首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Copulatory organ, mating posture and locomotion: their interrelationship in non-mammalian vertebrates. This paper demonstrates, for the vertebrate groups discussed, a relationship between mating posture, the length of the copulatory organ, and the respective modes of locomotion. The modes of locomotion in the majority of non-mammalian vertebrate groups presuppose a massive, heavily muscularized, and relatively long tail, which may either reinforce lateral flexions of the trunk or (in animals with rigid trunk) act as the only means of propulsion (e.g. in Chondrichthyes, Teleostei, Lepidosauria, and Crocodylia). Such a massive tail with gradual transition to the trunk necessitates a lateral mating position (regardless of whether the copulatory organ is paired or unpaired). Animals with a flexible trunk will, therefore, generate strongly pronounced laterotruncal flexions (‘dynamic lateral bending’). A long copulatory organ is not necessary (e.g. the short hemipenes of Lepidosauria). Animals with a rigid trunk, on the other hand, will not be capable of copulating unless by means of a relatively long penis or a modified mating posture (e.g. Crocodylia). In the course of phylogeny, whenever a change in the mode of locomotion allows a reduction in tail length, this will lead to a corresponding change in mating posture, with mating then being possible from a posterior position (e.g. Chelonia, Aves, as well as Ascaphus among the Anura). The locomotion of the latter taxa is characterized by a completely or almost completely rigid trunk. Thus, contact between male and female cloaca cannot be assisted by bending movements in the trunk. To compensate for truncal rigidity, there is a trend towards linear extension of the penis, or other male copulatory organs (such as mixopterygia or gonopodia), e.g. in the pelagic Selachians, in Chelonia, and in the flightless ratites. For those birds lacking a penis, the only methods of overcoming truncal rigidity are stationary locomotion (fluttering without forward movement), having a mobile, swivelling cloacal region (uropygium), and simultaneous evagination of the proctodeum of both the male and female. Penguins, being unable to perform stationary fluttering, resort to a somewhat modified mating posture.  相似文献   

2.
The small didelphid cmarsupial, Monodelphis domestica, uses a lateral sequence walk during slow treadmill locomotion and gradually shifts to a trot as speed increases. At higher speeds it changes abruptly to a half-bound. Cinematographic records suggest significant lateral bending but no sagittal bending of the trunk during the slow walk and a reduced amount of lateral bending during the fast walk. There is slight lteral, but no sagittal, bending during the trot. Sagittal bending is obvious during the half-bound, but no lateral bending is evident. Cineradiography confirms that the vertebral column of the trunk bends laterally during the slow walk. Bending occurs throughout the trunk region, but seems to be most pronounced in the anterior lumbar region. Associated with this bending of the trunk is substantial rotation of the pelvic girdle in the plane of yaw. Pelvic rotation is synchronized with the locomotor cycle of hindlimbs. Each side of the pelvis rotates forward during the recovery phase of the ipsilateral hindlimb and backward during the contact phase of this limb. Information on locomotor trunk movements in other limbed tetrapods is limited. The pattern of trunk bending found in Monodelphis, however, is consistent with that reported in the placental mammal Felis catus and in some lepidosaurian reptiles. This suggests that sagittal bending did not replace lateral bending during the evolution of mammals, as is sometimes suggested. Rather, bending in the vertical plane seems to have been added to lateral bleeding when the ancestors of extant mammals acquired galloping and bounding capabilities.  相似文献   

