首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genitalia of the female folding-trapdoor spider Antrodiaetus unicolor are characterized by two pairs of spermathecae that are arranged in a single row and connected to the roof of the bursa copulatrix. Each single spermatheca is divided into three main parts: stalk, bowl, and bulb, which are surrounded by the spermathecal gland. The epithelium of the spermathecal gland is underlain by a muscle meshwork and consists of different types of cells partly belonging to glandular cell units (Class 3 gland cells) that extend into pores in the cuticle of the stalk and bowl. Interestingly, the bulb lacks glandular pores and is characterized by a weakly sclerotized cuticle. This peculiarly structured bulb probably plays an important role in the discharge of the sperm mass. It is suggested that by contraction of the muscle layer the sperm mass may be squeezed out, when the bulb invaginates and expands into the spermathecal lumen, pushing the sperm to the uterus lumen. Each glandular unit consists of usually one or two central secretory cells that are for the most part surrounded by a connecting cell that again is surrounded by a canal cell. The canal cell, finally, is separated from the other epithelial cells (intercalary cells) located between the glandular units by several thin sheath cells that form the outer enveloping layer of the unit. The secretions are released through a cuticular duct that originates proximally between the apical part of the connecting cell and the apical microvilli of the secretory cells and runs into a pore of the spermathecal cuticle. The glandular products of the Class 3 gland cells likely contribute to the conditions allowing long-term storage of the spermatozoa in this species. Details regarding the ovary, the uterus internus, and the uterus externus are reported. Most of the secretion that composes the chorion of the egg is produced in the ovary. Glandular cell units observed in the uterus externus differ structurally from those in the spermathecae and likely play a different role. Finally, we briefly discuss our results on the female genitalia of A. unicolor in the light of knowledge about the reproductive biology of spiders.  相似文献   

2.
The genital morphology of female Pholcus phalangioidesis examined to clarify the composition of the uterus externus and the place of sperm storage in this species. Two conspicuous pore plates serve as exits for glandular secretion that gets discharged into the uterus externus. The secretion accumulates close to the pore plates and to some extent in the region of the heavily sclerotized valve that separates the uterus externus from the uterus internus. During copulation, the male transfers spermatozoa and male secretions into the female genital tract where they are embedded and stored in the female secretion. As Ph. phalangioidesdoes not possess any separate sperm storage organs such as receptacula seminis, the glandular secretion serves to store and fix the sperm mass in a specific position within the uterus externus itself.  相似文献   

3.
Anatomy and ultrastructure of the female and male reproductive system inAcarus siro L. were investigated by light and electron microscopy. The female system consists of paired ovaries of nutrimentary type in which oogonia and oocytes are connected by bridges with a large central cell. The oviducts empty into the uterus, which passes into preoviporal duct lined bycuticle, and opening as a longitudinal slit (oviporus). An elongated accessory gland composed of one type of secretory cell is located along each oviduct. The copulatory opening occurs at the posterior margin of the body and leads, via the inseminatory canal, to the receptaculum seminis, consisting of the basal and saccular part. Both inseminatory canal and basal part of receptaculum seminis are lined by cuticle, whereas the wall of the sac is formed by cells covered only by long, numerous microvilli. The basal part of the receptaculum seminis joins the ovaries via two lumenless transitory cones.The male reproductive system contains paired testes, in which spermatogonia tightly surround the central cell. The proximal part of the paired vasa deferentia serves as a sperm reservoir, while the distal one has a glandular character. An unpaired, cuticle-lined ejaculatory duct opens into the apex of the aedeagus. The single accessory gland is located asymmetrically at the level of, or slightly posterior to, coxae IV.The structure of the genital papillae, which are topographically related to the genital opening in both sexes, is also briefly described.  相似文献   

