首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 883 毫秒
1.
Moenkhausia is one of the most speciose genera in Characidae, currently composed of 75 nominal species of small fishes distributed across South American hydrographic basins, primarily the Amazon and Guyanas. Despite the large number of described species, studies involving a substantial number of its species designed to better understand their relationships and putative monophyly are still lacking. In this study, we analysed a large number of species of Moenkhausia to test the monophyly of the genus based on the phylogenetic analysis of DNA sequences of two mitochondrial and three nuclear genes. The in‐group included 29 species of Moenkhausia, and the out‐group was composed of representatives of Characidae and other members of Characiformes. All species of Moenkhausia belong to the same clade (Clade C); however, they appear distributed in five monophyletic groups along with other different genera, which means that Moenkhausia is polyphyletic and indicates the necessity of an extensive revision of the group.  相似文献   

2.
Complete cytochrome b gene sequences from all but one species of delphinid plus four outgroups were analyzed using parsimony, maximum likelihood, and neighbor-joining methods. The results indicate the need for systematic revision of the family; a provisional classification is presented and compared to previous studies. Among the suggested revisions are removal of Orcinus from the Globicephalinae, placement of Grampus within the Globicephalinae, removal of all Lagenorhynchus spp. from the Delphininae, and placement of Sousa in the Delphininae. The genus Lagenorhynchus is found to be polyphyletic. L. albirostris (type species for the genus) and L. acutus are not closely related to each other or to nominal congeners. L. acutus is therefore assigned to the genus Leucopleurus. The remaining four Lagenorhynchus species are closely related to Lissodelphis and Cephalorbynchus and are placed in the genus Sagmatias. These three genera constitute the revised Lissodelphininae. Within the Delphininae, a well-supported clade includes the two species of Delphinus, Stenella clymene, S. frontalis, S. coeruleoalba, and the aduncus form of Tursiops truncatus. Accepting the monophyly of this group renders the genera Stenella and Tursiops polyphyletic. Apart from this finding, phylogenetic resolution within the Delphininae was poor, so comprehensive taxonomic revision of this group awaits further study.  相似文献   

3.
Phylogenetic relationships in the Sargassaceae were explored using three DNA markers, and the monophyly of its genera was challenged. Nineteen out of 24 currently recognized genera were sampled, representing 63 species. The variable mt23S‐tRNA Val intergenic spacer could only be aligned within genera and could not be used to infer intergeneric relationships. The partial mt23S was also useful to delineate genera and was alignable at the family level but provided few informative characters. Analysis of mt23S DNA sequences together with chloroplast‐encoded psbA sequences resulted in a better resolved phylogeny. Hormophysa was the first genus to branch off within the Sargassaceae, followed by Myriodesma; then the three genera Caulocystis, Carpoglossum, and Scaberia in unresolved order; and then Acrocarpia. The other taxa studied here were divided over three major clades, but there was no branch support for the monophyly of two of these. The genera Bifurcaria, Cystoseira, Halidrys, and Sargassum appeared polyphyletic. The following taxonomic changes are proposed: a new genus Brassicophycus for Bifurcaria brassicaeformis (Kützing) E. S. Barton; reinstatement of the genus Sargassopsis for Sargassum decurrens (R. Brown ex Turner) C. Agardh; reinstatement of the genus Sirophysalis for Indo‐Pacific Cystoseira trinodis (Forsskål) C. Agardh; reinstatement of the genus Polycladia for the western Indian Ocean species Cystoseira indica (Thivy et Doshi) Mairh, Cystoseira myrica (S. G. Gmelin) C. Agardh, and Acystis heinii Schiffner; and reinstatement of the genus Stephanocystis for the North Pacific Cystoseira species and Halidrys dioica N. L. Gardner. The European Cystoseira species should be split into three genera, but no name changes are proposed yet, because diagnostic characters were found only for the clade including the type species. Some evolutionary trends could be discerned from the mt23S + psbA phylogeny.  相似文献   

