首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have determined the nucleotide sequence for two cDNA clones coding for a fatty acid binding protein (FABP) from zebrafish (Danio rerio). Comparison of the sequence with GenBank entries revealed extensive amino acid identity between this zebrafish FABP and brain FABPs (B-FABP) from other species. The zebrafish B-FABP cDNA hybridized to single restriction fragments of total zebrafish genomic DNA digested with the restriction endonucleases BglII or EcoRI suggesting that a single copy of the B-FABP gene is present in the zebrafish genome. Northern blot analysis demonstrated that the zebrafish B-FABP mRNA is approximately 850 nucleotides in length. In situ hybridization revealed that the B-FABP mRNA was expressed in the periventricular gray zone of the optic tectum of the adult zebrafish brain.  相似文献   

2.
3.
A cDNA clone coding for a membrane proteoglycan core protein was isolated from a neonatal rat Schwann cell cDNA library by screening with an oligonucleotide based on a conserved sequence in cDNAs coding for previously described proteoglycan core proteins. Primer extension and polymerase chain reaction amplification were used to obtain additional 5' protein coding sequences. The deduced amino acid sequence predicted a 353 amino acid polypeptide with a single membrane spanning segment and a 34 amino acid hydrophilic COOH-terminal cytoplasmic domain. The putative extracellular domain contains three potential glycosaminoglycan attachment sites, as well as a domain rich in Thr and Pro residues. Analysis of the cDNA and deduced amino acid sequences revealed a high degree of identity with the transmembrane and cytoplasmic domains of previously described proteoglycans but a unique extracellular domain sequence. On Northern blots the cDNA hybridized to a single 5.6-kb mRNA that was present in Schwann cells, neonatal rat brain, rat heart, and rat smooth muscle cells. A 16-kD protein fragment encoded by the cDNA was expressed in bacteria and used to immunize rabbits. The resulting antibodies reacted on immunoblots with the core protein of a detergent extracted heparan sulfate proteoglycan. The core protein had an apparent mass of 120 kD. When the anti-core protein antibodies were used to stain tissue sections immunoreactivity was present in peripheral nerve, newborn rat brain, heart, aorta, and other neonatal tissues. A ribonuclease protection assay was used to quantitate levels of the core protein mRNA. High levels were found in neonatal rat brain, heart, and Schwann cells. The mRNA was barely detectable in neonatal or adult liver, or adult brain.  相似文献   

4.
5.
We have isolated a cDNA clone encoding ubiquitin carboxyl-terminal hydrolase PGP9.5 from a rat brain cDNA library and examined the tissue distribution. The primary structure of the cDNA consists of 856 nucleotides including the entire coding region for 223 amino acids, and the calculated molecular mass is 24,782 Da. The rat PGP9.5 is strikingly homologous to the human PGP9.5, 75.2% of nucleic acids and 95.1% of amino acids being identical. The mRNA of PGP9.5 is most abundant in the rat brain and to a lesser degree in the testis. In other peripheral tissues we tested, the mRNA was undetectable. Western blotting using an anti-rat PGP9.5 antibody revealed the parallel distribution of mRNA and protein in various brain regions and testis. The availability of the rat PGP9.5 clone provides a new approach to examine the function of PGP9.5 and the role that it plays in the pathology of neurodegenerative diseases.  相似文献   

6.
We have cloned a cDNA from zebrafish (Danio rerio) that contains an open-reading frame of 132 amino acids coding for a fatty acid binding protein (FABP) of approximately 15 kDa. Multiple sequence alignment revealed extensive amino acid identity between this zebrafish FABP and intestinal-like FABPs (I-FABP) from other species. The zebrafish I-FABP cDNA hybridized to single restriction fragments of total zebrafish genomic DNA digested with the restriction endonucleases PstI Bg/II or EcoRI suggesting that a single copy of the I-FABP gene is present in the zebrafish genome. An oligonucleotide probe complementary to the zebrafish I-FABP mRNA hybridized to an mRNA of approximately 800 bases in Northern blot analysis. In situ hybridization revealed that the I-FABP mRNA was expressed exclusively in the intestine of the adult zebrafish.  相似文献   