4.
【目的】蟋螽是直翅目中唯一具有吐丝筑巢行为的类群。本研究旨在探讨蟋螽丝腺的结构特点。【方法】应用解剖学观察、免疫荧光、苏木精-伊红染色、PAS苏木精染色、扫描电镜和透射电镜等方法从细胞水平对黑缘烟蟋螽Capnogryllacris nigromarginata丝腺的显微与超微结构进行了观察。【结果】黑缘烟蟋螽丝腺由导管和腺泡构成。腺泡由鞘细胞延伸形成的结缔组织鞘包围。腺泡的主体有4种细胞,分别为Ⅰ型分泌细胞、Ⅱ型分泌细胞、围细胞和腔细胞。Ⅰ型和Ⅱ型分泌细胞为大的腺细胞,形状不规则。分泌细胞细胞核很大,胞质内有大量的内质网和分泌颗粒。Ⅰ型分泌细胞靠近腺泡中心,PAS-苏木精染色表明Ⅰ型分泌细胞内含糖蛋白,Ⅱ型分泌细胞在腺泡外周,位于Ⅰ型分泌细胞与围细胞或结缔组织鞘之间。腔细胞分散在分泌细胞之间,包围形成胞外运输分泌物的通道。围细胞与鞘细胞接触,具有由细胞膜内陷形成的微绒毛腔,胞质内有大量的线粒体。围细胞微绒毛腔与腔细胞包围的细胞外运输通道相连,分泌细胞分泌的颗粒聚集在分泌细胞和胞外运输通道之间的连接处,并将分泌物排出至胞外运输通道。多个腺泡的胞外运输通道汇集到由单层细胞组成的丝腺导管。单层导管细胞靠近管腔外围具有规则排列的质膜内陷和大量伸长的线粒体;靠近管腔的一侧具连续的细胞膜突起,在导管壁的表皮下紧密排列。【结论】黑缘烟蟋螽丝腺分泌细胞分为Ⅰ型分泌细胞和Ⅱ型分泌细胞。分泌物质产生及分泌过程依次经过分泌细胞、腔细胞包围的胞外通道、分支导管、总导管和唾窦。其中在腺泡细胞之间,分泌物向外运输过程中,围细胞微绒毛腔的微丝束可能对分泌物的外排提供推动力。  相似文献   

5.
The female genital organs of the tetrablemmid Indicoblemma lannaianum are astonishingly complex. The copulatory orifice lies anterior to the opening of the uterus externus and leads into a narrow insertion duct that ends in a genital cavity. The genital cavity continues laterally in paired tube-like copulatory ducts, which lead into paired, large, sac-like receptacula. Each receptaculum has a sclerotized pore plate with associated gland cells. Paired small fertilization ducts originate in the receptacula and take their curved course inside the copulatory ducts. The fertilization ducts end in slit-like openings in the sclerotized posterior walls of the copulatory ducts. Huge masses of secretions forming large balls are detectable in the female receptacula. An important function of these secretory balls seems to be the encapsulation of spermatozoa in discrete packages in order to avoid the mixing of sperm from different males. In this way, sperm competition may be completely prevented or at least severely limited. Females seem to have full control over transferred sperm and be able to express preference for spermatozoa of certain males. The lumen of the sperm containing secretory balls is connected with the fertilization duct. Activated spermatozoa are only found in the uterus internus of females, which is an indication of internal fertilization. The sperm cells in the uterus internus are characterized by an extensive cytoplasm and an elongated, cone-shaped nucleus. The male genital system of I. lannaianum consists of thick testes and thin convoluted vasa deferentia that open into the wide ductus ejaculatorius. The voluminous globular palpal bulb is filled with seminal fluid consisting of a globular secretion in which only a few spermatozoa are embedded. The spermatozoa are encapsulated by a sheath produced in the genital system. The secretions in females may at least partly consist of male secretions that could be involved in the building of the secretory balls or play a role in sperm activation. The male secretions could also afford nutriments to the spermatozoa.  相似文献   

6.
The female genital system of the oonopid Silhouettella loricatula is astonishingly complex. The genital opening is situated medially and leads into an oval receptaculum that is heavily sclerotized except for the ventral half of the posterior wall that appears chitinized only. A large striking sclerite lying in the posterior wall of the uterus externus is attached anteriorly to the receptaculum and continues dorsally into a globular appendix that bears a furrow. The uterus externus shows a peculiar modification in its anterior wall: a paddle-like sclerite with a nail-like posterior process. This sclerite lies opposite to the furrow proceeding in the globular appendix and may serve females to lock the uterus externus by muscle contractions. Massive muscles connect the sclerite with the anterior scutum of the opisthosoma and with two other sclerites that are attached to the receptaculum and serve as attachments for further muscles. Gland cells extend around a pore field of the receptaculum. They produce secretion that encloses spermatozoa in a discrete package (secretory sac) inside the receptaculum. In this way, the mixing of sperm from different males and thus sperm competition may be severely limited or completely prevented. During a copulation in the laboratory the ejection of a secretory sac that most probably contained spermatozoa was observed, indicating sperm dumping in S. loricatula. The ejection of the secretory sac may be caused by female muscle contractions or by male pedipalp movements. The majority of the investigated females have microorganisms in the receptacula that could represent symbionts or infectious agents. The microorganisms can be identified partly as bacteria. They are enclosed in secretion and are always found in the same position inside the receptaculum.  相似文献   

