首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
ABSTRACT. The flight pattern of mated female navel orangeworm moths, Amyelois transitella (Walker), responding to odour from potential larval hosts is zigzagging upwind flight. However, at times these moths are capable of flying nearly directly upwind towards the odour source (track angles near 0). This response indicates that these females are capable of very accurate anemotactic control of their heading or course angle, since small angular errors in this measure would translate into larger deviations from direct upwind flight. Males of this species exhibit flight patterns similar to those of females, including track angles clustered about 0 when flying upwind to a source of the female-produced pheromone, but under these experimental conditions they flew with a higher average airspeed than the females. When females lose contact with an odour plume they initiate a well-defined programme of cross-wind counterturning or casting, which may normally increase their chances of retrieving contact with that plume when the wind direction shifts. The resultant track angles of females increase significantly by 0.8 s after plume loss, indicating that the female has initiated changes in both her course angle and airspeed. By 1 s after plume loss the females' track angles are no longer unimodally distributed about 0, but are bimodally distributed about -90 and +90. Males responded more rapidly to the loss of a pheromone plume, demonstrating a significant change in track angle 0.4 s after plume loss. Overall, female and male A.transitella exhibited remarkably similar anemotactic flight manoeuvres during upwind flight to odour sources as well as after plume loss.  相似文献   

2.
In a wind‐tunnel study, the upwind flight and source location of female Aedes aegypti to plumes of carbon dioxide (CO2) gas and odour from human feet is tested. Both odour sources are presented singly and in combination. Flight upwind along the plumes is evident for both CO2 and odour from human feet when the odours are presented alone. Similarly, both odour sources are located by more than 70% of mosquitoes in less than 3 min. When both CO2 and odour from human feet are presented simultaneously in two different choice tests (with plumes superimposed or with plumes separated), there is no evidence that females orientate along the plume of CO2 and only a few mosquitoes locate its source. Rather, the foot odour plume is navigated and the source of foot odour is located by over 80% of female Ae. aegypti. When a female is presented a plume of CO2 within a broad plume of human foot odour of relatively low concentration, the source of CO2 is not located; instead, flight is upwind in the diffuse plume of foot odour. Although upwind flight by Ae. aegypti at long range is presumably induced by CO2 and the threshold of response to skin odours is lowered, our findings suggest that, once females have arrived near a prospective human host, upwind orientation and landing are largely governed by the suite of human odours, whereas orientation is no longer influenced by CO2.  相似文献   

3.
Abstract. Mature female Brachymeria intermedia (Hymenoptera: Chalcididae) were conditioned to fly towards vanilla odour in a wind tunnel. We analysed the tracks of wasps flying along turbulent plumes of either host odour (pupae of the gypsy moth, Lymantria dispar) or vanilla odour, along either a ribbon plume or a turbulent plume of vanilla odour, and before and after plume removal. Wasps flew in similar shallow zigzagging tracks along the turbulent plume of host and vanilla odours. When the plume was removed while wasps were flying upwind along a turbulent plume of vanilla odour, wasps either maintained an upwind course or drifted sideways, alternating upwind and downwind courses before turning around and flying downwind. No wasp casted upon loss of the plume.  相似文献   

