首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Chromium picolinate does not produce chromosome damage in CHO cells   总被引:3,自引:0,他引:3  
Chromium picolinate (CrPic, Chromax) is a dietary supplement that has been commercially available for the past two decades. CrPic has potential benefits for reducing insulin dependence in diabetics by increasing sensitivity of insulin receptors and in stimulating insulin binding. In this study, CrPic was tested for its ability to produce chromosomal aberrations in vitro using Chinese hamster ovary K1 (CHO) cells. CHO cells were exposed to a range of cytotoxic to non-cytotoxic concentrations of CrPic for 4 or 20h in the absence of metabolic (S9) activation or for 4h in the presence of S9 activation. CrPic was solubilized with dimethyl sulfoxide (DMSO) to attain the highest possible solubility for maximizing the test doses. Cells were treated with 96.25, 192.5, 385 or 770 microg/mL of CrPic for 4 h in the presence of S9 activation, and for 4 or 20 h in the absence of S9 activation. A distinct precipitate of CrPic was evident in the cell culture medium at 770 microg/mL, which was the highest dose tested. Results showed no statistically significant increases in structural or numerical chromosome aberrations were produced at any test dose level with CrPic in 4-h treatments up to a precipitating dose of 770 microg/mL in either the presence or absence of S9 activation. Additionally no aberrations were observed up to 385 microg/mL (the maximum analyzable dose) following treatment for 20 h in the absence of S9 activation. The percentage of cells with structural or numerical aberrations in CrPic treated cultures was not statistically different (p>0.05) from that quantified in controls at any dose level. The absence of significant differences from control levels demonstrates that CrPic did not induce structural or numerical chromosome aberrations up to doses that were insoluble in the culture medium.  相似文献   

2.
P-glycoprotein (P-gp) is an ATP-dependent drug pump that confers multidrug resistance (MDR). In addition to its ability to efflux toxins, P-gp can also inhibit apoptosis induced by a wide array of cell death stimuli that rely on activation of intracellular caspases for full function. We therefore hypothesized that P-gp may have additional functions in addition to its role in effluxing xenotoxins that could provide protection to tumor cells against a host response. There have been a number of contradictory reports concerning the role of P-gp in regulating complement activation. Given the disparate results obtained by different laboratories and our published results demonstrating that P-gp does not affect cell death induced by another membranolytic protein, perforin, we decided to assess the role of P-gp in regulating cell lysis induced by a number of different pore-forming proteins. Testing a variety of different P-gp-expressing MDR cell lines produced following exposure of cells to chemotherapeutic agents or by retroviral gene transduction in the complete absence of any drug selection, we found no difference in sensitivity of P-gp(+ve) or P-gp(-ve) cells to the pore-forming proteins complement, perforin, or pneumolysin. Based on these results, we conclude that P-gp does not affect cell lysis induced by pore-forming proteins.  相似文献   

3.
Summary Experimental data on photoreactivation of damage induced by ionizing radiation in yeast cells are presented. The value of photoreactivation was found to be the highest for the following conditions predicted by us as optimum ones: large volume of irradiated suspension, hypoxia and high energy sparsely ionizing radiation. A comparison of data for yeast and bacterial cells shows that Cerenkov emission from ionizing radiation may produce photoreactivated pyrimidine dimers in both prokaryotic and eukaryotic cell systems.  相似文献   

4.
5.
It is shown that in diploid yeast there are significant differences in the extent of irreparable damage after irradiation with X-rays, 60Co-gamma-rays and 30 MeV electrons. At extremely low dose rates, 60Co-gamma-rays were found to produce almost no irreparable damage at least up to 1200 Gy. X-rays, however, at the same low dose rate caused irreparable damage in the same dose range yielding a surviving fraction of 0.25 at 1200 Gy. For irradiations at high dose rate followed by liquid holding recovery the relative biological effectiveness of X-rays amounted to at least 4 for absorbed doses of up to 1000 Gy. With 30 MeV electrons at high dose rates an accumulation of sublethal and potentially lethal damage resulting in irreparable damage occurred above 1000 Gy. It is suggested that irreparable damage in yeast is due to a cooperative effect of neighbouring track ends.  相似文献   