7.
Tegumentary glands of the 'supra-anal pit' in the genus Scutigerella are ductule-associated glandular cells. The invaginated cavity consists of two distinct parts, the inner bearing microvilli collector. The efferent ductule penetrates into the upper part of the cavity by means of a receiving tubule, the wall of which is perforated and composed of two layers having different electron densities. The glandular cell cytoplasm is packed with smooth endoplasmic reticulum which arises from rough endoplasmic reticulum and by blebbing of the outer membrane of the nuclear envelope, blebs immediately losing their ribosomes. Secretion granules are released into the extracellular invaginated cavity between the microvilli and form an amorphous layer that covers the cuticular invagination of the 'supra-anal pit'.  相似文献   

8.
The ultrastructure of epidermal glands in neotenic reproductives of Prorhinotermes simplex is described and their development is compared among young and old neotenics of both sexes. Secretory cells forming the epidermal gland are attached to the cuticle all over the body. The glands are formed by class 1 and class 3 secretory cells and corresponding canal cells with secretory function. Class 1 cells are sandglass-like and class 3 secretory units are located among them. Class 1 cells contain predominantly tubular endoplasmic reticulum, the major part represents the smooth and the minor the rough form. Numerous electron dense granules occur in the cytoplasm, they are always disintegrated prior to be released. Class 3 secretory cells contain a large amount of vacuoles, which are always lucent in males while newly produced vacuoles are dense in females. Dense vacuoles are frequently transformed into lucent ones before being released. Canal cells are locally equipped with microvilli. The conducting canal is surrounded by an electron dense secretion of regular inner structure. The cytoplasm of the canal cell contains numerous mitochondria, rough endoplasmic reticulum and a large proportion of microtubules. The young neotenic reproductives differ from the old ones by a lower amount of secretory products. Epidermal glands probably produce substances inhibiting the occurrence of superfluous reproductives.  相似文献   

9.
The general structure of the female genital system of Zorotypus caudelli is described. The ovarioles are of the panoistic type. Due to the reduction of the envelope (tunica externa) the ovarioles are in direct contact with the hemolymph like in some other insect groups, Plecoptera included. The calices are much larger in Z. caudelli then in Zorotypus hubbardi and their epithelial cells produce large amounts of secretions, probably protecting the surface of the eggs deposited on the substrate. Eggs taken from the calyx bear a series of long fringes, which are missing in the eggs found in the ovariole, and in other zorapteran species. The long sperm of Z. caudelli and the long spermathecal duct are likely related to a sexual isolating mechanism (cryptic female choice), impeding female re-mating. The apical receptacle and the spermathecal duct - both of ectodermal origin - consist of three cell types. In addition to the cells beneath the cuticle lining the lumen, two other cell types are visible: secretory and canal cells. The cytoplasm of the former is rich in rough endoplasmic reticulum cisterns and Golgi complexes, which produce numerous discrete dense secretory bodies. These products are released into the receiving canal crossing the extracellular cavity of secretory cells, extending over a series of long microvilli. The secretion is transported towards the lumen of the apical receptacle of the spermatheca or to that of the spermathecal duct by a connecting canal formed by the canal cells. It is enriched by material produced by the slender canal cells. Before mating, the sperm cells are enveloped by a thick glycocalyx produced at the level of the male accessory glands, but it is absent when they have reached the apical receptacle, and also in the spermathecal duct lumen. It is likely removed by secretions of the spermatheca. The eggs are fertilized at the level of the common oviduct where the spermathecal duct opens. Two micropyles at the dorsal side of the equator level possibly facilitate fertilization. The presence of these two micropyles is a presumably derived feature shared with Phasmatodea. The fine structure of the female reproductive system of Z. caudelli does not allow to assess the phylogenetic position at the present stage of knowledge. The enlarged calyx and the temporary presence of long fringes on the eggs are potential autapomorphies of Z. caudelli or may indicate relationships with other Zorotypus species.  相似文献   