4.
The eucalyptus woodborer, Phoracantha semipunctata Fabricius (Coleoptera: Cerambycidae), attacks mainly species of Eucalyptus (Myrtaceae). This study investigated walking and flight behaviour of P. semipunctata males and females exposed to an odour plume originating from a log of E. globulus placed vertically in the upwind end of a wind tunnel. In control experiments, beetles were exposed to a PVC drainpipe in the same position as the log, providing a visual stimulus without host‐tree odour. No statistical differences were found between behavioural responses of either sex when exposed to the log or PVC pipe. No beetles landed on the PVC pipe, whereas 49% of the beetles exposed to host‐tree odour plume landed on the log. Beetles aged over 24 days after emergence from the host tree were more responsive than beetles aged 20–24 days, and accounted vor 86% of the beetles that landed on the log. While walking, host‐tree odour affected the behaviour of the beetles that landed on the log as follows: upwind movement and path linearity increased, whereas turning rate, stopping frequency, mean stopping time and time to take‐off flight decreased. During flight, host‐tree odour affected the behaviour of the beetles that landed on the log as follows: increased upwind flight, turning rate, flight time, flight distance, and decreased flight speed. For beetles that never lost contact with the odour plume, flight progressed upwind with narrow zigzags, and showed higher directedness upwind, path linearity, faster flight speed and lower turning rate than for beetles that lost contact with the odour plume. After loosing contact with the plume, beetles tended to decrease their upwind progression, exhibiting a sharp turn or quick counterturns followed by crosswind or downwind excursions. This led to regaining contact with the odour plume and resumed upwind progression at higher speed provided they flew within the boundaries of the plume. The results showed that host‐tree odour affects both walking and flight behaviour of P. semipunctata beetles, inducing a more directed upwind movement and landing on the visual stimulus of a tree trunk.  相似文献   

5.
Flight tracks of female cabbage root fly, Delia radicum (L.), in odourless air, and in difuse clouds and discrete plumes of the host-plant volatile allylisothiocyanate (ANCS), were investigated. In diffuse ANCS D. radicum flew upwind with a smaller mean straight leg track angle with respect to the wind than in odourless air. In discrete ANCS, a larger mean straight leg track angle and a larger range of track angles occurred than in diffuse odour. The frequency distribution of these angles may have been bi-modal. It is suggested that perceived changes in odour concentration may alter the flight track angle. This behaviour is compared to the odour-modulated anemotaxis of male moths locating pheromone sources.
Résumé Changements des angles de vol de Delia radicum en présence de nuages diffus ou de panaches discontinus d'allylisothiocyanate, substance volatile émise par la plante-hôte.Nous avons étudié les chemins de vol des D. radicum femelles, en air pur, avect des émissions diffuses ou dicontinues de l'allylisothiocyanate (ANCS), substance volatilede la plante-hôte. En présence d'ANCS diffus, D. radicum vole contre le vent. Ce vol présente des portions droites faisant un angle avec la direction du vent; l'angle moyen de ce crochets est plus petit que celui observé en air pur. En présence d'ANCS discontinu, l'angle moyen est plus grand qu'en atmosphère diffuse et surtout l'histogramme de valeur de ces angles est bimodal.On peut envisager que la perception de changements dans la concentration de l'odeur peut modifier l'angle de vol. Un tel comportement est à comparer à l'anémotaxie contre le vent, modulée par l'odeur, observée chez les papillons mâles décelant une source de phéromones.
  相似文献   

6.
Abstract.  Two-day-old male cowpea weevils, Callosobruchus maculatus, fly upwind to a point source of female sex pheromone at three wind speeds. All beetles initiating flight along the pheromone plume make contact with the pheromone source. Analysis of digitized flight tracks indicates that C. maculatus males respond similarly to moths tested at several wind speeds. Beetles' mean net upwind speeds and speeds along their track are similar ( P  > 0.05) across wind speeds, whereas airspeeds increase ( P <  0.01) with increasing wind speed. Beetles adjust their course angles to fly more directly upwind in higher wind speeds, whereas track angles are almost identical at each wind speed. The zigzag flight paths are generally narrow compared with most moth flight tracks and interturn distances are similar ( P  > 0.05) at the wind speeds employed. The frequency of these counterturns across the wind line is almost constant regardless of wind speed, and there is little variation between individuals. The upwind flight tracks are more directly upwind than those typically seen for male moths flying upwind toward sex pheromone sources. Male moths typically produce a bimodal distribution of track angles to the left and right of the windline, whereas C. maculatus males' track angles are centred about 0°. Preliminary examination of two other beetle species indicates that they fly upwind in a similar fashion.  相似文献   