6.
Reactive oxygen species (ROS) are important mediators of the cytotoxicity induced by the direct reaction of ionising radiation (IR) with all critical cellular components, such as proteins, lipids, and nucleic acids. The derived oxidative damage may propagate in exposed tissues in a dose- and spatiotemporal dependent manner to other cell compartments, affecting intracellular signalling, and cell fate. To understand how cell damage is induced, we studied the oxidative events occurring immediately after cell irradiation by analysing the fate of IR-derived ROS, the intracellular oxidative damage, and the modification of redox environment accumulating in Chinese hamster ovary (CHO) within 1?h after cell irradiation (dose range 0–10?Gy). By using the immuno-spin trapping technique (IST), spectrophotometric methods, and electron paramagnetic resonance (EPR) spectroscopy, we showed that IR-derived ROS (i) induced an IST-detectable, antioxidant-inhibitable one-electron oxidation of specific intracellular proteins; (ii) altered the glutathione (GSH) content (which was found to increase below 2?Gy, and decrease at higher doses, leading to a redox imbalance); (iii) decreased glutathione peroxidase and glutaredoxin activity; (iv) modified neither glutathione reductase nor thioredoxin reductase activity; (v) were detected by spin trapping technique, but adduct intensity decreased due to cell competition for ROS; and (vi) induced no EPR-detectable radicals assignable to oxidised cellular components. In conclusion, our results showed that IR generated an early high oxidising potential (protein radical intermediates, redox imbalance, modified redox enzyme activity) in irradiated cells potentially able to propagate the damage and induce oxidative modification of secondary targets.  相似文献   

7.
Apoptosis of macrophages and smooth muscle cells is observed in atherosclerotic lesions and may play an important role in the disease progression. Oxidised low density lipoprotein (LDL) is cytotoxic and induces apoptosis in a variety of cell types. We reported previously that ascorbate protects arterial smooth muscle cells from apoptosis induced by oxidised LDL containing the peak levels of lipid hydroperoxides. We now demonstrate that macrophages undergo apoptosis when treated with this species of oxidised LDL, as detected by increased annexin V binding and DNA fragmentation. Ascorbate treatment of macrophages did not protect against the cytotoxicity of oxidised LDL, and modestly increased the levels of annexin V binding and DNA fragmentation. Oxidised LDL treatment also increased the expression of the antioxidant stress protein heme oxygenase-1 in macrophages; however, this increase was markedly attenuated by ascorbate pretreatment. Although apoptosis induced by oxidised LDL was modestly promoted by ascorbate, ascorbate apparently decreased the levels of oxidative stress in macrophages, suggesting that this pro-apoptotic effect was not mediated by a pro-oxidant mechanism, but may instead have been due to intracellular protection of the apoptotic machinery by ascorbate.  相似文献   

8.
The genotoxicity of methylene chloride was determined using sister-chromatid exchange (SCE) and chromosome aberration assays in cultured Chinese hamster ovary (CHO) cells. Methylene chloride caused extensive chromosome aberrations both with and without metabolic activation. However, the results of the SCE assay were negative for methylene chloride. These results agree with previously observed genotoxic effects of methylene chloride in Salmonella typhimurium and Saccharomyces cerevisiae. The fact that methylene chloride causes chromosome aberrations without increasing the SCE level indicates that complete reliance on the induction of SCE as a test system for assessing chromosomal effects is not valid.  相似文献   

9.
A survey is given of continuous-time Markov chain models for ionizing radiation damage to the genome of mammalian cells. In such models, immediate damage induced by the radiation is regarded as a batch-Poisson arrival process of DNA double-strand breaks (DSBs). Enzymatic modification of the immediate damage is modeled as a Markov process similar to those described by the master equation of stochastic chemical kinetics. An illustrative example is the restitution/complete-exchange model. The model postulates that, after being induced by radiation, DSBs subsequently either undergo enzymatically mediated restitution (repair) or participate pairwise in chromosome exchanges. Some of the exchanges make irremediable lesions such as dicentric chromosome aberrations. One may have rapid irradiation followed by enzymatic DSB processing or have prolonged irradiation with both DSB arrival and enzymatic DSB processing continuing throughout the irradiation period. Methods for analyzing the Markov chains include using an approximate model for expected values, the discrete-time Markov chain embedded at transitions, partial differential equations for generating functions, normal perturbation theory, singular perturbation theory with scaling, numerical computations, and certain matrix methods that combine Perron-Frobenius theory with variational estimates. Applications to experimental results on expected values, variances, and statistical distributions of DNA lesions are briefly outlined. Continuous-time Markov chains are the most systematic of those radiation damage models that treat DSB-DSB interactions within the cell nucleus as homogeneous (e.g., ignore diffusion limitations). They contain virtually all other relevant homogeneous models and semiempirical summaries as special cases, limiting cases, or approximations. However, the Markov models do not seem to be well suited for studying spatial dependence of DSB interactions, which is known to be important in some situations.  相似文献   