10.
Abstract The ‘slit organs’ of Anoplodactylus petiolatus are found all over the body cuticle. They are composed of a cuticular pore apparatus, an inner and an outer canal cell, and of four large and one to three small compartment cells. Plasma of the latter seven cells is almost completely filled with large membrane-enclosed compartments that contain either numerous small vesicles (one of the large cells) or homogeneous material of varying electron density (three large and all the small cells). Microvilli are found in the apical region of the compartment cells. The nucleus is situated basally where Golgi-cisternae, coated vesicles and free ribosomes are frequently found. Apical microvilli and vesicles are also formed by the inner canal cell indicating that it might directly be involved in transport. Anatomically the ‘slit organs’ are similar to class III glands described for many arthropods. In addition, discharge of secretion via large intracellular compartments is also a feature found in arthropod glands. Although pycnogonids appear to take up substances across the cuticle, a genuine secretion rather than a more generalized transport function is suggested for the ‘slit organs’.  相似文献   

11.
In the notostigmophoran centipedes, two pairs of vesicular glands have evolved. These paired glands are situated in the first and second trunk segment and open via cuticular ducts in the upper part of the particular pleura. The vesicular glands of Scutigera coleoptrata were investigated using light and, for the first time, electron microscopical methods. The glands consist of wide sac‐like cavities that often appear vesicular. The epithelia of both glands are identically structured and consist of numerous glandular units. Each of these units consists of four different cells: a single secretory cell, a small intermediary cell, and one proximal and one distal canal cell. The intermediary cell forms a conducting canal and connects the secretory cell with the canal cells. Proximally, the intermediary cell bears microvilli, whereas the distal part is covered with a distinct cuticle. The cuticle is a continuation of the cuticle of the canal cells. This investigation shows that the ultrastructure of glandular units of the vesicular glands is comparable to that of the glandular units of other epidermal glands in Chilopoda and Diplopoda, although the glands look completely different in the light microscope. Thus, it is likely that the vesicular glands and epidermal glands share the same ground pattern. With regard to specific differences in the cuticular lining of the intermediary cells, a common origin of epidermal glands in Myriapoda and Hexapoda is not supported. J. Morphol. 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

12.
The maxilla I-gland of Scutigera coleoptrata was investigated using light and electron microscopy methods. This is the first ultrastructural investigation of a salivary gland in Chilopoda. The paired gland opens via the hypopharynx into the foregut and extends up to the third trunk segment. The gland is of irregular shape and consists of numerous acini consisting of several gland units. The secretion is released into an arborescent duct system. Each acinus consists of multiple of glandular units. The units are composed of three cell types: secretory cells, a single intermediary cell, and canal cells. The pear-shaped secretory cell is invaginated distally, forming an extracellular reservoir lined with microvilli, into which the secretion is released. The intermediary cell forms a conducting canal and connects the secretory cell with the canal cell. Proximally, the intermediary cell bears microvilli, whereas the distal part is covered with a distinct cuticle. The cuticle is a continuation of the cuticle of the canal cells. This investigation shows that the structure of the glandular units of the salivary maxilla I-gland is comparable to that of the glandular units of epidermal glands. Thus, it is likely that in Chilopoda salivary glands and epidermal glands share the same ground pattern. It is likely that in compound acinar glands a multiplication of secretory and duct cells has taken place, whereas the number of intermediary cells remains constant. The increase in the number of salivary acini leads to a shifting of the secretory elements away from the epidermis, deep into the head. Comparative investigations of the different head glands provide important characters for the reconstruction of myriapod phylogeny and the relationships of Myriapoda and Hexapoda.  相似文献   

