首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Research on life-history traits of squamate reptiles has focused on North American species, while Asian taxa have been virtually ignored. In order to understand general patterns in reptile life histories, we need a broader data base. Our study on the slender-bodied lacertid lizard Takydromus septentrionalis provides the first detailed information on factors responsible for intraspecific variation in reproductive output and life history in a Chinese reptile. Clutches of recently collected lizards from five widely separated localities in China revealed major divergences in female body size at maturation, mean adult female body size, body condition after oviposition, size-adjusted fecundity, relative clutch mass, and mass and shape of eggs. Most of these geographical differences persisted when the same groups of females were maintained in identical conditions in captivity. Additionally, reproductive frequency during maintenance under laboratory conditions differed according to the animals' place of origin. Thus, the extensive geographical variation in reproductive and life-history traits that occurs within T. septentrionalis is exhibited even in long-term captives, suggesting that proximate factors that vary among localities (local conditions of weather and food supply) are less important determinants of life-history variation than are intrinsic (presumably genetic) influences. The maternal abdominal volume available to hold the clutch may be one such factor, based on low levels of variation in Relative Clutch Mass among populations, and geographical variation in the position of trade-off lines linking offspring size to fecundity.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 85 , 443–453.  相似文献   

2.
Using data and reanalysis of a model published by Shine and Schwarzkopf (1992) we reject the two unsubstantiated assertions made by Shine et al. (1996) about modeling the evolution of reproductive effort in squamate reptiles: (1) mortality schedules do not affect predictions of the Shine and Schwarzkopf (1992) model; and (2) growth rates that would affect the predictions of the original model are biologically unreasonable. On the basis of these two points alone, we strongly reject Shine et al.'s (1996) claim that a critique by Niewiarowski and Dunham (1994) actually reinforces the original conclusions of Shine and Schwarzkopf (1992). Furthermore, results and data presented here are strong enough to severely circumscribe the generality of the Shine and Schwarzkopf (1992) model. Though we do not provide data or new analyses of the potential effects of offspring size variation, we reaffirm the position of Niewiarowski and Dunham (1994) that the sensitivity of the Shine and Schwarzkopf (1992) model to such effects should be explored before using it as a basis for structuring future research on the evolution of reproductive effort in squamate reptiles.  相似文献   

3.
We demonstrate that egg size in side-blotched lizards is heritable (parent-offspring regressions) and thus will respond to natural selection. Because our estimate of heritability is derived from free-ranging lizards, it is useful for predicting evolutionary response to selection in wild populations. Moreover, our estimate for the heritability of egg size is not likely to be confounded by nongenetic maternal effects that might arise from egg size per se because we estimate a significant parent-offspring correlation for egg size in the face of dramatic experimental manipulation of yolk volume of the egg. Furthermore, we also demonstrate a significant correlation between egg size of the female parent and clutch size of her offspring. Because this correlation is not related to experimentally induced maternal effects, we suggest that it is indicative of a genetic correlation between egg size and clutch size. We synthesize our results from genetic analyses of the trade-off between egg size and clutch size with previously published experiments that document the mechanistic basis of this trade-off. Experimental manipulation of yolk volume has no effect on offspring reproductive traits such as egg size, clutch size, size at maturity, or oviposition date. However, egg size was related to offspring survival during adult phases of the life history. We partitioned survival of offspring during the adult phase of the life history into (1) survival of offspring from winter emergence to the production of the first clutch (i.e., the vitellogenic phase of the first clutch), and (2) survival of the offspring from the production of the first clutch to the end of the reproductive season. Offspring from the first clutch of the reproductive season in the previous year had higher survival during vitellogenesis of their first clutch if these offspring came from small eggs. We did not observe selection during these prelaying phases of adulthood for offspring from later clutches. However, we did find that later clutch offspring from large eggs had the highest survival over the first season of reproduction. The differences in selection on adult survival arising from maternal effects would reinforce previously documented selection that favors the production of small offspring early in the season and large offspring later in the season—a seasonal shift in maternal provisioning. We also report on a significant parent-offspring correlation in lay date and thus significant heritable variation in lay date. We can rule out the possibility of yolk volume as a confounding maternal effect—experimental manipulation of yolk volume has no effect on lay date of offspring. However, we cannot distinguish between genetic effects (i.e., heritable) and nongenetic maternal effects acting on lay date that arise from the maternal trait lay date per se (or other unidentified maternal traits). Nevertheless, we demonstrate how the timing of female reproduction (e.g., date of oviposition and date of hatching) affect reproductive attributes of offspring. Notably, we find that date of hatching has effects on body size at maturity and fecundity of offspring from later clutches. We did not detect comparable effects of lay date on offspring from the first clutch.  相似文献   