3.
On the cause of the mammalian descent of the testes (Descensus testiculorum) Two explanations have been offered for the descent of the testes in mammals, both of which are frequently cited in the literature. Moore and co-workers argued that the phylogenetic rise of body temperature caused the translocation of the testes. According to Portmann , the descent of the testes was due to the evolution of the scrotum as a signal. However, both the sensibility of the extra-abdominal testes to temperature elevations and the optical effects of the scrotum can be interpreted as a consequence of testicular descent rather than as its cause. The hypothesis presented in this paper suggests a new adaptive explanation for the descent of the testes in mammals and regards its development as an example of evolutionary compromise. Obvious disadvantages such as reduced protection of the extra-abdominal testes, “perforation” of the inguinal abdominal wall, and an increased loss of heat from the body core have to be outbalanced by a strong selective advantage. This advantage is seen in the development of a completely new, fast mode of locomotion - the gallop. The strong flexions and extensions of the vertebral column during gallop should cause intense fluctuations of intra-abdominal pressure. Fluctuations of intra-abdominal pressure severely impede continuous flow of blood in the abdominal veins. Periodically reduced venous drainage resulting in fluctuations of intra-testicular pressure would impair the process of spermiohistogenesis, which is dependent on an absolutely constant pressure within the testis. Thus, it is the displacement of the pressure sensitive testes out of the abdominal cavity that allows for the evolution of a fast mode of locomotion accompanied by strong fluctuations of intraabdominal pressure. In the course of the phylogenetic translocation of the testes increasing specializations of the testicular blood vessels occur. In mammals possessing a scrotum the return flow of venous blood from the extra-abdominal testes to the abdominal cavity is supported by utilizing the energy of the arterial pulse (‘peripheral arterial pump’). A model for the successive stages of the descent of the testes is illustrated in Figures 7–10. The morphological changes related to the phylogenetic descent of the testes, such as the specialization of the testicular blood vessels, the forming of a cremasteric sack in the inguinal region, and the differentiation of the inguinal or perineal integument into a scrotum can all be interpreted as serving one purpose: they aid in maintaining a constant intra-testicular pressure in spite of increasing fluctuations of intra-abdominal pressure and venous blood flow during the evolution of the gallop. Although the blood vessels of the spermatic chord basically serve the same functions, they show markedly different specializations in Marsupials and Eutherians. This indicates that the descent of the testes has occurred independently, at least, in these two groups. The explanation put forward here postulates a causal relationship between the mode of locomotion and the position of the testes. Mammals possessing testes wnich reside permanently within the abdominal cavity (‘Testiconda’) cannot gallop, whereas mammals with the ability to gallop must have (periodical or permanent) extraabdominal testes (‘Testiphaena’).  相似文献   

4.
A fundamental adaptation to orthograde posture and locomotion amongst living hominoid primates is a numerically reduced lumbar column, which acts to stiffen the lower back and reduce injuries to the intervertebral discs. A related and functionally complementary strategy of spinal stability is a caudal position of the diaphragmatic vertebra relative to the primitive condition found in nonhominoid primates and most other mammals. The diaphragmatic vertebra marks the transition in vertebral articular facet (zygapophysis) orientation, which either resists (prediaphragmatic) or allows (postdiaphragmatic) trunk movement in the sagittal plane (i.e., flexion and extension). Unlike most mammals, which have dorsomobile spines (long lumbar columns and cranially placed diaphragmatic vertebrae) for running and leaping, hominoids possess dorsostable spines (short lumbar columns and caudally placed diaphragmatic vertebrae) adapted to orthogrady and antipronogrady. In contrast to humans and other extant hominoids, all known early hominin partial vertebral columns demonstrate cranial displacement of the diaphragmatic vertebra. To address this difference, variation in diaphragmatic placement is assessed in a large sample of catarrhine primates. I show that while hominoids are characterized by modal common placement of diaphragmatic and last rib-bearing vertebrae in general, interspecific differences in intraspecific patterns of variation exist. In particular, humans and chimpanzees show nearly identical patterns of diaphragmatic placement. A scenario of hominin evolution is proposed in which early hominins evolved cranial displacement from the ancestral hominid condition of common placement to achieve effective lumbar lordosis during the evolution of bipedal locomotion.  相似文献   