7.
The rat contains at least three homologous cytosolic proteins that bind long chain fatty acids, termed liver (L-), intestinal (I-), and heart (H-) fatty acid binding protein (FABP). I-FABP mRNA is confined to the gastrointestinal tract while L-FABP mRNA is abundantly represented in hepatocytes as well as enterocytes. We have isolated a rat heart FABP cDNA clone and determined the pattern of H-FABP mRNA accumulation in a wide variety of tissues harvested from late fetal, suckling, weaning, and adult rats. RNA blot hybridizations and primer extension analysis disclosed that the distribution of H-FABP mRNA in adult rat tissues is different from that of I- or L-FABP mRNA. H-FABP mRNA is most abundant in adult heart. This mRNA was also present in an adult slow twitch (type I) skeletal muscle (soleus, 63% of the concentration in heart), testes (28%), a fast twitch skeletal muscle (psoas, 17%), brain (10%), kidney (5%), and adrenal gland (5%). H-FABP mRNA was not detected in adult small intestine, colon, spleen, lung, or liver RNA. Distinct patterns of developmental change in H-FABP mRNA accumulation were documented in heart, placenta, brain, kidney, and testes. Myocardial H-FABP mRNA levels rise rapidly during the 48 h prior to and after birth, reaching peak levels by the early weaning period. The postnatal increase in myocardial H-FABP mRNA concentration and its relative distribution in adult fast and slow twitch skeletal muscle are consistent with its previously proposed function in facilitating mitochondrial beta-oxidation of fatty acids. However, the presence of H-FABP mRNA in brain, a tissue which does not normally significantly oxidize fatty acids in late postnatal life, suggests that H-FABP may play a wider role in fatty acid metabolism than previously realized. Mouse-hamster somatic cell hybrids were utilized to map H-FABP. Using stringencies which did not produce cross-hybridization between L-, I-, and H-FABP DNA sequences, we found at least three loci in the mouse genome, each located on different chromosomes, which reacted with our cloned H-FABP cDNA. None of these H-FABP-related loci were linked to the gene which specifies a highly homologous adipocyte-specific protein termed aP2 or to genes encoding two other members of this protein family, cellular retinol binding protein and cellular retinol binding protein II.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
A cDNA clone containing the full coding sequence of a type 1 protein phosphatase catalytic subunit 1 alpha has been isolated from a rat kidney lambda gt 10 library. The protein sequence deduced from the cDNA contains 330 amino acid residues with a molecular mass of 38 kDa. The cDNA clone from rat kidney was 89% identical at the nucleotide level in the coding region to type 1 protein phosphatase 1 alpha from rabbit skeletal muscle. However, the two protein sequences were completely identical. The type 1 alpha protein phosphatase from rat kidney shows 49% homology of amino acid sequence to the rat type 2A alpha protein phosphatase. Thus, the protein sequence of type 1 alpha protein phosphatase was completely conserved between rat and rabbit. The mRNA levels of type 1 protein phosphatase were determined in rat liver, AH13, a strain of rat hepatoma, and regenerating rat liver by Northern blot analysis using the cDNA fragment as a probe, under which conditions a single mRNA of 1.5 kb was detected. The mRNA levels of AH13 were remarkably increased when compared to those of normal ivers, whereas the mRNA levels of regenerating livers were slightly but significantly increased. These results demonstrate a marked increase in gene expression of type 1 protein phosphatase in hepatoma cells, suggesting an important role of the type 1 protein phosphatase in hepatocarcinogenesis.  相似文献   

9.
A rat complementary DNA (cDNA) for the RI beta isoform of type I cyclic adenosine monophosphate (cAMP)-dependent protein kinase regulatory subunit was cloned and sequenced and was found to contain the entire protein coding and 3'-untranslated regions, with a single (ATTAAA) poly-adenylation site. The largest open reading frame was preceded by a short out-of-phase open reading frame, which is not seen in the corresponding mouse RI beta cDNA due to a single base substitution. The rat RI beta cDNA clone was 2,374 bases long and detected a rat mRNA of approximately 2.8 kilobases. Rat RI beta mRNA was abundant in adult rat brain and testis but was undetectable in other rat tissues. The rat RI beta cDNA also detected RI beta mRNA in mouse brain, but not mouse testis, from 10-week-old BALB/c or 10- and 6-week-old Swiss Webster mice. Thus, despite a 96% nucleotide identity in the coding region of RI beta in rat vs. mouse, there are at least two differences in these closely related species. First, there is a short open reading frame, which precedes the coding region in the rat but not the mouse. Second, unlike the mouse testis, the rat testis contains abundant levels of RI beta mRNA.  相似文献   

10.
We have isolated a full length cDNA that encodes a heat shock protein, hsp90, from a rat brain library and present the nucleotide sequence and deduced amino acid sequence. Comparison of the entire nucleotide sequence with mouse hsp84 and human hsp90β cDNAs reveal sequence similarities of 92 and 87%, respectively. The coding region of 2172 nucleotides corresponds to a polypeptide chain of 724 amino acids. Comparison with mouse hsp84 and human hsp90β amino acid sequences indicates a similarity of 97%, respectively. Characterization of the constitutive expression of this cDNA both by RNA blot hybridization and immunoblotting, reveals that it is expressed in all rat tissues examined. Hsp90 has been shown to form a transient complex with steroid hormone receptors. In order to further elucidate the role of hsp90 in the endocrine response of cells, we have examined the effects of dexamethasone and RU38486 on the level of hsp90 mRNA in a system in which glucocorticoids down-regulate glucocorticoid receptor mRNA levels. In this system, a subtle but reproducible approx. 2-fold decrease in hsp90 mRNA levels is observed after 48 h treatment with dexamethasone.  相似文献   