4.
Paul  Doughty 《Journal of Zoology》1996,240(4):703-715
In squamate reptiles there is an allometric pattern for small-bodied females to have smaller clutches and proportionally larger eggs than large-bodied females, and this pattern occurs both among and within species. The allometric patterns in two species of the gecko Gehyra were studied to see how evolutionary reductions in adult body size affect fecundity and offspring size among species, and how these changes affect allometric relationships within species. Gehyra dubia has two eggs per clutch (the typical clutch size for gekkonid lizards), whereas the smallerbodied G. variegata has a single egg per clutch. Within both species, egg size increased with female body size. The data are consistent with at least two mechanistic hypotheses: (1) that the width of the pelvis constrains egg size; and (2) in species with invariant clutch sizes, larger females can only allocate additional energy towards egg size and not number. More direct tests of these hypotheses are warranted. Miniaturization of body sizes in Gehyra is correlated with a clutch size reduction of 50% (from two to one), and a large (1.7-fold) compensatory increase in relative egg mass. However, the small-bodied G. variegata (one egg per clutch) had a lower relative clutch mass than did G. dubia. These findings have implications for understanding the influence of evolutionary reductions in body size on reproductive traits, and for allometric trends in squamate reptiles in general.  相似文献   

5.
Island and mainland populations of animal species often differ strikingly in life-history traits such as clutch size, egg size, total reproductive effort and body size. However, despite widespread recognition of insular shifts in these life-history traits in birds, mammals and reptiles, there have been no reports of such life-history shifts in amphibians. Furthermore, most studies have focused on one specific life-history trait without explicit consideration of coordinated evolution among these intimately linked life-history traits, and thus the relationships among these traits are poorly studied. Here we provide the first evidence of insular shifts and trade-offs in a coordinated suite of life-history traits for an amphibian species, the pond frog Rana nigromaculata . Life-history data were collected from eight islands in the Zhoushan Archipelago and neighboring mainland China. We found consistent, significant shifts in all life-history traits between mainland and island populations. Island populations had smaller clutch sizes, larger egg sizes, larger female body size and invested less in total reproductive effort than mainland populations. Significant negative relationships were found between egg size and clutch size and between egg size and total reproductive effort among frog populations after controlling for the effects of body size. Therefore, decreased reproductive effort and clutch size, larger egg size and body size in pond frogs on islands were selected through trade-offs as an overall life-history strategy. Our findings contribute to the formation of a broad, repeatable ecological generality for insular shifts in life-history traits across a range of terrestrial vertebrate taxa.  相似文献   

6.
Maternal investment in reproduction by oviparous non-avian reptiles is usually limited to pre-ovipositional allocations to the number and size of eggs and clutches, thus making these species good subjects for testing hypotheses of reproductive optimality models. Because leatherback turtles (Dermochelys coriacea) stand out among oviparous amniotes by having the highest clutch frequency and producing the largest mass of eggs per reproductive season, we quantified maternal investment of 146 female leatherbacks over four nesting seasons (2001–2004) and found high inter- and intra-female variation in several reproductive characteristics. Estimated clutch frequency [coefficient of variation (CV) = 31%] and clutch size (CV = 26%) varied more among females than did egg mass (CV = 9%) and hatchling mass (CV = 7%). Moreover, clutch size had an approximately threefold higher effect on clutch mass than did egg mass. These results generally support predictions of reproductive optimality models in which species that lay several, large clutches per reproductive season should exhibit low variation in egg size and instead maximize egg number (clutch frequency and/or size). The number of hatchlings emerging per nest was positively correlated with clutch size, but fraction of eggs in a clutch yielding hatchlings (emergence success) was not correlated with clutch size and varied highly among females. In addition, seasonal fecundity and seasonal hatchling production increased with the frequency and the size of clutches (in order of effect size). Our results demonstrate that female leatherbacks exhibit high phenotypic variation in reproductive traits, possibly in response to environmental variability and/or resulting from genotypic variability within the population. Furthermore, high seasonal and lifetime fecundity of leatherbacks probably reflect compensation for high and unpredictable mortality during early life history stages in this species.  相似文献   