5.
In order to gain a better understanding of the ancestral properties of the perivertebral muscles of mammals, this study investigated the fiber type composition of these muscles in six small, extant therians (two metatherians and four eutherians) similar in body shape to early mammals. Despite a few species-specific differences, the investigated species were very similar in their overall distribution of fiber types indicating similar functional demands on the back muscles in mammals of this body size and shape. Deep and short, mono- or multisegmental muscles (i.e., mm. interspinales, intermammillares, rotatores et intertransversarii) consistently showed the highest percentage of slow, oxidative fibers implying a function as local stabilizers of the vertebral column. Superficial and large, polysegmental muscles (i.e., mm. multifidus, sacrospinalis, iliopsoas et psoas minor) were predominantly composed of fast, glycolytic fibers suggesting they function to both globally stabilize and mobilize the spine during rapid non-locomotor and locomotor activities. Some muscles contained striking accumulations of oxidative fibers in specific regions (mm. longissimus et quadratus lumborum). These regions are hypothesized to function independently from the rest of the muscle belly and may be comparable in their functionality to regionalized limb muscles. The deep, central oxidative region in the m. longissimus lumborum appears to be a general feature of mammals and likely serves a proprioceptive function to control the postural equilibrium of the pelvic girdle and lumbar spine. The potential functions of the m. quadratus lumborum during ventilation and ventral stabilization of the vertebral column are discussed. Because representatives of the stem lineage of mammals were comparable in their body proportions and probably also locomotor parameters to the species investigated here, I suggest that the described fiber type distribution is representative of the ancestral condition in mammals. The origin of mammals was associated with a substantial enlargement of the epaxial muscles and the addition of subvertebral muscle mass. Because this novel muscle mass is mainly composed of fast, glycolytic fibers in extant species, it is plausible that these changes were associated with the evolution of increased sagittal mobility in the posterior trunk region in the therapsid ancestors of mammals. The caudally increasing role of sagittal bending in body propulsion is consistent with the overall increase in the percentage of glycolytic fibers in the cranio-caudal direction. The evolution of mammals was also associated with a loss of ribs in the posterior region of the trunk. This loss of ribs is thought to have decreased the stability of the posterior trunk, which may explain the observed greater oxidative capacity of the caudal local stabilizers. The increased need for postural feedback in the more mobile lumbar region may also explain the evolution of the proprioceptive system in the m. longissimus lumborum. Furthermore, the anatomical subdivision of the transversospinal muscle into several smaller muscle entities is suggested to facilitate their functional specialization.  相似文献   

6.
As body size increases, so do the biomechanical challenges of terrestrial locomotion. In the appendicular skeleton, increasing size is met with allometry of limb posture and structure, but much less is known about adaptations of the axial skeleton. It has been hypothesized that stabilization of the lumbar region against sagittal bending may be a response to increasing size in running mammals. However, empirical data on lumbar allometry in running mammals are scarce. This study presents quantitative data on allometry of the penultimate lumbar vertebra in two mammal families: Bovidae and Felidae. One hundred and twenty 3D landmarks were collected on the penultimate lumbar vertebra of 34 bovid (N = 123) and 23 felid (N = 93) species. Multivariate phylogenetically informed regressions were computed, and the shape variation associated with increasing size calculated. The influence of locomotor and habitat variables on size‐corrected lumbar shape was tested using phylogenetic multivariate analysis of variance (MANOVAs). Results demonstrate that the scaling patterns in both groups are consistent with the hypothesis of allometric stabilization of the lumbar region, and suggest convergent evolution of allometric responses in distantly related lineages of mammals. However, there was a relatively smaller effect of size in felids than bovids, even when size range disparities were accounted for, suggesting a trade‐off between size and running behaviour. Despite the strong influence of size and phylogeny on lumbar shape, there was no correlation with either habitat or diet within families, though certain specialized taxa (i.e., cheetah) did have divergent morphology.  相似文献   