7.
Based on previous studies of odor-modulated flight where track parameter data was lumped and averaged, the speed and orientation of the moths' movement along their flight tracks have been said to be controlled to maintain certain “preferred” values. The results from our fine-scaled analysis of this behavior show that none of the track parameters typically measured are held constant. The moths' speed along the flight track is modulated substantially and predictably: fastest along the straight legs and slowest around the turns. In addition, about half of the individuals studied progressively reduced the peak speed along the straight legs as they approached the pheromone source. While most of the track legs between the turns were directed upwind, their orientations were widely distributed, indicating no preferred direction. Small fluctuations of orientation along some straight legs suggest corrective maneuvers to stabilize flight direction about an internal set point. The visual inputs hypothesized to control steering and speed, transverse and longitudinal image flow, changed continuously during upwind flight in pheromone, but no regular relationship between them was observed. We found that the orientation of the longitudinal body axis and the direction of thrust (course angle) were only rarely coincident during upwind flight to the odor source, suggesting that moths receive sensory input which differs quantitatively from that calculated by conventional methods. Our results strongly suggest that the long-accepted hypothetical mechanisms of control for this behavior do not operate in the manner in which they have been proposed. Accepted: 11 July 1997  相似文献   

8.
Abstract. In the field over short grass, pheromone-stimulated oriental fruit moth males, Grapholita molesta (Busck), flying under high windspeeds tended to steer courses more into the wind and to increase their airspeeds compared with those flying in low windspeeds.Thus, optomotor anemotaxis enabled the males to steer relatively consistent upwind track angles and to maintain an upwind progress of between c. 50–100 cm/s despite variable wind velocities.Zigzagging flight tracks were observed at both 10 m and 3 m from the source, as were tracks with no apparent zigzags.Transitions from casting to upwind flight or vice-versa were observed.The durations of the intervals between reversals during both upwind zigzagging flight and casting were consistent with those observed in previous wind-tunnel experiments.The control of altitude was more precise during upwind zigzagging flight than during casting.In general, the side-to-side deviations in the tracks were greater than the up-and-down deviations, with both the side-to-side and vertical distances and their ratios being consistent with previous wind-tunnel studies of pheromone-mediated flight.One difference between the field and laboratory flight tracks was that males in the field exhibited much higher airspeeds than in the wind tunnel.Males occasionally were observed to progress downwind faster than the wind itself, and further analysis showed that they were steering a downwind course in pheromone-free air following exposure to pheromone, which is the first time this has been recorded in moths.We propose that such downwind flight may aid in the relocation of a pheromone plume that has been lost due to a wind-shift, by enabling the moth to catch up to the pheromone as it recedes straight downwind away from the source.  相似文献   

9.
Investing time and energy into survival and reproduction often presents a trade-off to many species of animals. In parasitic wasps, both hosts and sugar sources contribute to the forager's fitness but are often found in different locations. The decision to search for hosts or for food can have a strong impact on fitness when the forager's lifetime is short and resources are not abundant. We investigated the tendency of flowers and hosts to attract 1-day-old female Cotesia rubecula Marshall (Hymenoptera: Braconidae) with different feeding histories in a wind tunnel. Only well-fed wasps exhibited a preference for hosts. In comparison, unfed wasps visited hosts and flowers in equal proportions. Feeding experience had a strong impact on the searching behavior and the number of landings on both resources. Host and food stimuli seem to be equally attractive to hungry parasitic wasps such as C. rubecula. We expect that under field conditions the time available for active food searching in female C. rubecula is short and influenced by the presence of hosts.  相似文献   

10.
The pheromone-modulated upwind flight ofLymantria dispar males responding to different pheromone plume structures and visual stimuli designed to mimic trees was video recorded in a forest. Males flying upwind along pheromone plumes of similar structure generated tracks that were similar in appearance and quantitatively similar in almost all parameters measured, regardless of the experimentally manipulated visual stimuli associated with the pheromone source. Net velocities, ground speeds, and airspeeds of males flying in point-source plumes were slower than those of males flying in the wider, more diffuse plumes issuing from a cylindrical baffle. The mean track angle of males flying in plumes issuing from a point source was greater (oriented more across the wind) than that of males flying in plumes issuing from a transparent cylindrical baffle. Males flying in point-source plumes also turned more frequently and had narrower tracks overall than males responding to plumes from a cylindrical baffle. These data suggest thatL. dispar males orienting to pheromone sources (i.e., calling females) associated with visible vertical cylinders (i.e., trees) use predominantly olfactory cues to locate the source and that the structure of the pheromone plume markedly affects the flight orientation and the resultant track.  相似文献   