7.
A few species of squamate reptiles contain both oviparous (egg-laying) and viviparous (live-bearing) populations, and thus offer exceptional opportunities to test adaptationist hypotheses on the determinants of reproductive output. We focus on the hypothesis that maternal body-volume constrains reproductive output in squamate reptiles. If females are “full” of eggs, what happens when viviparity evolves within a lineage? Eggs increase in volume and mass during development, primarily due to the uptake of water, so how can they be accommodated within the mother's abdomen? We predict that the resultant increase in relative clutch mass (RCM) will be lessened by (1) a decrease in reproductive output (by reducing the number or size of offspring), and/or (2) an increase in maternal body-volume (via modifications of size or shape of adult females). Our comparisons of conspecific oviparous and viviparous lizards (Lerista bougainvillii) confirm that live-bearers carry heavier clutches (in both absolute and relative terms) and show the predicted shifts in body size and shape of reproductive females. However, offspring size and number were unaffected by the evolution of viviparity, and the shifts in maternal morphology were too small to fully offset the increase in clutch mass. Thus, RCMs increased by 50%, indicating that viviparous females produced clutches which more completely filled the space available in the abdominal cavity. We conclude that maternal body-volume does play a role in determining reproductive output, but that the observed clutch masses may be optimized, rather than maximized, with respect to the abdominal space available.  相似文献   

8.
Life history theory suggests that the optimal evolved level of reproductive effort (RE) for an organism depends upon the degree to which additional current reproductive investment reduces future reproductive output. Future reproduction can be decreased in two ways, through (i) decreases in the organism's survival rate, and/or (ii) decreases in the organism's growth (and hence subsequent fecundity). The latter tradeoff–that is, the “potential fecundity cost”—should affect the evolution of RE only in species with relatively high survival rate, a relatively high rate of fecundity increase with body size, or a relatively high reproductive frequency per annum. Unless these conditions are met, the probable benefit in future fecundity obtained from decreasing present reproductive output is too low for natural selection to favor any reduction in RE below the maximum physiologically possible. Published data on survival rate, reproductive frequency and relative clutch mass (RCM) suggest that many lizard species fall well below the level at which natural selection can be expected to influence RE through such “potential fecundity” tradeoffs. Hence, the relative allocation of resources between growth and reproduction is unlikely to be directly optimized by natural selection in these animals. Instead, energy allocation should influence the evolution of RE only indirectly, via effects on an organism's probability of survival during reproduction. Survival costs of reproduction may be the most important evolutionary determinants of RE in many reptiles, and information on the nature and extent of such costs is needed before valid measures of reptilian RE can be constructed.  相似文献   

9.
Differences in reproductive success (RS) between different groups of individuals are of interest to researchers studying natural and sexual selection. Since it is often not feasible to quantify RS in the wild, researchers make use of proxies instead. One such proxy is clutch size. However, research on species providing parental care (mainly birds and mammals) has learned that a large clutch size does not guarantee a large number of offspring. In contrast, much less is known on the link between clutch size and RS for species lacking parental care, such as many reptiles and insects. Here, we ask whether clutch size provides a satisfactory estimate of RS for a polymorphic insect. Our study species is a damselfly showing two distinct female morphs for which RS (estimated by clutch size) has been studied to evaluate the evolutionary role of sexual conflict. However, in this system not only among family variation in offspring viability, but also differences between female morphs, may affect how clutch size relates to offspring number and quality. To evaluate the use of clutch size as estimate of RS, we examined how clutch size correlated with subsequent success measures of developing offspring by rearing damselfly from eggs to adults under two laboratory food treatments. In both treatments, we detected that clutch size correlated well with offspring number early in larval life, but that this relation is reduced by among family variation in survival in later developmental stages. Clutch size was moderately correlated with the number of offspring that successfully metamorphosed to winged adults. Patterns did not differ between female morphs and the nature of the correlation could not be explained from offspring quantity-quality trade-offs.  相似文献   