7.
The interordinal relationships of eutherian (placental) mammals were evaluated by a phylogenetic analysis of four published data sets (three sequences and one morphological). The nature and degree of support and conflict for particular groups were assessed by separate bootstrap and homogeneity tests, which were followed by combined analyses of the sequence and morphological data. Between orders, strong support (i.e., > or = 95% bootstrap scores) was found for a paraphyletic Artiodactyla (relative to Cetacea) and a monophyletic Cetartiodactyla (Artiodactyla and Cetacea) and Paenungulata (Hyracoidea, Proboscidea, and Sirenia). In turn, some reasonable to strong evidence (> or = 85%) was obtained for Hyracoidea with Sirenia, Dermoptera with Scandentia, Glires (Lagomorpha with Rodentia), and Afrotheria (Amblysomus, Macroscelidea, Paenungulata, and Tubulidentata). Otherwise, no other interordinal clades were supported at these reasonable to strong levels. This overall lack of resolution for eutherian interordinal clusters agrees with other studies that suggest further progress will continue to be slow and difficult. Further resolution will require the integration of more recently published data, the continued sampling of taxa and characters, and the use of more powerful methods of data analysis.  相似文献   

8.
Ecological diversification into new environments presents new mechanical challenges for locomotion. An extreme example of this is the transition from a terrestrial to an aquatic lifestyle. Here, we examine the implications of life in a neutrally buoyant environment on adaptations of the axial skeleton to evolutionary increases in body size. On land, mammals must use their thoracolumbar vertebral column for body support against gravity and thus exhibit increasing stabilization of the trunk as body size increases. Conversely, in water, the role of the axial skeleton in body support is reduced, and, in aquatic mammals, the vertebral column functions primarily in locomotion. Therefore, we hypothesize that the allometric stabilization associated with increasing body size in terrestrial mammals will be minimized in secondarily aquatic mammals. We test this by comparing the scaling exponent (slope) of vertebral measures from 57 terrestrial species (23 felids, 34 bovids) to 23 semi‐aquatic species (pinnipeds), using phylogenetically corrected regressions. Terrestrial taxa meet predictions of allometric stabilization, with posterior vertebral column (lumbar region) shortening, increased vertebral height compared to width, and shorter, more disc‐shaped centra. In contrast, pinniped vertebral proportions (e.g. length, width, height) scale with isometry, and in some cases, centra even become more spool‐shaped with increasing size, suggesting increased flexibility. Our results demonstrate that evolution of a secondarily aquatic lifestyle has modified the mechanical constraints associated with evolutionary increases in body size, relative to terrestrial taxa.  相似文献   

9.
The cineradiographic study of the locomotion of the rock hyrax (Procavia capensis) and the functional interpretation of its locomotory system, reveals that the main action of proximal segments is combined with flexed position and low movements of limb joints. This observation can be applied to the locomotion of other small mammals. In the forelimb, scapular rotation and translation account for more than 60% of step length. Effective shoulder joint movements are mostly restricted to less than 20°, and elbow movements range mainly between 20°-50°. The detachment of the shoulder girdle of therian mammals from the axial skeleton, and development of a supraspinous fossa, are correlated with movements at a high scapular fulcrum. Movements at such a high fulcrum are in interdependency with a crouched posture. Only flexed limbs can act as shock absorbers and prevent vertical changes in the center of gravity. Basic differences in forelimb movements exist between larger primates (humeral retraction) and smaller mammals (scapula retraction). In the hyrax, propulsion is due mainly to hip joint movements in symmetrical gaits, but sagittal lumbar spine movements play the dominant role at in-phase gaits. Joint and muscular anatomy, especially of the shoulder region, are discussed in view of the kinematic data.  相似文献   