10.
DNA damage induced by low doses of ionizing radiation causes apoptosis, which is partially mediated via the generation of free radicals. Both free radicals and apoptosis are involved in the majority of brain diseases, including stroke, Alzheimer's disease and amyotrophic lateral sclerosis. Because previous studies have shown that tetracycline derivatives doxycycline and minocycline have anti-inflammatory effects and are protective against brain ischemia, we studied whether minocycline and doxycycline or ceftriaxone, a cephalosporin antibiotic with the potential to inhibit excitotoxicity, protect neurons against ionizing radiation in primary cortical cultures. A single dose of 1 Gy significantly increased lactate dehydrogenase release, induced DNA fragmentation in neurons and triggered microglial proliferation. Treatment with minocycline (20 nM), doxycycline (20 nM) and ceftriaxone (1 microM) significantly reduced irradiation-induced lactate dehydrogenase release and DNA fragmentation. The most efficient protection was achieved by minocycline treatment, which also inhibited the irradiation-induced increase in microglial cell number. Our results suggest that some tetracycline derivatives, such as doxycycline and minocycline, and ceftriaxone, a cephalosporin derivative, protect neurons against apoptotic death.  相似文献   

11.
The initial and rate-limiting enzyme of the oxidative pentose phosphate shunt, glucose-6-phosphate dehydrogenase (G6PD), is inhibited by NADPH and stimulated by NADP(+). Hence, under normal growth conditions, where NADPH levels exceed NADP(+) levels by as much as 100-fold, the activity of the pentose phosphate cycle is extremely low. However, during oxidant stress, pentose phosphate cycle activity can increase by as much as 200-fold over basal levels, to maintain the cytosolic reducing environment. G6PD-deficient (G6PD(-)) cell lines are sensitive to toxicity induced by chemical oxidants and ionizing radiation. Compared to wild-type CHO cells, enhanced sensitivity to ionizing radiation was observed for G6PD(-) cells exposed to single-dose or fractionated radiation. Fitting the single-dose radiation response data to the linear-quadratic model of radiation-induced cytotoxicity, we found that the G6PD(-) cells exhibited a significant enhancement in the alpha component of radiation-induced cell killing, while the values obtained for the beta component were similar in both the G6PD(-) and wild-type CHO cell lines. Here we report that the enhanced alpha component of radiation-induced cell killing is associated with a significant increase in the incidence of ionizing radiation-induced apoptosis in the G6PD(-) cells. These data suggest that G6PD and the oxidative pentose phosphate shunt protect cells from ionizing radiation-induced cell killing by limiting the incidence of radiation-induced apoptosis. The sensitivity to radiation-induced apoptosis was lost when the cDNA for wild-type G6PD was transfected into the G6PD(-) cell lines. Depleting GSH with l-BSO enhanced apoptosis of K1 cells while having no effect in the G6PD(-) cell line  相似文献   