4.
Lee  O.-M.  McCourt  R.M.  Nam  M.  & Karol  K.G. 《Journal of phycology》2000,36(S3):42-43
Cosmarium and Staurastrum are the two most diverse genera of placoderm desmids (Family Desmidiaceae), with approximately 1100 and 800 species, respectively. Phylogenetic analysis of relationships of species has been extremely difficult. In a monograph of North American placoderm desmids, Prescott et al. described early phylogenetic work that concluded Staurastrum to be polyphyletic and certainly polymorphic. Likewise, Cosmarium has also been viewed as polyphyletic, and a number of workers have proposed splitting these genera. The classical view of West and West grouped species within each genus into two divisions and 6–8 sections based on wall features and semicell shape. We sequenced rbc L from 18 species of Cosmarium (2 divisions, 7 sections) and 12 species of Staurastrum (2 divisions and 7 sections) and performed a phylogenetic analysis (parsimony, maximum likelihood, bootstrap) using other placoderm desmids and Zygnematales as outgroups. The results exhibit little support for the monophyly of sections or divisions of the two genera. Furthermore, although there is support for the monophyly of clades within each genus, there is also support for a separate clade containing species from both genera.  相似文献   

5.
Phylogenetic relationships among pitvipers are inferred from a parsimony analysis using cytochrome b DNA sequences: 396 bp in the 5'end of the gene were sequenced in eight species of pitvipers (Agkistrodon blomhoffi, Agkistrodon contortrix, Bodiriechis schlegelii, Bothriopsis bilineata, Bothrops atrox, Crotalus atrox, Lachesis muta and Trimeresurus stejnegeri) and in four taxa used as outgroups (Atractaspis micropholis, Boa constrictor, Cerastes cerastes and Elapsoidea semiannulata). The monophyly of pitvipers and that of the group formed by the genera Atractaspis and Elapsoidea are confirmed. Among pitvipers, the genus Agkistrodon is paraphyletic. The Bothrops complex is polyphyletic, since the Central American genus Bothriechis is the sister group of the genus Crotalus and not clustered with the South American genera Bothriopsis and Bothrops.  相似文献   

6.
Almost 80 years ago, a radiation scheme based on structural resemblance was first outlined for the marine order Dinophysiales. This hypothetical radiation illustrated the relationship between the dinophysioid genera and included several independent, extant lineages. Subsequent studies have supplied additional information on morphology and ecology to these evolutionary lineages. We have for the first time combined morphological information with molecular phylogenies to test the dinophysioid radiation hypothesis in a modern context. Nuclear‐encoded LSU rDNA sequences including domains D1‐D6 from 27 species belonging to Dinophysis Ehrenb., Ornithocercus F. Stein, Phalacroma F. Stein, Amphisolenia F. Stein, Citharistes F. Stein, and Histioneis F. Stein were obtained from the Indian Ocean. Previously, LSU rDNA has only been determined from one of these. In Bayesian analyses, Amphisolenia formed a long basal clade to the other dinophysioids. These diverged into two separate lineages, the first comprised species with a classical Phalacroma outline, also including the type species P. porodictyum F. Stein. Thus, we propose to reinstate the genus Phalacroma. The relationship between the genera in the second lineage was not well resolved. However, the molecular phylogeny supported monophyly of Histioneis and Citharistes and showed the genus Dinophysis to be polyphyletic and in need of a taxonomic revision. Species of Ornithocercus grouped with Citharistes, but this relationship remained unresolved. The phylogenetic trees furthermore revealed convergent evolution of several morphological characters in the dinophysioids. According to the molecular data, the dinophysioids appeared to have evolved quite differently from the radiation schemes previously hypothesized. Four dinophysioid species had identical LSU rDNA sequences to other well‐established species.  相似文献   