10.
We used exogenous gonadotropin hormones to physiologically enlarge litter size in the bank vole (Clethrionomys glareolus). This method allowed the study design to include possible production costs of reproduction and a trade-off between offspring number and body size at birth. Furthermore, progeny rearing and survival and postpartum survival of the females took place in outdoor enclosures to capture salient naturalistic effects that might be present during the fall and early winter. The aim of the study was to assess the effects of the manipulation on the growth and survival of the offspring and on the reproductive effort, survival, and future fecundity of the mothers. Mean offspring body size was smaller in enlarged litters compared to control litters at weaning, but the differences disappeared by the winter. Differences in litter sizes disappeared before weaning age due to higher mortality in enlarged litters. In addition to the effects of the litter size, offspring performance was probably also influenced by the ability of the mother to support the litter. Experimental females had higher reproductive effort at birth, and they also tended to have higher mortality during nursing. Combined effects of high reproductive effort at birth and high investment in nursing the litter entailed costs for the experimental females in terms of decreased probability of producing a second litter and a decreased body mass gain. Thus, enlarged litter size had both survival and fecundity costs for the mothers. Our results suggest that the evolution of litter size and reproductive effort is determined by reproductive costs for the mothers as well as by a trade-off between offspring number and quality.  相似文献   

11.
Clutch size, offspring performance, and intergenerational fitness   总被引:1,自引:1,他引:0  
It is now generally recognized that clutch size affects morethan offspring number. In particular, clutch size affects asuite of traits associated with offspring reproductive performance.Optimal clutch size is therefore determined not by the numericallymost productive clutch but by the clutch that maximizes collectiveoffspring reproductive success. Calculation of optimal clutchsize thus requires a consideration of ecological factors operatingduring an intergenerational time frame, spanning the lifetimeof the egglaying adult and the lifetimes of her offspring. Theoptimal clutch cannot define reproductive values in advance,but instead requires that the strategy chosen is the best responseto the set of reproductive values that it itself generates.In this article, we introduce methods for solving this problem,based on an iterative solution of the equation characterizingexpected lifetime reproductive success. We begin by consideringa semelparous organism, in which case lifetime reproductivesuccess is a function only of the state of the organism. Foran iteroparous organism, lifetime reproductive success dependsupon both state and time, so that our methods extend the usualstochastic dynamic programming approach to the evaluation oflifetime reproductive success. The methods are intuitive andeasily used. We consider both semelparous and iteroparous organisms,stable and varying environments, and describe how our methodscan be employed empirically.  相似文献   

12.
Body size can influence an organism's microevolutionary fitness either via ecological factors (ecological selection) or changes in reproductive output (sexual or fecundity selection). Published studies on sexual dimorphism in reptiles have generally focussed on sexual-selective forces on males, under the implicit assumption that the intensity of fecundity selection in females (and hence, overall selection on female body size) is likely to be relatively consistent among lineages. In this paper, we explore the degree to which larger body size enhances ecological attributes (e.g., food intake, growth, survival) and reproductive output (reproductive frequency, litter size, offspring size, offspring viability) in free-ranging female aspic vipers, Vipera aspis . The less-than-annual reproductive frequency of these animals allows us to make a direct comparison between females in years during which they concentrate on "ecological" challenges (especially building energy reserves) versus reproductive challenges (producing a litter). Because female snakes have limited abdominal space to hold the clutch (litter), we expect that fecundity should depend on body size. However, our data show that larger body size had a more consistent effect on ecological attributes (such as feeding rates and "costs of reproduction") than on reproductive output per se. Indeed, total reproductive output was maximised at intermediate body sizes. These results suggest that variation in female body size among and within species (and hence, in the degree of sexual dimorphism) may be driven by the ecological as well as reproductive consequences of body size variation in both sexes.  相似文献   

