypotheses, but none that contradicted CFC predictions. The number and extent of tests confirming predictions of the CFC hypothesis in these species is greater than that for other generally accepted hypotheses regarding the functions of nongenital structures. By this criterion, it is reasonable to conclude that some genital structures in both groups likely involved sexual selection by CFC. 相似文献
11.
Jacqueline Loo Winn Jason Kennington Simon de Lestang Jason How Jonathan P. Evans 《Ecology and evolution》2018,8(9):4525-4533
Polyandry, where multiple mating by females results in the temporal and spatial overlap of ejaculates from two or more males, is taxonomically widespread and occurs in varying frequencies within and among species. In decapods (crabs, lobsters, crayfish, and prawns), rates of polyandry are likely to be variable, but the extent to which patterns of multiple paternity reflect multiple mating, and thus are shaped by postmating processes that bias fertilization toward one or a subset of mated males, is unclear. Here, we use microsatellite markers to examine the frequency of multiple mating (the presence of spermatophores from two or more males) and patterns of paternity in wild populations of western rock lobster (Panulirus cygnus). Our data confirm that >45% of females had attached spermatophores arising from at least two males (i.e., confirming polyandry), but we found very limited evidence for multiple paternity; among 24 clutches sampled in this study, only two arose from fertilizations by two or more males. Single inferred paternal genotypes accounted for all remaining progeny genotypes in each clutch, including several instances when the mother had been shown to mate with two or more males. These findings highlight the need for further work to understand whether polyandry is adaptive and to uncover the mechanisms underlying postmating paternity biases in this system. 相似文献
12.
T. R. Birkhead 《Evolution; international journal of organic evolution》1998,52(4):1212-1218
In this paper, I consider the criteria necessary to demonstrate the postcopulatory ability of females to favor the sperm of one conspecific male over another, that is, sperm choice. In practice it is difficult to distinguish between sperm competition and sperm choice, and sperm choice can be demonstrated only if the effects of sperm competition can be controlled. Few studies have used experimental protocols that do this, so evidence for sperm choice is limited. Moreover, in those studies in which sperm choice occurs, it does so to avoid incompatible genetic combinations and is therefore unlikely to result in directional sexual selection. 相似文献
13.
When females mate with multiple partners within a single reproductive cycle, sperm from rival males may compete for fertilization of a limited number of ova, and females may bias the fertilization of their ova by particular sperm. Over evolutionary timescales, these two forms of selection shape both male and female reproductive physiology when females mate multiply, yet in monogamous systems, post-copulatory sexual selection is weak or absent. Here, we examine how divergent mating strategies within a genus of closely related mice, Peromyscus, have shaped the evolution of reproductive traits. We show that in promiscuous species, males exhibit traits associated with increased sperm production and sperm swimming performance, and females exhibit traits that are predicted to limit sperm access to their ova including increased oviduct length and a larger cumulus cell mass surrounding the ova, compared to monogamous species. Importantly, we found that across species, oviduct length and cumulus cell density are significantly correlated with sperm velocity, but not sperm count or relative testes size, suggesting that these female traits may have coevolved with increased sperm quality rather than quantity. Taken together, our results highlight how male and female traits evolve in concert and respond to changes in the level of post-copulatory sexual selection. 相似文献
14.
One of the most sweeping of all patterns in morphological evolution is that animal genitalia tend to diverge more rapidly than do other structures. Abundant indirect evidence supports the cryptic female choice (CFC) explanation of this pattern, which supposes that male genitalia often function to court females during copulation; but direct experimental demonstrations of a stimulatory function have been lacking. In this study, we altered the form of two male genital structures that squeeze the female’s abdomen rhythmically in Glossina pallidipes flies. As predicted by theory, this induced CFC against the male: ovulation and sperm storage decreased, while female remating increased. Further experiments showed that these effects were due to changes in tactile stimuli received by the female from the male’s altered genitalia, and were not due to other possible changes in the males due to alteration of their genital form. Stimulation from male genital structures also induces females to permit copulation to occur. Together with previous studies of tsetse reproductive physiology, these data constitute the most complete experimental confirmation that sexual selection (probably by CFC) acts on the stimulatory properties of male genitalia. 相似文献
15.
Eberhard WG 《Biological reviews of the Cambridge Philosophical Society》2004,79(1):121-186
Some recent models suggest a new role for evolutionary arms races between males and females in sexual selection. Female resistance to males is proposed to be driven by the direct advantage to the female of avoiding male-imposed reductions in the number of offspring she can produce, rather than by the indirect advantage of selecting among possible sires for her offspring, as in some traditional models of sexual selection by female choice. This article uses the massive but hitherto under-utilized taxonomic literature on genitalic evolution to test, in a two-step process, whether such new models of arms races between males and females have been responsible for rapid divergent evolution of male genitalia. The test revolves around the prediction that 'new arms races' are less likely to occur in species in which females are largely or completely protected from unwanted sexual attentions from males (e.g. species which mate in leks or in male swarms, in which males attract females from a distance, or in which females initiate contact by attracting males from a distance). The multiple possible mechanical functions of male genitalia are summarized, and functions of male genitalic structures in 43 species in 21 families of Diptera are compiled. Functions associated with intromission and insemination (e.g. seizing and positioning the female appropriately, pushing past possible barriers within the female, orienting within the female to achieve sperm transfer), which are unlikely to be involved in new arms races when females are protected, are shown to be common (> 50 % of documented cases). This information is then used to generate the new arms race prediction: differences in genitalic form among congeneric species in which females are protected should be less common than differences among congeneric species in which females are vulnerable to harassment by males. This prediction was tested using a sample of 361 genera of insects and spiders. The prediction clearly failed, even when the data were adjusted to take into account several possible biases. Comparative analyses within particular taxonomic groups also failed to show the predicted trends, as did less extensive data on other non-genitalic male display traits. Arms races, as defined in some recent models, seem to have been less important in male-female coevolution of genitalic structures than has been suggested. By elimination, alternative interpretations, such as traditional female choice, which do not predict associations between female protection from harassment and rapid divergent evolution, are strengthened. 相似文献
16.