7.
Aim We test biogeographical hypotheses regarding the origin of Andean‐centred plant groups by reconstructing phylogeny in the short‐branch clade (SBC) of Annonaceae, and estimating the timing of diversifications in four apparently Andean‐centred genera: Cremastosperma R.E.Fr., Klarobelia Chatrou, Malmea R.E.Fr. and Mosannona Chatrou. The SBC includes species distributed in both the Old and New World tropics. A number of the Neotropical genera display ‘Andean‐centred’ distribution patterns, with high species richness on both sides of the Andes mountain range. In particular, we test whether these groups could have originated on the South American continent during the time frame of the Andean orogeny [from c. 23 Ma (Miocene) to the present]. Methods Chloroplast DNA sequences were used to reconstruct phylogeny in related Annonaceae taxa plus outgroups, under maximum parsimony and Bayesian inference. The markers rbcL, trnL‐trnF and psbA‐trnH were sampled for 96 accessions to test the monophyly of each of the genera, and thus whether they might be para‐ or polyphyletic with respect to related groups distributed across Amazonia. To determine the sister groups of the four genera, the additional markers matK, ndhF, trnT‐trnL, trnS‐trnG and atpB‐rbcL were sampled for 23 of the 96 accessions. Molecular dating techniques (nonparametric rate‐smoothing; penalized likelihood; Bayesian inference) were then applied to estimate the age of the crown group of each genus and the age of their sister groups. Results Monophyly was confirmed in Cremastosperma, Malmea and Mosannona. The monotypic genus Pseudephedranthus Aristeg. was found to be nested within Klarobelia, the species of which otherwise formed a monophyletic group, and a South American‐centred (SAC) clade was identified. The SAC clade comprises all the SBC genera distributed in South America and generally to a limited extent into Central America, but not those endemic to Africa, Asia and Central America. Age estimations for clades within the SBC were no older than around 60 Myr; those for the crown groups of Cremastosperma, Klarobelia, Malmea and Mosannona fell largely within the last 10–20 Myr. Main conclusions The distribution patterns of Cremastosperma, Klarobelia, Malmea and Mosannona are not the arbitrary result of the definition of para‐ or polyphyletic groups. We infer the presence of a common ancestor of the four genera in South America, but not by vicariance of an ancestral population on Gondwana. The age estimations, instead, may suggest that the SAC clade originated in South America by dispersal across the Boreotropics. Although the strength of this test was limited by imprecision in the molecular dating results, the ages of crown groups of the four genera suggest that diversifications occurred within the time frame of the orogeny of the Northern Andes.  相似文献   

8.
The tribe Acraeini (Nymphalidae, Heliconiinae) is believed to comprise between one and seven genera, with the greatest diversity in Africa. The genera Abananote, Altinote, and Actinote (s. str.) are distributed in the Neotropics, while the genera Acraea, Bematistes, Miyana, and Pardopsis have a Palaeotropical distribution. The monotypic Pardopsis use herbaceous plants of the family Violaceae, Acraea and Bematistes feed selectively on plants with cyanoglycosides belonging to many plant families, but preferentially to Passifloraceae, and all Neotropical species with a known life cycle feed on Asteraceae only. Here, a molecular phylogeny is proposed for the butterflies of the tribe Acraeini based on sequences of COI, EF-1alpha and wgl. Both Maximum Parsimony and Bayesian analyses showed that the tribe is monophyletic, once the genus Pardopsis is excluded, since it appears to be related to Argynnini. The existing genus Acraea is a paraphyletic group with regard to the South American genera, and the species of Acraea belonging to the group of "Old World Actinote" is the sister group of the Neotropical genera. The monophyly of South American clade is strongly supported, suggesting a single colonization event of South America. The New World Actinote (s. str.) is monophyletic, and sister to Abananote+Altinote (polyphyletic). Based on the present results it was possible to propose a scenario for the evolution in host plant use within Acraeini, mainly concerning the use of Asteraceae by the South American genera.  相似文献   