11.
Oriented responses of both R. prolixus and T. infestans adults were recorded on a servosphere to mouse-odour, one of its components (CO2), and to rabbit urine-odour. The volatiles were delivered in an air-stream under controlled conditions which excluded other sensory modalities. In stimulus-free air the triatomines walked preferentially downwind in straight bouts interrupted by stops or periods at relatively low speeds, all of variable duration. In odour-laden air, bugs maintained their typical walking habit but switched from negative to positive anemotaxis. The characteristic response to odour onset was to stop, sample the air with the antennae, turn upwind in situ, and then walk off in the direction of the source for at least a few seconds, i.e., odour mediated anemotaxis. Mouse-odour caused T. infestans to increase its speed to 5.3 cms-1. Both species continued with the upwind response for some time after odour delivery ceased, but the crosswind component of the tracks was more prominent during this period — an effort, we presume, by the bugs to re-contact an odour plume. This investigation provides unequivocal evidence for host finding in triatomines by olfactory cues alone.  相似文献   

12.
Male moths locate conspecific females by pheromone‐induced upwind flight maintained by detecting a visual flow, termed optomotor anemotaxis. Their behavioural pattern is characterized by an upwind surge in response to a pheromone stimulus and crosswind casting after odour loss, which is considered to be reset and restarted on receipt of another pheromone pulse. However, pheromone‐stimulated males of the potato tuberworm moth Phthorimaea operculella exhibit a series of short and straight intermittent flights, or hops, when moving upwind. It is unclear whether they navigate by employing the same behavioural pattern and wind detection mechanism as that used by flying moths. To analyze odour‐modulated anemotaxis in male potato tuberworm moths, a flat wind tunnel is constructed to give regular odour stimuli to an insect regardless of its location. Moths are subjected to pheromone pulses of different frequencies to test whether they show a behavioural pattern that is reset and restarted by a pheromone pulse. Moths on the ground are also subjected to crosswind shear to examine their detection of wind direction. Path analyses reveal that males surge upwind when they receive a pheromone pulse and exhibit casting by successive hops when they lose odour. This behavioural pattern appears to be similar to that of flying moths. When the direction of the airflow is switched orthogonally, males adjust their course angle accordingly when they are on the ground. It is suggested that, instead of optomotor anemotaxis, this ‘aim‐then‐shoot’ system aids the detection of wind direction, possibly by mechanosensory means.  相似文献   

13.
Odor-modulated upwind flight of the sphinx moth,Manduca sexta L.   总被引:1,自引:0,他引:1  
1. Male and female Manduca sexta flew upwind in response to the odor of female sex-pheromone gland extract or fresh tobacco leaf respectively, and generated very similar zigzagging tracks along the odor plume. 2. After loss of odor during flight, males and females alike: (1) first flew slower and steered their flight more across the wind, then (2) stopped moving upwind, and finally (3) regressed downwind. 3. Males flying upwind in a pheromone plume in wind of different velocities maintained their ground speed near a relatively constant 'preferred' value by increasing their air speed as the velocity of the wind increased, and also maintained the average angle of their resultant flight tracks with respect to the wind at a preferred value by steering a course more precisely due upwind. 4. The inter-turn duration and turn rate, two measures of the temporal aspects of the flight track, were maintained, on average, with remarkable consistency across all wind velocities and in both sexes. The inter-turn durations also decreased significantly as moths approached the odor source, suggesting modulation of the temporal pattern of turning by some feature of the odor plume. This temporal regularity of turning appears to be one of the most stereotyped features of odor-modulated flight in M. sexta.  相似文献   