We review possible effects of sexual selection upon sperm morphology, and sexual skin morphology, in primates. Comparative morphometric studies, involving 31 species representing 21 primate genera, revealed a positive relationship between volume of the sperm midpiece, occurrences of multiple partner matings by females, and large relative testes sizes, which indicate sperm competition. The midpiece houses the mitochondria required to power sperm motility. Hence, sperm competition may have influenced the evolution of increased mitochondrial loading in species where females mate with multiple partners during the fertile period. Females of some Old World monkey species and female chimpanzees exhibit large estrogen-dependent sexual skin swellings during the follicular phase of the menstrual cycle. Studies of mandrills support the conclusion that swellings act primarily as sexually attractive, graded signals and that swelling size may indicate current reproductive quality. Measurements of the genitalia in chimpanzees indicate a secondary function for female swellings. The swelling increases the operating depth of the female's vagina by 50% during the fertile phase of her cycle. Males have evolved long, filiform penes capable of placing sperm close to the os cervix during competitive multipartner matings. This may exemplify how morphologic specializations in females can influence the coevolution of advantageous genitalic specializations in males: the phenomenon that Eberhard (1985) dubbed cryptic female choice. 相似文献
17.
18.
Stephen M. Shuster William R. Briggs Patricia A. Dennis 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2013,368(1613)
Multiple mating by females is widely thought to encourage post-mating sexual selection and enhance female fitness. We show that whether polyandrous mating has these effects depends on two conditions. Condition 1 is the pattern of sperm utilization by females; specifically, whether, among females, male mating number, m (i.e. the number of times a male mates with one or more females) covaries with male offspring number, o. Polyandrous mating enhances sexual selection only when males who are successful at multiple mating also sire most or all of each of their mates'' offspring, i.e. only when Cov♂(m,o), is positive. Condition 2 is the pattern of female reproductive life-history; specifically, whether female mating number, m, covaries with female offspring number, o. Only semelparity does not erode sexual selection, whereas iteroparity (i.e. when Cov♀(m,o), is positive) always increases the variance in offspring numbers among females, which always decreases the intensity of sexual selection on males. To document the covariance between mating number and offspring number for each sex, it is necessary to assign progeny to all parents, as well as identify mating and non-mating individuals. To document significant fitness gains by females through iteroparity, it is necessary to determine the relative magnitudes of male as well as female contributions to the total variance in relative fitness. We show how such data can be collected, how often they are collected, and we explain the circumstances in which selection favouring multiple mating by females can be strong or weak. 相似文献
19.
K. E. ELGEE J. P. EVANS I. W. RAMNARINE S. A. RUSH T. E. PITCHER 《Journal of evolutionary biology》2010,23(6):1331-1338
Guppies (Poecilia reticulata) are models for understanding the interplay between natural and sexual selection. In particular, predation has been implicated as a major force affecting female sexual preferences, male mating tactics and the level of sperm competition. When predation is high, females typically reduce their preferences for showy males and engage more in antipredator behaviours, whereas males exploit these changes by switching from sexual displays to forced matings. These patterns are thought to account for the relatively high levels of multiple paternity in high‐predation populations compared to low‐predation populations. Here, we assess the possible evolutionary consequences of these patterns by asking whether variation in sperm traits reflect differences in predation intensity among four pairs of Trinidadian populations: four that experience relatively low levels of predation from a gape‐limited predator and four that experience relatively high levels of predation from a variety of piscivores. We found that males in high‐predation populations had faster swimming sperm with longer midpieces compared to males in low‐predation populations. However, we found no differences among males in high‐ and low‐predation populations with respect to sperm number, sperm head length, flagellum length and total sperm length. 相似文献
20.
Noriyosi Sato Masa‐aki Yoshida Takashi Kasugai 《Evolution; international journal of organic evolution》2017,71(1):111-120
In polyandrous mating systems, sperm competition and cryptic female choice (CFC) are well recognized as postcopulatory evolutionary forces. However, it remains challenging to separate CFC from sperm competition and to estimate how much CFC influences insemination success because those processes usually occur inside the female's body. The Japanese pygmy squid, Idiosepius paradoxus, is an ideal species in which to separate CFC from sperm competition because sperm transfer by the male and sperm displacement by the female can be observed directly at an external location on the female's body. Here, we counted the number of spermatangia transferred to, removed from, and remaining on the female body during single copulation episodes. We measured behavioral and morphological characteristics of the male, such as duration of copulation and body size. Although males with larger body size and longer copulation time were capable of transferring larger amounts of sperm, females preferentially eliminated sperm from males with larger body size and shorter copulation time by spermatangia removal; thus, CFC could attenuate sperm precedence by larger males, whereas it reinforces sperm precedence by males with longer copulation time. Genetic paternity analysis revealed that fertilisation success for each male was correlated with remaining sperm volume that is adjusted by females after copulation. 相似文献