9.
The water scavenger beetle tribe Hydrobiusini contains 47 species in eight genera distributed worldwide. Most species of the tribe are aquatic, although several species are known to occur in waterfalls or tree mosses. Some members of the tribe are known to communicate via underwater stridulation. While recent morphological and molecular‐based phylogenies have affirmed the monophyly of the tribe as currently circumscribed, doubts remain about the monophyly of included genera. Here we use morphological and molecular data to infer a species‐level phylogeny of the Hydrobiusini. The monophyly of the tribe is decisively supported, as is the monophyly of most genera. The genus Hydrobius was found to be polyphyletic, and as a result the genus Limnohydrobius stat. rev. is removed from synonymy with Hydrobius, yielding three new combinations: L. melaenus comb.n. , L. orientalis comb.n. , and L. tumbius comb.n. Recent changes to the species‐level taxonomy of Hydrobius are reviewed. The morphology of the stridulatory apparatus has undergone a single remarkable transformation within the lineage, from a simple, unmodified pars stridens to one that is highly organized and complex. We present an updated key to genera, revised generic diagnoses and a list of the known distributions for all species within the tribe.  相似文献   

10.
A comparative study was made of the gross morphology, fine venation and cuticular features of Leitneria fioridana Chapman, the single living representative of the order Leitneriales and Leitneria eocenica (Berry) Brown, presumbaly a related fossil species. In addition to the type material, newly collected fossil specimens were investigated from clay pits in the Middle Eocene, Claiborne Formation, of western Tennessee and Kentucky. Foliate stipules attached to the petioles of several specimens suggest the assignment of this fossil leaf type to the genus Leitneria is incorrect. The nature of the gross morphology, fine venation and cuticular features confirms the misidentification. Previously, various specimens of this fossil leaf type have been placed in eight species of seven genera in seven families of six angiosperm orders, none of which are correct systematically. The gross morphology, venation and cuticular characters of the fossil leaf are distributed among a few extant South American genera of arborescent Rubiaceae. The fossil is an extinct rubiaceous leaf type which cannot be placed within a single modern subfamily, tribe or genus of the family. The organ genus, Paleorubiaceophyllum is proposed for these leaves. Three varieties of a single fossil species, P. eocenicum, are recognized. One variety with epidermal cells nearly twice the size of the others may represent a polyploid population.  相似文献   

11.
Classifications in the world's tropics often involve an early and sustained adoption of Holarctic-based patterns. Such is the case of the megadiverse subtribe Philonthina and its Neotropical (NT) members, for which generic limits are ill-defined due to an alleged high level of homoplasy. Although a recent total-evidence study confirmed the monophyly of a NT lineage, most of its species are assigned to the speciose genera Belonuchus Nordmann and Paederomimus Sharp, neither of them monophyletic. Here, we aim to reveal internal relationships within the NT lineage by the reassessment of characters from traditional morphology-based systematics. Specific objectives are to test the monophyly of Belonuchus with regards to its only junior synonym, Musicoderus Sharp, as well as the placement of the six South American species of Hesperus Fauvel, a genus of Holarctic origin. We performed a phylogenetic analysis of the subtribe with focus on its NT lineage based on 132 morphological characters (50 of them novel) including 79 taxa from genera and/or species groups relevant to our study. Most novel characters assessed herein supported clades across Philonthina and its NT lineage. We found that the NT lineage diversified into at least seven clades, each of which provides a framework for future taxonomic studies. Among them, three clades containing the type species of Belonuchus, Paederomimus and Musicoderus (respectively) appear to be well supported and not closely related. The currently known South American species of Hesperus, however, are recovered within the NT lineage. We propose to resurrect Musicoderus from synonymy with Belonuchus and to transfer Hesperus novoteutonicus to Paederomimus as a new combination: Paederomimus novoteutonicus (Wendeler), comb.n .  相似文献   