12.
Studies were conducted to determine the effects of BeSO4 or X rays, alone and in combination, on cell cycle kinetics, cell killing, and the production of chromosome aberrations in Chinese hamster ovary (CHO) cells. The concentration of BeSO4 required to kill 50% of CHO cells exposed to BeSO4 for 20 h was determined to be 1.1 mM with 95% confidence intervals of 0.72 to 1.8 mM. During the last 2 h of the 20-h beryllium treatment (0.2 and 1.0 mM), cells were exposed to 0.0, 1.0, or 2.0 Gy of X rays. Exposure to either BeSO4 or X rays produced a change in cell cycle kinetics which resulted in an accumulation of cells in the G2/M stage of the cell cycle. However, combined exposure to both agents resulted in a block similar to that observed following exposure to X rays only. The background level of chromosome damage was 0.05 +/- 0.015 aberrations/cell in the CHO cells. Seven hours after the end of exposure to 0.2 and 1.0 mM beryllium, 0.03 +/- 0.003 and 0.09 +/- 0.02 aberrations/cell, respectively, were observed. The data for chromosome aberrations following X-ray exposure were fitted to a linear model with a coefficient of 0.14 +/- 0.01 aberrations/cell/Gy. When beryllium was combined with the X-ray exposure the interactive response was predicted by a multiplicative model and was significantly higher (P less than 0.05) than predicted by an additive model. The influence of time after radiation exposure on the interaction between beryllium and X rays was also determined. No interaction between beryllium and X-ray exposure in the induction of chromosome-type aberrations (P greater than 0.05) was detected. The frequency of chromatid-type exchanges and total aberrations was significantly higher (P less than 0.05) in the radiation plus beryllium-exposed cells when compared to cells exposed to X rays only, at both 9 and 12 h after X-ray exposure. These data suggest that the multiplicative interaction may be limited to cells in the S and G2 stages of the cell cycle.  相似文献   

13.
Phytohemagglutinin stimulated human lymphocytes exhibit a 20 fold increase in DNA repair synthesis following ionizing radiation damage compared to the level of repair in unstimulated cells. The peak of repair synthesis coincides with that for DNA replication. Stimulated lymphocytes provide a relatively simple assay for ionizing radiation repair defects.  相似文献   

14.
Effects of ionizing radiation on biological membranes include alterations in membrane proteins, peroxidation of unsaturated lipids accompanied by perturbations of the lipid bilayer polarity. We have measured radiation-induced membrane modifications using two fluorescent lipophilic membrane probes (TMA-DPH and DPH) by the technique of fluorescence polarization on two different cell lines (Chinese hamster ovary CHO-K1 and lymphoblastic RPMI 1788 cell lines). γ-Irradiation was performed using a 60Co source with dose rates of 0.1 and 1 Gy/min for final doses of 4 and 8 Gy. Irradiation induced a decrease of fluorescence intensity and anisotropy of DPH and TMA-DPH in both cell lines, which was dose-dependent but varied inversely with the dose rate. Moreover, the fluorescence anisotropy measured in lymphoblastic cells using TMA-DPH was found to decrease as early as 1 h after irradiation, and remained significantly lower 24 h after irradiation. This study indicates that some alterations of membrane fluidity are observed after low irradiation doses and for some time thereafter. The changes in membrane fluidity might reflect oxidative damage, thus confirming a radiation-induced fluidization of biological membranes. The use of membrane fluidity changes as a potential biological indicator of radiation injury is discussed. Received: 14 May 1996 / Accepted in revised form: 30 September 1996  相似文献   

15.
Mitochondria are subcellular organelles with an essentially oxidative type of metabolism. The production of reactive oxygen species (ROS) in it increases under stress conditions and causes oxidative damage. In the present study, effects of exogenous sodium nitroprusside (SNP), a nitric oxide (NO) donor, on both the ROS metabolism in mitochondria and functions of plasma membrane (PM) and tonoplast were studied in cucumber seedlings treated with 100mM NaCl. NaCl treatment induced significant accumulation of H(2)O(2) and led to serious lipid peroxidation in cucumber mitochondria, and the application of 50muM SNP stimulated ROS-scavenging enzymes and reduced accumulation of H(2)O(2) in mitochondria of cucumber roots induced by NaCl. As a result, lipid peroxidation of mitochondria decreased. Further investigation showed that application of SNP alleviated the inhibition of H(+)-ATPase and H(+)-PPase in PM and/or tonoplast by NaCl. While application of sodium ferrocyanide (an analog of SNP that does not release NO) did not show the effect of SNP, furthermore, the effects of SNP were reverted by addition of hemoglobin (a NO scavenger).  相似文献   