13.
We measured the reproductive output of Takydromus septentrionalis collected over 5 years between 1997 and 2005 to test the hypothesis that reproductive females should allocate an optimal fraction of accessible resources in a particular clutch and to individual eggs. Females laid 1–7 clutches per breeding season, with large females producing more, as well as larger clutches, than did small females. Clutch size, clutch mass, annual fecundity, and annual reproductive output were all positively related to female size (snout–vent length). Females switched from producing more, but smaller eggs in the first clutch to fewer, but larger eggs in the subsequent clutches. The mass-specific clutch mass was greater in the first clutch than in the subsequent clutches, but it did not differ among the subsequent clutches. Post-oviposition body mass, clutch size, and egg size showed differing degrees of annual variation, but clutch mass of either the first or the second clutch remained unchanged across the sampling years. The regression line describing the size–number trade-off was higher in the subsequent clutch than in the first clutch, but neither the line for first clutch, nor the line for the second clutch varied among years. Reproduction retarded growth more markedly in small females than in large ones. Our data show that: (1) trade-offs between size and number of eggs and between reproduction and growth (and thus, future reproduction) are evident in T. septentrionalis ; (2) females allocate an optimal fraction of accessible resources in current reproduction and to individual eggs; and (3) seasonal shifts in reproductive output and egg size are determined ultimately by natural selection.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 315–324.  相似文献   

14.
Life-history theory predicts that older females will increase reproductive effort through increased fecundity. Unless offspring survival is density dependent or female size constrains offspring size, theory does not predict variation in offspring size. However, empirical data suggest that females of differing age or condition produce offspring of different sizes. We used a dynamic state-variable model to determine when variable offspring sizes can be explained by an interaction between female age, female state and survival costs of reproduction. We found that when costs depend on fecundity, young females with surplus state increase offspring size and reduce number to minimize fitness penalties. When costs depend on total reproductive effort, only older females increase offspring size. Young females produce small offspring, because decreasing offspring size is less expensive than number, as fitness from offspring investment is nonlinear. Finally, allocation patterns are relatively stable when older females are better at acquiring food and are therefore in better condition. Our approach revealed an interaction between female state, age and survival costs, providing a novel explanation for observed variation in reproductive traits.  相似文献   

15.
Individuals of pygmy grasshoppers ( Tetrix subulata [L.] Orthoptera: Tetrigidae) exhibit genetically coded discontinuous variation in colour pattern. To determine whether reproductive performance is likely to be affected by colour pattern, this study investigated variation in body size and reproductive life-history characteristics among individuals belonging to five different colour morphs. The proportion of reproductive females (i.e. females with eggs) declined significantly as the season progressed (from 100% in mid-May to 40% in mid-June), but no such seasonal trend was apparent for body size, clutch size or egg size. Colour morphs differed significantly in body size, and these size differences accounted for most of the variation in clutch size and egg size. Colour morphs also differed in the regression of egg size on clutch size, suggesting that trade-offs between number and size of offspring might vary among morphs. Finally, I found a negative relationship across colour morphs between the proportion of females with eggs and average clutch size. This suggests that individuals belonging to certain colour morphs produce a relatively large number of clutches per unit time, at the expense of fewer offspring in each clutch, compared to other morphs. Collectively, my results indicate that different colour morphs of T. subulata may have different reproductive strategies. These differences may reflect variation in thermoregulatory capacity or differences in probability of survival induced by visual predators.  相似文献   

16.
The relationship between adult and offspring size is an important aspect of reproductive strategy. Although this filial relationship has been extensively examined in plants and animals, we currently lack comparable data for protists, whose strategies may differ due to the distinct ecological and physiological constraints on single‐celled organisms. Here, we report measurements of adult and offspring sizes in 3888 species and subspecies of foraminifera, a class of large marine protists. Foraminifera exhibit a wide range of reproductive strategies; species of similar adult size may have offspring whose sizes vary 100‐fold. Yet, a robust pattern emerges. The minimum (5th percentile), median, and maximum (95th percentile) offspring sizes exhibit a consistent pattern of increase with adult size independent of environmental change and taxonomic variation over the past 400 million years. The consistency of this pattern may arise from evolutionary optimization of the offspring size‐fecundity trade‐off and/or from cell‐biological constraints that limit the range of reproductive strategies available to single‐celled organisms. When compared with plants and animals, foraminifera extend the evidence that offspring size covaries with adult size across an additional five orders of magnitude in organism size.  相似文献   