12.
Chironius is one of the most speciose genera of the South American colubrid snakes. Although the genus represents a well‐known radiation of diurnal racers, its monophyly, affinities with other Neotropical colubrid genera, and intrageneric relationships are open questions. Here, we present a phylogenetic analysis of Chironius based on a data matrix that combines one nuclear (c‐mos) and two mitochondrial (12S and 16S rRNA) genes with 37 morphological characters derived from scutellation, skull, and hemipenial features. Phylogenetic relationships were inferred using maximum parsimony (MP) and maximum likelihood (ML). Our combined morphological and molecular analyses strongly support the monophyly of the genus Chironius and its sister‐group relationship with a clade formed by the genera Dendrophidion and Drymobius. Phylogenetic relationships within the genus Chironius is still controversial, although five clades are retrieved with medium to strong support. © 2014 The Linnean Society of London  相似文献   

13.
14.
Callibaetis is considered to be one of the most problematic genera among mayflies by a series of taxonomic inaccuracies that have accumulated over the last two centuries. Despite these taxonomic problems, two independent hypotheses of species groups have been proposed. In the first hypothesis, three species groups for North America were proposed, and in the second, three species groups were proposed for South American. In these hypotheses, the generic delimitation and monophyly of Callibaetis have not been evaluated under a cladistic framework. Taking this into account, the objectives of this study were to verify the monophyly of Callibaetis and whether the groups of species proposed for the genus are corroborated as natural. The matrix included 128 morphological characters and one habitat character, 119 discrete characters were compiled (101 of nymphs and 18 of adults), and six imaginal characters are related to pigmentation pattern. Continuous characters were ratios and were represented by 10 characters (nine for nymphs and one for adults). The data set was analysed under implied weights. Group support was estimated with relative Bremer support and frequency differences. The results corroborated the monophyletic nature of Callibaetis and the generic status of Callibaetoides; however, the groups proposed for North and South American Callibaetis species were not corroborated. Our study indicated four groups of species for the genus, which we proposed as subgenera: Callibaetis, Abaetetuba subgen. n. Aiso subgen. n. and Cunhaporanga subgen. n.  相似文献   

15.
The genus Kermadecia (Proteaceae), originally described as endemic to New Caledonia, has been expanded in recent decades to include three species from the New Hebrides and Fiji. Specialists on the Proteaceae have suggested that the three Melanesian species were generically misplaced, and careful reexamination supports this viewpoint. It is now apparent that a distinct group within the subfamily Grevilleoideae is composed of the genera Euplassa (endemic to South America), Sleumerodendron (a monotypic New Caledonian genus), Gevuina (based on a single South American species but recently expanded to include two other species from Queensland and New Guinea), and the three questionable Melanesian species. A review of this cluster of taxa indicates that Gevuina should again be interpreted as restricted to South America and that the generic name Bleasdalea F. v. Muell. ex Domin should be adopted for a group of five species extending from Queensland and New Guinea to the New Hebrides and Fiji. The relationships of the four genera are discussed and within Bleasdalea four new combinations are proposed: B. bleasdalei (F. v. Muell.), B. ferruginea (A. C. Sm.), B. vitiensis (Turrill), and B. lutea (Guillaumin). Kermadecia, very distinct from the four genera under present consideration, is again interpreted as a New Caledonian endemic.  相似文献   

16.
The relationship between Litsea and related genera is currently unclear. Previous molecular studies on these taxa using cpDNA and nrITS were unable to produce well-resolved phylogenetic trees. In this study, we explored the potential of the rpb2 gene as a source of molecular information to better resolve the phylogenetic analysis. Although rpb2 was believed to be a single-copy gene, our cloning results showed that most species examined possessed several copies of these sequences. However, the genetic distance among copies from any one species was low, and these copies always formed monophyletic groups in our molecular trees. Our phylogenetic analyses of rpb2 data resulted in better resolved tree topologies compared to those based on cpDNA or nrITS data. Our results show that monophyly of the genus Litsea is supported only for section Litsea. As a genus, Litsea was shown to be polyphyletic. The genera Actinodaphne and Neolitsea were resolved as monophyletic groups in all analyses. They were also shown to be sisters and closer to the genus Lindera than to the genus Litsea. Our results also revealed that the genus Lindera is not a monophyletic group.  相似文献   