16.
The effect of hypoxia on the induction of and recovery from damage by radiation alone and in combination with heat has been investigated using plateau-phase Chinese hamster ovary (CHO) cells. Postirradiation hypoxia reduced the potentially lethal damage recovery (PLDR) in cells irradiated under an euoxic state and completely eliminated PLDR in cells irradiated under hypoxia. Cells which were maintained under hypoxia during both irradiation and a 4-hr recovery period and then incubated for a further period of 4 hr under euoxic conditions showed PLDR, suggesting that the inhibition of PLDR by hypoxia is reversible. Oligomycin, an inhibitor of energy metabolism, completely eliminated PLDR when present at a concentration of 1 microM during the postirradiation period. Pre- or postirradiation heat treatment at 42.5 degrees C for 30 min appreciably sensitized the cells to the induction of lethality. Thermal enhancement ratio (TER) was 1.7 for cells irradiated and heat treated under hypoxic conditions. The same heat treatment reduced the oxygen enhancement ratio (OER) associated with gamma radiation from 3.1 to 2.5. Cells subjected to this postirradiation heat treatment showed a small extent of PLDR, whereas the pre-heat-treated cells showed as much recovery as non-heat-treated cells. When hypoxic conditions prevailed during the post-treatment incubation period, PLDR was reduced in preheated cells and completely eliminated in postheated cells. The kinetics of interaction between heat and radiation damage were studied by introducing a time gap of 4 hr between the treatments. Cells maintained under euoxic conditions between the treatments showed an appreciable decrease in interaction, suggesting recovery from damage induced by the first treatment. Hypoxic conditions intervening the two treatments largely inhibited the loss of sensitization. Analysis of the results suggests that cells fail to recover from sublethal heat damage when held for 4 hr under hypoxic conditions. Cells held under hypoxic conditions partly recover from the radiation damage which subsequently interacts with sublethal heat damage, resulting in cell lethality.  相似文献   

17.
Treatment of Chinese hamster ovary cells with 6-thioguanine (TG) produces severely disrupted chromatin in G2 cells, as visualized with premature chromosome condensation. In many regions of the chromosome this damage, appearing as a gapped or diffusely staining region, occurs in only one of sister chromatids. This morphology strongly supports previous reports that TG-induced cytotoxicity is related to its incorporation into DNA and that this lesion is expressed in the cell cycle following that in which drug exposure occurs.  相似文献   

18.
Ionizing radiation induces variety of structural lesions in DNA of irradiated organisms. Their formation depends largely on the degree of cell oxygenation, the level of endogenous antioxidants, on DNA-protein complexes and compactization of DNA in the chromatin and activity of DNA repair systems. All ionizing radiation-induced DNA lesions can arbitrarily be divided into two groups. Group 1 includes singly damaged sites (single-sites): base modification, single-strand breaks, alkaline-labile sites (including a basic sites). Group 2 contains: locally multiply damaged sites (clustered lesions), double-strand breaks, intermolecular cross-links. The yields of lesions of group 2 increases with high linear energy transfer of radiation and these lesions play a dominant role in the radiation death, formation of chromosome and gene mutations, cell transformation.  相似文献   

19.
Anthocyanins are flavonoids present in a variety of pigmented food and, like other flavonoids, seem to play a role in preventing human pathologies related to oxidative stress. In fact, anthocyanins have been shown to exert antiproliferative effects in cell cultures and exhibit antiinflammatory and vasoprotective activities in animal models. Although these biological activities have been related to their antioxidant properties, little is known on the molecular mechanism of action of anthocyanins. The effects of pretreatment with the anthocyanins delphinidin, cyanidin, and their glycoside and rutinoside derivatives against induction of DNA damage induced by tert-butyl-hydroperoxide (TBHP) were evaluated in rat smooth muscle and in rat hepatoma cell lines using alkaline single cell gel electrophoresis (Comet test). In addition, a possible protection exerted by anthocyanins on cell killing, lipid peroxidation, and redox state alterations induced by TBHP was also investigated. It was found that the treatment with TBHP induces the formation of DNA single strand breaks (SSB) and oxidised bases, along with cell killing, lipid peroxidation and redox state alteration. Our data demonstrate that anthocyanins are effective against cytotoxicity, DNA SSB formation and lipid peroxidation induced by TBHP, but they do not have any detectable effect against impairment by TBHP of cellular redox state and on protection against DNA bases oxidation. The presence of a sugar moiety in anthocyanin derivatives reduced this protective effect, mainly in rat hepatoma cells. The different activity of anthocyanins and their derivatives may be explained taking into account a structure/function relationship that could also influence anthocyanin intracellular localisation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号