14.
The responses of gravid female cabbage root flies, Delia radicum (L.), to brassica odour and allylisothiocyanate (ANCS) presented in either a discrete plume or uniformly dispersed in air passing through a wind tunnel were investigated. Relatively fast, straight flights occurred in diffuse odour conditions, while in discrete plumes flights were slower with more frequent changes of direction.Flies maintained a constant ground speed and track angle over the straight legs of their flight tracks in two different wind speeds by changing air speed and course. As flies approached an odour source in a discrete plume ground speed was progressively decreased and frequency of turning increased but track angles remained constant. This was achieved by reducing air speed and course angle.Flies released at increasing distances from an odour source moved upwind towards it in a series of short flights, the number relating to distance.The results are discussed in the light of current theories of anemotactic odour source locations and a sequence of orientated behaviour for host plant finding is proposed.
Les réactions olfactives de Delia radicum à l'allylisothiocyanate volatil émis par les plantes-hôtes
Résumé L'étude a porté sur les réactions de femelles fécondées de Delia radicum L. à l'odour de chou et à l'allylisothiocyanate (ANCS) offerts, soit sous forme d'un fin panache, soit uniformément répartis dans l'air traversant un tunnel à vent.Avec une odeur diffuse les vols étaient relativement rapides et rectilignes, tandis qu'avec un fin panache les vols étaient plus lents avec des changements de direction plus fréquents.En présence de deux vitesses du courant d'air les mouches ont maintenu leur vitesse au sol et leur angle de vol par rapport à la direction du déplacement constants en modifiant leur vitesse de vol et leur direction.Quand les mouches approchaient de la source odorante dans un fin panache, la vitesse au sol diminuait progressivement et la fréquence des virages augmentait, les angles de vol restant constant. Ceci était obtenu en réduisant de la vitesse de l'air et l'angle du déplacement.Les mouches paraissent utiliser une anémotaxie optomotrice et mécanique pendant la localisation de l'hôte. Les résultats sont discutés à la lumière des théories classiques sur la localisation anémotactique des sources odorantes.
  相似文献   

15.
Although it is well established that the predatory mite Phytoseiulus persimilis Athias-Henriot responds to odour emanating from leaves infested by its phytophagous prey, the two-spotted spider mite Tetranychus urticae Koch, little is known of the behavioural mechanisms elicited by odour perception and how they contribute to finding the prey. In this paper the influence of prey-related odour on orientation to wind direction is discussed. It was analysed by observing the predator's walking paths in still air and in an air stream uniformly permeated either with or without prey-related odour stimuli. The results show that well-fed predator females move upwind in presence of these stimuli, but downwind otherwise. Starved predators always move upwind. The anemotactic responses observed are therefore both odour-conditioned and (feeding) state-dependent.In an attempt to explain these responses it is argued that the anemotactic responses of well-fed predators may contribute to arrestment within the area marked by a cluster of prey-colonized leaves. The anemotactic responses of starved predators may help them to find clusters of spider mite colonies located upwind. Why predatory mites also move upwind in absence of prey-related odour stimuli, is a question that remains to be answered.  相似文献   

16.
Male Mediterranean fruit flies,Ceratitis capitata (Wiedemann), produce volatile chemicals thought to be attractive sex pheromones. We demonstrated for the first time that male odor elicits upwind flight and zigzagging upwind flight patterns in mature unmated females. Such flight patterns indicate the mechanisms involved in female location of the pheromone source and arrival at that source. Similar female oriented upwind flight responses occurred with a three component blend comprised of ethyl-(E)-octenoate, geranyl acetate, andE,E-alpha farnesene. These findings clarify the role of male sex pheromone in mate-location strategies in this species and provide new bioassay criteria for evaluating attraction responses to male pheromone and synthetic blends.  相似文献   

17.
Abstract. Females of the specialist parasitoid, Microplitis croceipes (Cresson) (Hymenoptera: Braconidae), were released in a wind tunnel into host-odour plumes dispersed by winds of three velocities and winds whose speed was changed while the wasps were engaged in upwind flight. In steady winds of 61, 122 and 183 cms--1, wasps maintained similar 'preferred' ground speeds by adjusting their airspeed, while turning to a lesser degree as wind velocity increased. In winds of changing velocity (either increasing or decreasing within a 60–100 cm s-1 range), wasps lowered their rate of upwind progress, leading to more tortuous tracks. During changing wind speeds longitudinal image flow decreased. Wasps flying in host-odour plumes 10 cm and 20 cm above the flight tunnel floor in a 122 cm s-1 wind had similar ground speeds; thus their rate of ventral visual image flow varied two-fold. M.croceipes may 'aim' upwind by comparing how changes in the course angle vary with the direction of visual image flow. During changing wind velocities the relationship between changes in visual and flight muscle generated torque is ambiguous. Under these conditions most wasps cast, a manoeuvre characterized by wide lateral excursions across the wind without upwind progress. Once wind speed stabilizes, flight straightens out and upwind flight resumes.  相似文献   