17.
18.
Following taxonomic revisions in recent years, the originally large family Grapsidae MacLeay, 1838 has become a relatively small and morphologically homogeneous family in terms of adult and larval morphology. Most available molecular studies including more than one genus of the family have also suggested monophyly of the corresponding taxa. However, no single phylogenetic study has ever included all constituent genera of the Grapsidae. In the current study, a molecular phylogeny based on sequences of the mitochondrial 16S rRNA gene from all eight grapsid genera and 34 species is presented and suggests that up to four genera are not monophyletic. This is mainly due to the polyphyletic nature of the genus Pachygrapsus which can be found in six different lineages of the phylogeny, suggesting that the genus currently does not represent a single evolutionary lineage and is in need of taxonomic revision. Amphi-atlantic and trans-isthmian species pairs or populations in four genera are compared and reveal relatively constant and pronounced divergences across the Panama Isthmus as opposed to moderate divergences across the Atlantic Ocean, thereby suggesting occurrence of gene flow across the Atlantic Ocean during the past three million years.  相似文献   

19.
To better understand the evolutionary history of the genus Centaurium and its relationship to other genera of the subtribe Chironiinae (Gentianaceae: Chironieae), molecular analyses were performed using 80 nuclear ribosomal ITS and 76 chloroplast trnLF (both the trnL UAA intron and the trnL-F spacer) sequences. In addition, morphological, palynological, and phytochemical characters were included to a combined data matrix to detect possible non-molecular synapomorphies. Phylogenetic reconstructions support the monophyly of the Chironiinae and an age estimate of ca. 22 million years for the subtribe. Conversely, both molecular data sets reveal a polyphyletic Centaurium, with four well-supported main clades hereafter treated as separate genera. The primarily Mediterranean Centaurium s.s. is closely related to southern African endemics Chironia and Orphium, and to the Chilean species Centaurium cachanlahuen. The resurrected Mexican and Central American genus Gyrandra is closely related to Sabatia (from eastern North America). Lastly, the monospecific genus Exaculum (Mediterranean) forms a monophyletic group together with the two new genera: Schenkia (Mediterranean and Australian species) and Zeltnera (all other indigenous American centauries). Several biogeographical patterns can be inferred for this group, supporting a Mediterranean origin followed by dispersals to (1) North America, Central America, and South America, (2) southern Africa (including the Cape region), and (3) Australia and Pacific Islands.  相似文献   

20.
The monophyly of the highly diverse weevil subfamily Cryptorhynchinae is tested with a dataset of 203 taxa representing 159 genera of Curculionoidea, 105 of them Cryptorhynchinae s.l. We construct a phylogeny based on an alignment of 5523 bp, consisting of fragments from two mitochondrial genes (two fragments of COI, 16S) and seven nuclear genes (ArgK, CAD, EF1α, enolase, H4, 18S, 28S). Analyses of maximum likelihood and Bayes inference recovered largely congruent results. Groups with different morphology of the rostral furrow (e.g. Aedemonini, Camptorhinini, Cryptorhynchini, Ithyporini) are not closely related to each other. However, most taxa with a mesosternal receptacle are monophyletic and here defined as Cryptorhynchinae s.s., comprising Cryptorhynchini, Gasterocercini, Torneumatini and Psepholacini, but also Arachnopodini and Idopelma Faust. The genus Phyrdenus LeConte is excluded from Cryptorhynchinae and transferred to Conotrachelini of Molytinae. Thus defined, the group still comprises several thousand species with centres of its diversity in South America and Australia. The early lineages we find in America and the Palearctic, while the extremely diverse faunas of Australia and neighbouring islands mainly belong to a more recent, species‐rich radiation. This also includes a clade comprising the majority of litter‐inhabiting species of New Zealand and the genus Miocalles Pascoe. Flightlessness was attained repeatedly and resulted in convergent evolution of a similar habitus in different zoogeographic regions, mainly exhibited by the polyphyletic genus Acalles Schoenherr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号