17.
Female investment in offspring size and number has been observed to vary with the phenotype of their mate across diverse taxa. Recent theory motivated by these intriguing empirical patterns predicted both positive (differential allocation) and negative (reproductive compensation) effects of mating with a preferred male on female investment. These predictions, however, focused on total reproductive effort and did not distinguish between a response in offspring size and clutch size. Here, we model how specific paternal effects on fitness affect maternal allocation to offspring size and number. The specific mechanism by which males affect the fitness of females or their offspring determines whether and how females allocated differentially. Offspring size is predicted to increase when males benefit offspring survival, but decrease when males increase offspring growth rate. Clutch size is predicted to increase when males contribute to female resources (e.g. with a nuptial gift) and when males increase offspring growth rate. The predicted direction and magnitude of female responses vary with female age, but only when per-offspring paternal benefits decline with clutch size. We conclude that considering specific paternal effects on fitness in the context of maternal life-history trade-offs can help explain mixed empirical patterns of differential allocation and reproductive compensation.  相似文献   

18.
1. Maternal adult diet and body size influence the fecundity of a female and possibly the quality and the performance of her offspring via egg size or egg quality. In laboratory experiments, negative effects in the offspring generation have often been obscured by optimal rearing conditions.
2. To estimate these effects in the Yellow Dung Fly, Scathophaga stercoraria , how maternal body size and adult nutritional status affected her fecundity, longevity and egg size were first investigated.
3. Second, it was investigated how female age and adult nutritional experience, mediated through the effects of egg size or egg quality, influenced the performance of offspring at different larval densities.
4. Maternal size was less important than maternal adult feeding in increasing reproductive output. Without food restriction, large females had larger clutch sizes and higher oviposition rates, whereas under food restriction this advantage was reversed in favour of small females.
5. Offspring from mothers reared under nutritional stress experienced reduced fitness in terms of egg mortality and survival to adult emergence. If the offspring from low-quality eggs survived, the transmitted maternal food deficiency only affected adult male body size under stressful larval environments.
6. Smaller egg sizes due to maternal age only slightly affected the performance of the offspring under all larval conditions.  相似文献   

19.
Omkar    Uzma Afaq 《Insect Science》2013,20(4):531-540
In the Parthenium beetle, Zygogramma bicolorata Pallister (Coleoptera: Chrysomelidae), variation in body size exists between and within the sexes. The females are larger than the males. Darwin (1874) proposed the fecundity advantage hypothesis, that is, large‐sized females produce more progeny, with subsequent studies supporting, as well as, refuting the hypothesis. Thus, in order to evaluate whether this hypothesis stands in Z. bicolorata we performed experiments to investigate the role of body size in influencing: (i) assortative mating; (ii) reproductive attributes; and (iii) growth, development and survival of offspring. It is the first attempt in this beetle. We found that size influenced assortative mating, reproductive output and offspring fitness. Larger males and females were preferred as mates over smaller ones. The pairs, having larger adults as mates, had higher fecundity, while the egg viability was influenced by the male size only. The offspring of larger parents had fast development and higher survival, indicating thereby possible better nutrient allotment by the female and supply of accessory gland proteins by the male in addition to better quality of genes.  相似文献   

20.
The optimal trade-off between offspring size and number can depend on details of the mode of reproduction or development. In marine organisms, broadcast spawning is widespread, and external coats are a common feature of spawned eggs. Egg jelly coats are thought to influence several aspects of fertilization and early development, including the size of the target for sperm, fertilization efficiency, egg suspension time, polyspermy, embryo survival, and fecundity. These costs and benefits of investment in jelly result in trade-offs that can influence optimal reproductive allocation and the evolution of egg size. I develop an optimization model that sequentially incorporates assumptions about the function of egg coats in fertilization. The model predicts large variation in coat size and limited variation in ovum size under a broad range of conditions. Heterogeneity among spawning events further limits the range of ovum sizes predicted to evolve under sperm limitation. In contrast, variation in larval mortality predicts a broad range of optimal ovum sizes that more closely reflects natural variation among broadcast-spawning invertebrates. By decoupling physical and energetic size, egg coats can enhance fertilization, maintain high fecundity, and buffer the evolution of ovum size from variation in spawning conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号