10.
The relationship between form and function in the lumbar vertebral column has been well documented among platyrrhines and especially catarrhines, while functional studies of postcranial morphology among strepsirrhines have concentrated predominantly on the limbs. This morphometric study investigates biomechanically relevant attributes of the lumbar vertebral morphology of 20 species of extant strepsirrhines. With this extensive sample, our goal is to address the influence of positional behavior on lumbar vertebral form while also assessing the effects of body size and phylogenetic history. The results reveal distinctions in lumbar vertebral morphology among strepsirrhines in functional association with their habitual postures and primary locomotor behaviors. In general, strepsirrhines that emphasize pronograde posture and quadrupedal locomotion combined with leaping (from a pronograde position) have the relatively longest lumbar regions and lumbar vertebral bodies, features promoting sagittal spinal flexibility. Indrids and galagonids that rely primarily on vertical clinging and leaping with orthograde posture share a relatively short (i.e., stable and resistant to bending) lumbar region, although the length of individual lumbar vertebral bodies varies phylogenetically and possibly allometrically. The other two vertical clingers and leapers, Hapalemur and Lepilemur, more closely resemble the pronograde, quadrupedal taxa. The specialized, suspensory lorids have relatively short lumbar regions as well, but the lengths of their lumbar regions are influenced by body size, and Arctocebus has dramatically longer vertebral bodies than do the other lorids. Lumbar morphology among galagonids appears to reflect a strong phylogenetic signal superimposed on a functional one. In general, relative length of the spinous processes follows a positively allometric trend, although lorids (especially the larger-bodied forms) have relatively short spinous processes for their body size, in accordance with their positional repertoire. The results of the study broaden our understanding of postcranial adaptation in primates, while providing an extensive comparative database for interpreting vertebral morphology in fossil primates.  相似文献   

11.
Mammals have evolved a remarkable range of body sizes, yet their overall body plan remains unaltered. One challenge of evolutionary biology is to understand the mechanisms by which this size diversity is achieved, and how the mechanical challenges associated with changing body size are overcome. Despite the importance of the axial skeleton in body support and locomotion, and much interest in the allometry of the appendicular skeleton, little is known about vertebral allometry outside primates. This study compares evolutionary allometry of the thoracolumbar centra in two families of quadrupedal running mammals: Felidae and Bovidae. I test the hypothesis that, as size increases, the thoracolumbar region will resist increasing loads by becoming a) craniocaudally shorter, and b) larger in cross‐sectional area, particularly in the sagittal plane. Length, width, and height of the thoracolumbar centra of 23 felid and 34 bovid species were taken. Thoracic, prediaphragmatic, lumbar, and postdiaphragmatic lengths were calculated, and diameters were compared at three equivalent positions: the midthoracic, the diaphragmatic and the midlumbar vertebra. Allometric slopes were calculated using a reduced major axis regression, on both raw and independent contrasts data. Slopes and elevations were compared using an ANCOVA. As size increases the thoracolumbar centra become more robust, showing preferential reinforcement in the sagittal plane. There was less allometric shortening of the thoracic than the lumbar region, perhaps reflecting constraints due to its connection with the respiratory apparatus. The thoracic region was more robust in bovids than felids, whereas the lumbar region was longer and more robust in felids than bovids. Elongation of lumbar centra increases the outlever of sagittal bending at intervertebral joints, increasing the total pelvic displacement during dorsomobile running. Both locomotor specializations and functional regionalization of the axial skeleton appear to have influenced its response to increasing size. J. Morphol. 276:818–831, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

12.
Relationships between baculum length, body weight and copulatory behaviour were examined in 66 species of carnivores and pinnipeds (Grand Order Ferae). Elongated bacula occur in most carnivore species of the families Ursidae, Canidae, Procyonidae and Mustelidae as well as in all pinnipeds studied. By contrast, members of the family Felidae have short bacula in relation to their body weights. Elongate bacula are found in carnivores and pinnipeds with a prolonged single intromission (PI) copulatory pattern. This finding agrees with results of a previous study of baculum length and PI copulatory patterns in primates. The enlarged baculum may serve to strengthen the penis and protect the urethra during prolonged intromissions. The distal pole of the baculum may also assist sperm transport since in some species it projects beyond the tip of the penis and probably contacts the female's os cervix during copulation. It is possible that stimulation of the female's genitalia by the baculum might also be important in mammals which are induced ovulators (e.g. Mustelidae). However, it is notable that elongation of the baculum has also occurred in some groups where females ovulate spontaneously (e.g. Canidae, Primates).  相似文献   