13.
The female reproductive system in Pergamasus mites consists of an unpaired vagina, vaginal duct, uterus, and ovary. Additionally, there are paired vaginal glands, as well as unpaired ventral and paired lateromedial glandular complexes. The vagina and vaginal duct are cuticle‐lined. In the dorsal wall of the vagina, this lining forms the endogynium which possesses a “sac” and two conspicuous “spherules” and is armed with “stipula” and other cuticular protrusions. The endogynium functions as a spermatheca, being a storing site for the spermatophore. The spherule procuticle is perforated by microvilli of underlying cells that are structurally very unusual. The lining of the vaginal duct forms numerous cuticular fibers directed toward the vagina. There is an external layer of muscles, supposedly functioning as a sphincter. The uterus is an organ in which the fertilized egg is stored for some time and starts embryonic development. Its wall is composed of glandular epithelial cells. The ovary consists of inner and outer parts. The former part is formed by a nutritive syncytium, whereas the latter contains growing oocytes. Two groups of glands connect with the genital tract. Paired vaginal glands are composed of glandular and secretion‐storing parts and open into the vagina. Paired lateromedial and unpaired ventral glandular complexes empty into the genital tract between the vaginal duct and uterus. The structure of the female genital system is discussed in terms of its function and phylogeny. J. Morphol. 240:195–223, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

14.
The exocrine glands located in the penis of Thermobia domestica (Thysanura : Lepismatidae) are composed of about 100 distinct units, each containing several cell types: one large secretory cell with an apical reservoir; 2 groups of envelope cells, an inner group of 2 superimposed cells, and an outer group of 4 cells arranged in a ring, and also 2 basal cells, called ciliary cells owing to their elongated processes, which look like the dendrite of a sensory cell. Each functional unit includes cuticular differentiations: a tubular bristle, fixed on a small tubercle; and a long “internal” ductule communicating basally with the reservoir of the glandular cell and opening distally at the tip of the bristle. A study of the modifications affecting the phallic glands during moulting, shows that the inner envelope cells deposit the cuticle that forms the ductule, the outer envelope cells elaborate the cuticule of the tubercle, while a temporary distal projection of only one of these cells ensures the formation of the bristle. In addition, a lengthening of the outer dendritic segment of the 2 ciliary cells takes place before ductule formation, but this segment partially degenerates after ecdysis. These findings are compared with data already obtained on the morphogenesis of other insect integumental glands. In T. domestica, the secretion of the phallic glands is presumed to be used, during the mating sequences, for spinning fine threads before spermatophore deposition.  相似文献   

15.
Cellulase reaction product was localized cytochemically at the ultrastructural level in the cell wall of disc cells, the secretory cavity and in the subcuticular wall of glands inCannabis. Cellulase reaction product was evident in the less dense region of the disc cell wall prior to secretory cavity formation. Reactivity in this region was associated with separation of an outer zone, forming the subcuticular wall, from the inner wall zone adjacent to the plasma membrane of the disc cells. Reaction product was associated with the disc cell wall and fibrillar matrix extending from it into the secretory cavity. Reactivity remained evident over the subcuticular wall throughout enlargement of the secretory cavity. Reaction product also was present over fibrillar matrix in the secretory cavity associated with both the inner wall and the subcuticular wall. The distribution of cellulase reaction product supports an interpretation that cellulase is involved in formation of the secretory cavity and subsequent redistribution of wall products to form the subcuticular wall during development of the secretory cavity.  相似文献   

16.
Abstract The ultrastructure of unicellular accessory glands (= prostate glands) and external male ducts of the cestode Cylindrotaenia hickmaniare described. Accessory glands open into the lumen of the external common sperm duct (= external vas deferens). The gland cells contain abundant endoplasmic reticulum, Golgi bodies and secretory bodies, and have elongate necks that pierce the apical cytoplasm of the duct. Cell contact with the apical cytoplasm of the sperm duct is mediated by septate desmosomes. Accessory glands secrete spherical particles, with a diameter of approximately 70 nm, that adhere to spermatozoa. The roles of these accessory glands may relate to activity of the sperm or development of the female system after insemination. Paired sperm ducts arise from testes, and unite to form a common sperm duct. Each duct consists of a tubular anucleate cytoplasmic region which is supported by nucleated cytons that lie sunken in the parenchyma. The apical cytoplasm of the paired sperm ducts (= vasa efferentia) possesses apical microvilli and abundant mitochondria, but few other cytoplasmic features. The apical cytoplasm of the common sperm duct possesses sparse apical microvilli and numerous electronlucent vesicles. The male gonoducts form an elongate syncytium which is markedly polarized along the length of the ducts. The ducts also display apical–basal polarity in that sunken nucleated cytons support the apical cytoplasm which in turn has distinct basal and apical domains.  相似文献   