18.
This study investigated the interaction between carbon dioxide (CO(2) ) and human foot odour on activation, upwind orientation and landing of host-seeking female Culex quinquefasciatus (Say) (Diptera: Culicidae) in a wind tunnel. More mosquitoes landed on warmed glass beads coated with foot odour than on clean beads; adding a plume of 4% CO(2) did not influence the proportion of mosquitoes landing. A second experiment used 3-dimensional video tracking to assess flight performance. Activation was more rapid with CO(2) and with CO(2) + foot odour than with clean air or with foot odour alone. Upwind flights were fastest with CO(2) and with clean air, and slowest with foot odour; the CO(2) + foot odour treatment overlapped the previous three treatments in significance. Flight headings tended more towards due upwind with CO(2) and with clean air than with CO(2) + foot odour or with foot odour alone. In both experiments, many mosquitoes flew upwind in clean air. There was little evidence of females changing course upon entering or exiting the CO(2) plume or reacting to foot odour during flight.  相似文献   

19.
The necrophagous burying beetle Nicrophorus vespilloides reproduces on small carcasses that are buried underground to serve as food for their offspring. Cadavers that are too large to bury have previously been postulated to be important food sources for newly emerged beetles; however, the attractiveness of distinct successive stages of decomposition were not further specified. Therefore, we investigated the potential preference of newly emerged N. vespilloides females for odour bouquets of piglet cadavers at specific stages of decomposition. Analyses of walking tracks on a Kramer sphere revealed a significantly higher mean walking speed and, consequently, a higher mean total track length when beetles were confronted with odour plumes of the decomposition stages ‘post-bloating’, ‘advanced decay’ or ‘dry remains’ in comparison with the solvent control. Such a change of the walking speed of newly emerged N. vespilloides females indicates a higher motivation to locate such food sources. In contrast to less discriminating individuals this behaviour provides the advantage of not wasting time at unsuitable food sources. Furthermore, in the advanced decay stage, we registered a significantly higher preference of beetles for upwind directions to its specific odour plume when compared with the solvent control. Such a change to upwind walking behaviour increases the likelihood that a large cadaver will be quickly located. Our findings are of general importance for applied forensic entomology: newly emerged N. vespilloides females on large cadavers can and should be regarded as potential indicators of prolonged post mortem intervals as our results clearly show that they prefer emitted odour bouquets of later decomposition stages.  相似文献   

20.
Abstract. Plasticity in in-flight orientation to odours from the plant-host complex (PHC: plant infested by the host) was investigated in Cotesia rubecula , a specialist larval parasitoid of Pieris rapae which feeds almost exclusively upon cruciferous plants. A wind tunnel was used to study effects of both concentration of volatile emissions and females' experience. A low proportion of naive wasps located weak odourant sources, i.e. either a single cabbage leaf or a leaf with two first stadium P.rapae larvae. This rate could be elevated by increasing the odour concentration or by providing the wasps with either a previous oviposition experience on the PHC or an exposure to the PHC odour. Previous oviposition on washed larvae (diet-fed, starved and then rinsed with distilled water) in an odourless environment had no effect, which suggested that increased sensitivity to the PHC odour resulted from olfactory experience. The number of mature eggs in a female was affected by oviposition on the PHC or washed larvae but not by exposure to the PHC odour. Therefore the number of mature eggs available was not correlated to the observed differences in orientation behaviour. Possible mechanisms of the behavioural changes described are discussed in the light of the host specificities of C.rubecula and P.rapae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号