13.
Most amniotes vertebrates have an intromittent organ to deliver semen. The reptile Sphenodon and most birds lost the ancestral penis and developed a cloaca-cloaca mating. Known as hemipenises, the copulatory organ of Squamata shows unique features between the amniotes intromittent organ. They are the only paired intromittent organs across amniotes and are fully inverted and encapsulated in the tail when not in use. The histology and ultrastructure of the hemipenes of Crotalus durissus rattlesnake is described as the evolutionary implications of the main features discussed. The organization of hemipenis of Crotalus durissus terrificus in two concentric corpora cavernosa is similar to other Squamata but differ markedly from the organization of the penis found in crocodilians, testudinata, birds and mammals. Based on the available data, the penis of the ancestral amniotes was made of connective tissue and the incorporation of smooth muscle in the framework of the sinusoids occurred independently in mammals and Crotalus durissus. The propulsor action of the muscle retractor penis basalis was confirmed and therefore the named should be changed to musculus hemipenis propulsor.The retractor penis magnus found in Squamata has no homology to the retractor penis of mammals, although both are responsible for the retraction of the copulatory organ.  相似文献   

14.
We investigated the functional corollaries of a relatively long trunk with regard to trunk use during overground and underground locomotion and with regard to fibre-type distribution within the paravertebral musculature using the example of the domestic ferret. Fibre-type distribution was determined using enzyme histochemistry on serial cross-sections through the complete musculo-skeletal apparatus. Back posture and back movements were analysed using cineradiography. During overground locomotion, the back is bent into an arch, resulting in a back length comparable to normally proportioned small mammals. During underground locomotion, the back is held straight, resulting in greater rotational inertia and higher stabilisation requirements. This is reflected in the fibre-type distribution pattern, which differs clearly from that of all other mammals investigated so far. Instead of being separated into superficial, glycolytic and deep, oxidative parts, all the epaxial and the iliopsoas muscles consisted of 20-30% oxidative, 20-30% oxidative-glycolytic and 40-60% glycolytic fibres, with no or only minor differences between superficial and profound muscles or muscle regions. Only the quadratus lumborum muscle showed a fibre-type distribution comparable to other mammals, reflecting its primary function as an accessory muscle of respiration. We suggest that the observed pattern reflects the adaptation of the back muscles to the functional demands of a long trunk and the increased need to stabilise it during overground and especially underground locomotion.  相似文献   

15.
The purpose of this study was to examine compartmentalization in human lumbar spine extensors. Structure and innervation of these muscles would suggest the possibility of more segmentally specific biomechanical functions than have been found in previous studies examining muscle activation patterns during simple spine bending and twisting tasks. We selected specialized tasks to more effectively investigate the degree of independent control possible within lumbar spine extensors. We recorded surface electromyograms (SEMG) from the right posterior lumbar region during performance of two segmentally specific bellydance skills by seven novice and five trained subjects. These movements were performed at two frequencies (0.5 and 1Hz). Cross-correlations were performed between pairs of rectified, low-pass filtered (6Hz) SEMG signals to determine temporal lags between rhythmic bursts. Results showed a difference in the timing of muscle activation above and below the third lumbar vertebra. Temporal asynchrony was independent of either skill level or tempo, suggesting a hard-wired capacity for independent control of adjacent muscle compartments. The results have implications for understanding trunk control in the context of postural stability and postural adaptation during locomotion, as well as for lower back functional assessment and rehabilitation.  相似文献   