11.
Recombinant DNA clones encoding the neurotensin/neuromedin N precursor protein have been isolated from both bovine hypothalamus cDNA and rat genomic libraries using a heterologous canine cDNA probe. Nucleotide sequence analysis of these clones and comparison with the previously determined canine sequence has revealed that 76% of the amino acid residues are conserved in all three species. The protein precursor sequences predicted from bovine hypothalamus and canine intestine cDNA clones vary at only 9 of 170 amino acid residues suggesting that within a species identical precursors are synthesized in both the central nervous system and intestine. The rat gene spans approximately 10.2 kilobases (kb) and is divided into four exons by three introns. The neurotensin and neuromedin N coding domains are tandemly positioned on exon 4. RNA blot analysis has revealed that the rat gene is transcribed to yield two distinct mRNAs, 1.0 and 1.5 kb in size, in all gastrointestinal and all neural tissues examined except the cerebellum. There is a striking variation in the relative levels of these two mRNAs between brain and intestine. The smaller 1.0-kb mRNA greatly predominates in intestine while both mRNA species are nearly equally abundant in hypothalamus, brain stem, and cortex. Sequence comparisons and RNA blot analysis indicate that these two mRNAs result from the differential utilization of two consensus poly(A) addition signals and differ in the extent of their 3' untranslated regions. The relative combined levels of the mRNAs in various brain and intestine regions correspond roughly with the relative levels of immunologically detectable neurotensin except in the cerebral cortex where mRNA levels are 6 times higher than anticipated.  相似文献   

12.
13.
14.
15.
Three overlapping cDNA clones encoding methylmalonate-semialdehyde dehydrogenase (MMSDH; 2-methyl-3-oxopropanoate:NAD+ oxidoreductase (CoA-propanoylating); EC 1.2.1.27) have been isolated by screening a rat liver lambda gt 11 library with nondegenerate oligonucleotide probes synthesized according to polymerase chain reaction-amplified portions coding for the N-terminal amino acid sequence of rat liver MMSDH. The three clones cover a total of 1942 base pairs of cDNA, with an open reading frame of 1569 base pairs. The authenticity of the composite cDNA was confirmed by a perfect match of 43 amino acids known from protein sequencing. The composite cDNA predicts a 503 amino acid mature protein with M(r) = 55,330, consistent with previous estimates. Polymerase chain reaction was used to obtain the sequence of the 32 amino acids corresponding to the mitochondrial entry peptide. Northern blot analysis of total RNA from several rat tissues showed a single mRNA band of 3.8 kilobases. Relative mRNA levels were: kidney greater than liver greater than heart greater than muscle greater than brain, which differed somewhat from relative MMSDH protein levels determined by Western blot analysis: liver = kidney greater than heart greater than muscle greater than brain. A 1423-base pair cDNA clone encoding human MMSDH was isolated from a human liver lambda gt 11 library. The human MMSDH cDNA contains an open reading frame of 1293 base pairs that encodes the protein from Leu-74 to the C terminus. Human and rat MMSDH share 89.6 and 97.7% identity in nucleotide and protein sequence, respectively. MMSDH clearly belongs to a superfamily of aldehyde dehydrogenases and is closely related to betaine aldehyde dehydrogenase, 2-hydroxymuconic semialdehyde dehydrogenase, and class 1 and 2 aldehyde dehydrogenases.  相似文献   

16.
Three cDNA clones encoding rat basic fibroblast growth factor (FGF) were isolated from 10(6) independent clones prepared from a pregnant mare serum gonadotropin (PMSG)-stimulated rat ovarian cDNA library. One of the cDNA clones contained the entire coding sequence for basic FGF. The other two possessed the sequence coding the carboxy terminal 61 amino acids of rat basic FGF, the putative upstream intron sequence, and a 3'-noncoding region. The cDNAs encoding rat basic FGF predict a molecule consisting of 154 amino acid residues, which is one amino acid shorter than the human and bovine basic FGF. Otherwise, there are only 5 conservative amino acid substitutions between the rat and the human/bovine sequences. Poly A+ RNA from brain cortex and hypothalamus show a single 6.0 kb band that hybridizes to the cloned cDNA probe by Northern analyses. The observation that basic FGF mRNA is below the limits of detection in adrenal, spleen, heart, lung, kidney, liver, stomach, small intestine, large intestine, testis, and ovary support the notion that the that the high levels of the protein found in these tissues is due to storage of the mitogen in the extracellular matrix and not continuous gene expression. The significance of the abundance of mRNA in tissues which are not undergoing either active angiogenesis or cell proliferation (hypothalamus and brain cortex) is unclear but emphasizes the potential neuronotrophic function of basic FGF.  相似文献   

17.
The cDNA coding for the rat CHIP28 water channel was isolated from a kidney library. At the amino acid level, rat CHIP28 is 93% identical to the recently published human protein (1). Expression of rat CHIP28 mRNA was highest in the renal inner medulla, unchanged during antidiuresis and twice the level expressed in outer cortex, with lower expression levels also apparent in parotid gland, urinary bladder and prostate. The evidence suggests that CHIP28 water channels in the ADH-sensitive collecting tubules are identical to those of the ADH-insensitive proximal convoluted tubules and possibly other tissues specialised in fluid transport.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号