17.
核心薄囊蕨是蕨类植物中的进化类群,但对受精作用具有显著影响的卵发生研究仍较少,该文利用超微技术对其中蹄盖蕨科的华东安蕨卵发生过程进行了研究,以进一步完善薄囊蕨植物卵发生的科学资料,为理解蕨类植物的有性生殖及演化机制奠定基础。超微结构观察显示:华东安蕨的幼卵和沟细胞在颈卵器中紧密联接;随后,在卵细胞上方出现了分离腔和临时细胞壁,但在卵细胞中间孔区处卵细胞和腹沟细胞始终联接在一起;分离腔中的无定形物质沉积在卵细胞的质膜外形成了1层加厚的卵膜,而在孔区处没有形成卵膜,该位置最后形成了受精孔。在进一步的卵发生过程中,卵细胞核变得高度不规则,形成了大量的核外突和核褶皱。  相似文献   

18.
P Pesson  I Foldi 《Tissue & cell》1978,10(2):389-399
The tegumentary pygidial glands of Aonidiella aurantii (Homoptera, Diaspididae) produce a secretion forming the shield of these fixed parasites of plants. They are formed of seven cells: a principal unpaired secretory cell which produces an abundant glycoproteinaceous secretion; a small associated cell with a secondary reservoir for this secretion; two accessory secretory cells which have very abundant tubular extensions coming from the plasma membrane, and a flocculent secretion gathered in a large sub-cuticular space; two cells forming an enlarged part of the excretory canal, functioning like a spinneret; and finally a single cell forming the tubular duct of this complex gland. The cuticle of the secretory cells has a very special porous structure, through which the secretion passes. The final product is a ribbon formed by two hollow strands stuck together. The exact nature of this secretion is not clear. It is comparable to a silk secretion though it has its own particular characteristics.  相似文献   

19.
Summary The nephridia of Ophryotrocha puerilis are segmental organs. The nephrostome opens at the posterior margin of a setigerous segment into the coelomic cavity of this segment. The nephridial canal is made up of about 15 cells. These cells form an S-shaped tubule which extends into the following segment. The lumen of the nephridial canal ranges from 2 to 7 m in diameter. The nephropore opens laterally on the ventral surface of the body wall.In cross sections, one, two, or three cells are seen forming the canal. The inner surfaces of the canal cells are of different appearances along the canal. Since no regular pattern of cell distribution was found along the canals of different nephridia it is assumed that changes in cell structure along the canal are due to functional states or properties rather than to anatomically fixed regional differences. The canal cells either show smooth contours or they form brush borders of microvilli or sponge-like inner surfaces with a system of vacuolar canals running through the cytoplasm. Most of the canal cells are filled with various kinds of vesicles. Usually two or three cells contain larger vesicles up to 2.5 m in diameter with more or less electron-dense contents. Some of these vesicles resemble lysosomes. There are at least three bundles of cilia in each canal. In young specimens the number of cilia in one bundle is smaller (10–15) than in adult specimens (60–70). The nephridia do not show sex specific differences. The female nephridia do not function as genital ducts. As judged from the sizes of sperm and nephridia it appears to be possible that sperm are shed via male nephridia.  相似文献   

20.
The female reproductive system of Eupolybothrus fasciatus (Newport) (Chilopoda Lithobiomorpha) includes three types of well-developed accessory glands, viz. large glands, small glands, and the periatrial gland. External morphology and the ultrastructural organization of these glands have been investigated by light and electron microscopy. The small and large glands are paired and have coiled ducts that open, respectively, into and externally to the genital atrium. By contrast, the periatrial gland is unpaired and is located on the ventral wall of the atrium into which it opens via several small canals. Ultrastructural features show that all three glands consist of two different types of cells: secretory cells and ductule cells. The secretary cells contain prominent secretory granules and are similar to a class of insect epidermal gland cells (class 3) organized as acini surrounding an extracellular lumen into which microvilli project. The granules, which have different morphological features in each gland, could be responsible for important differential functions such as producing a sexual attractant, providing a coating material that protects eggs laid on the ground, and contributing to a fluid that digests spermatophores. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号