16.
The contribution of the trunk neuromuscular system (TNS) to spine stability has been shown in earlier studies by characterizing changes in antagonistic activity of trunk muscles following alterations in stability demands of a task. Whether and/or how much such changes in the response of TNS to alteration in stability demand of the task alter spinal stiffness remains unclear. To address this research gap, a repeated measure study was conducted on twenty gender-balanced asymptomatic individuals to evaluate changes in trunk bending stiffness throughout the lumbar spine’s range of flexion following alterations in both stability and equilibrium demands of a load holding task. Trunk bending stiffness was determined using trunk stiffness tests in upright posture on a rigid metal frame under different equilibrium and stability demands on the lower back. Increasing the stability demand by increasing the height of lifted load ∼30 cm only increased trunk bending stiffness (∼39%) over the lower range of lumbar flexion and under the low equilibrium demand condition. Similarly, increasing the equilibrium demand of the task by increasing the weight of lifted load by 3.5 kg only increased trunk bending stiffness (55%) over the low range of lumbar flexion and under the low stability demand condition. Our results suggest a non-linear relationship between changes in stability and equilibrium demands of a task and the contribution of TNS to trunk bending stiffness. Specifically, alterations in TNS response to changes in stability and equilibrium demand of a given task will increase stiffness of the trunk only if the background stiffness is low.  相似文献   

17.
Until a few decades ago, phylogenetic relationships among placental orders were ambiguous and usually depicted to radiate as an unresolved “bush.” Resolution of this bush by various workers has been progressing slowly, but with promising results corroborated by nondental, dental, and molecular characters. In this study we continue to seek resolution. A total of 258 nondental and 2 dental characters was analyzed by PAUP and MacClade on 39 vertebrate taxa (3 reptiles, 1 nonmammalian therapsid, and 35 mammals; 20 of the mammals are extant and 15 are extinct) to study higher taxonomic relationships with emphasis on Placentalia (Eutheria). About two-thirds of the characters are osteological, the rest concern soft tissues, including myological but excluding molecular characters (most are our data, the rest are from the literature). Cladistic analysis included all 39 taxa (fossil taxa help to evaluate polarities of characters) and all characters were given equal weight. Extant Mammalia are divided into Prototheria and Theria, the latter into Marsupialia and Placentalia. Placentalia comprises Xenarthra and Epitheria. Within Epitheria, Lipotyphla and Preptotheria (emended) are sister-taxa. Preptotherian taxa group into: ungulate-related taxa and various nonungulates. The former include Carnivora, Pholidota, Tubulidentata, Artiodactyla, Cetacea, Perissodactyla, Hyracoidea, Proboscidea, and Sirenia. A possible association to embrace Lagomorpha, Rodentia, Macroscelidea, Scandentia, Primates, Chiroptera, and Dermoptera is suggested. Significant differences between our findings and those of recent investigators include the dissociation of Pholidota from Xenarthra and the plesiomorphous position of Lipotyphla within Epitheria. Congruence between morphological and molecular results is closer than previously reported.  相似文献   

18.
Echinoplectanum n. g. is erected for diplectanids which have a male copulatory organ comprising a tubular sclerotised penis with a muscular reservoir at its proximal extremity and an protrusible cirrus, often with spiny ridges, at its distal extremity, and a female copulatory organ comprising a sclerotised vaginal sac, often with two thin tubes. All species have similar squamodiscs made of rows of rodlets, with the central rows forming closed circles, and haptoral parts with a similar shape but different measurements; they are distinguished on the basis of the size and morphology of the male copulatory organ and sclerotised vagina. Five new species are included in Echinoplectanum and are all parasites of coralgroupers, Plectropomus spp., off New Caledonia, South Pacific. Two are from P. laevis (Lacépède): E. laeve n. sp. (type-species) has a large elongate penis, 53[Formula: see text]m in length, a cirrus with spiny ridges and a spherical vagina with two long thin tubes; and E. chauvetorum n. sp. has a large elongate penis, 51[Formula: see text]m in length, a cirrus with thin spiny ridges, and a pear-shaped vagina with two short thin tubes. Three species are from P. leopardus (Lacépède): E. leopardi n. sp. has an elongate penis, 36[Formula: see text]m in length, an unspiny cirrus and a triangular vagina; E. pudicum n. sp. has a very small elongate penis 14[Formula: see text]m in length and no visible vagina; and E. rarum n. sp. has a short thick penis 18[Formula: see text]m in length and a ring-shaped vagina with two thin tubes. In addition, Diplectanum plectropomi Young, 1969, from P. maculatus off Western Australia, and D. echinophallus Euzet & Oliver, 1965 from Epinephelus marginatus in the Mediterranean Sea and Senegal, West Africa, both herein redescribed from the type-specimens, are transferred to Echinoplectanum, as E. plectropomi n. comb. and E. echinophallus n. comb., respectively. Six of the seven species of Echinoplectanum are parasitic in members of Plectropomus from the South West Pacific, but one (E. echinophallus) is a parasite of Epinephelus marginatus and has been recorded only from the Mediterranean and East Atlantic; it is suggested that Echinoplectanum is associated with Plectropomus, a basal genus among the epinephelines, and that host-switching to Epinephelus marginatus occurred, whose distribution extends from Europe to the Indian Ocean. Morphological characteristics of the copulatory organs suggest that a "chastity belt versus spiny penis" sperm competition pattern prevails in Echinoplectanum spp.  相似文献   

19.
I report ad libitum data on 18 copulations involving free-ranging black-handed spider monkeys (Ateles geoffroyi) on Barro Colorado Island, Panama. All copulations were performed in a dorsoventral position, as is typically reported for this genus. Intromission often appeared difficult to achieve, possibly as a result of the large size of the glans penis in these animals. The average length from intromission to termination of thrusting exceeded 17 min, followed by an average period of almost 2 min before separation occurred, which suggests the possibility of a copulatory lock. Offspring of the female participant were almost always in close proximity to or in contact with the pair, and harassment by the offspring was observed only during the final stages of the copulation. All but one copulatory event occurred in complete seclusion from other adult males, and sexual behavior was not limited to any one adult male in the group.  相似文献   

20.
Although the anuran pelvis is thought to be adapted for jumping, the function of the iliosacral joint has seen little direct study. Previous work has contrasted the basal “ lateral‐bender ” pelvis from the “ rod‐like ” pelvis of crown taxa hypothesized to function as a sagittal hinge to align the trunk with take‐off forces. We compared iliosacral movements and pelvic motor patterns during jumping in the two pelvic types. Pelvic muscle activity patterns, iliosacral anteroposterior (AP) movements and sagittal bending of the pelvis during the take‐off and landing phases were quantified in lateral bender taxa Ascaphus (Leiopelmatidae) and Rhinella (Bufonidae) and the rod‐like Lithobates (Ranidae). All three species exhibit sagittal extension during take‐off, therefore, both pelvic types employ a sagittal hinge. However, trunk elevation occurs significantly earlier in the anuran rod‐like pelvis. Motor patterns confirm that the piriformis muscles depress the urostyle while the longissimus dorsi muscles elevate the trunk during take‐off. However, the coccygeoiliacus muscles also produce anterior translation of the sacrum on the ilia. A new model illustrates how AP translation facilitates trunk extension in the lateral‐bender anurans that have long been thought to have limited sagittal bending. During landing, AP translation patterns are similar because impact forces slide the sacrum from its posterior to anterior limits. Sagittal flexion during landing differs among the three taxa depending on the way the species land. AP translation during landing may dampen impact forces especially in Rhinella in which pelvic function is tuned to forelimb‐landing dynamics. The flexibility of the lateral‐bender pelvis to function in sagittal bending and AP translation helps to explain the retention of this basal configuration in many anurans. The novel function of the rod‐like pelvis may be to increase the rate of trunk elevation relative to faster rates of energy release from the hindlimbs enabling them to jump farther. J. Morphol. 277:1539–1558, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号