首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interdemic selection by the differential migration of individuals out from demes of high fitness and into demes of low fitness (Phase III) is one of the most controversial aspects of Wright's Shifting Balance Theory. I derive a relationship between Phase III migration and the interdemic selection differential, S, and show its potential effect on FST. The relationship reveals a diversifying effect of interdemic selection by Phase III migration on the genetic structure of a metapopulation. Using experimental metapopulations, I explored the effect of Phase III migration on FST by comparing the genetic variance among demes for two different patterns of migration: (1) island model migration and (2) Wright's Phase III migration. Although mean migration rates were the same, I found that the variance among demes in migration rate was significantly higher with Phase III than with island model migration. As a result, FST for the frequency of a neutral marker locus was higher with Phase III than it was with island model migration. By increasing FST, Phase III enhanced the genetic differentiation among demes for traits not subject to interdemic selection. This feature makes Wright's process different from individual selection which, by reducing effective population size, decreases the genetic variance within demes for all other traits. I discussed this finding in relation to the efficacy of Phase III and random migration for effecting peak shifts, and the contribution of genes with indirect effects to among‐deme variation.  相似文献   

2.
Using demes from experimental metapopulations of the flour beetle, Tribolium castaneum, we investigated phase 3 of Wright's shifting balance process. Using parent demes of high, intermediate, and low mean fitness, we experimentally modeled migration of varying amounts from demes of high mean fitness into demes of lower mean fitness (like phase 3) as well as the reciprocal (the opposite of phase 3). In natural populations, some migration among demes occurs independently of deme fitness. In this case, demes of high mean fitness are likely to receive migrants from demes of lower mean fitness; these effects might limit the effectiveness of phase 3 but have not been studied experimentally. We estimated the populational heritability of mean fitness by the regression of offspring deme means on the weighted parental means and found moderate levels of demic heritability one (0.641-0.690) and two (0.518-0.552) generations after migration. We discuss our findings in relation to the role of interdemic migration in "adaptive peak shifts" in metapopulations and the controversies over group selection and the units of inheritance.  相似文献   

3.
Gene genealogies in a metapopulation   总被引:1,自引:0,他引:1  
Wakeley J  Aliacar N 《Genetics》2001,159(2):893-905
A simple genealogical process is found for samples from a metapopulation, which is a population that is subdivided into a large number of demes, each of which is subject to extinction and recolonization and receives migrants from other demes. As in the migration-only models studied previously, the genealogy of any sample includes two phases: a brief sample-size adjustment followed by a coalescent process that dominates the history. This result will hold for metapopulations that are composed of a large number of demes. It is robust to the details of population structure, as long as the number of possible source demes of migrants and colonists for each deme is large. Analytic predictions about levels of genetic variation are possible, and results for average numbers of pairwise differences within and between demes are given. Further analysis of the expected number of segregating sites in a sample from a single deme illustrates some previously known differences between migration and extinction/recolonization. The ancestral process is also amenable to computer simulation. Simulation results show that migration and extinction/recolonization have very different effects on the site-frequency distribution in a sample from a single deme. Migration can cause a U-shaped site-frequency distribution, which is qualitatively similar to the pattern reported recently for positive selection. Extinction and recolonization, in contrast, can produce a mode in the site-frequency distribution at intermediate frequencies, even in a sample from a single deme.  相似文献   

4.
A common conclusion in several recent publications devoted to the deterministic analysis of the third phase of Wright's shifting-balance theory is that under reasonable conditions phase three should proceed easily. I argue that the mathematical equations analyzed in these papers do not correspond to the biological situation they were meant to describe. I present a more appropriate study of the third phase of the shifting balance. My results show that the third phase can proceed only under much more restricted conditions than the previous studies suggested. Migration should be neither too strong not too weak relative to selection. The higher peak should be sufficiently dominant over the lower peak. Recombination can greatly reduce the plausibility of this phase or completely preclude peak shifts. A very important determinant of the ultimate outcome of the competition between different peaks is the topological structure of the network of demes. Peak shifts in two-dimensional networks of demes are more difficult than in one-dimensional networks. Phase three can be accomplished easiest if it is initiated in one of the peripheral demes.  相似文献   

5.
A diffusion approximation is obtained for the frequency of a selected allele in a population comprised of many subpopulations or demes. The form of the diffusion is equivalent to that for an unstructured population, except that it occurs on a longer time scale when migration among demes is restricted. This many-demes diffusion limit relies on the collection of demes always being in statistical equilibrium with respect to migration and drift for a given allele frequency in the total population. Selection is assumed to be weak, in inverse proportion to the number of demes, and the results hold for any deme sizes and migration rates greater than zero. The distribution of allele frequencies among demes is also described.  相似文献   

6.
Extranuclear differentiation and gene flow in the finite island model   总被引:15,自引:8,他引:7       下载免费PDF全文
Takahata N  Palumbi SR 《Genetics》1985,109(2):441-457
Use of sequence information from extranuclear genomes to examine deme structure in natural populations has been hampered by lack of clear linkage between sequence relatedness and rates of mutation and migration among demes. Here, we approach this problem in two complementary ways. First, we develop a model of extranuclear genomes in a population divided into a finite number of demes. Sex-dependent migration, neutral mutation, unequal genetic contribution of separate sexes and random genetic drift in each deme are incorporated for generality. From this model, we derive the relationship between gene identity probabilities (between and within demes) and migration rate, mutation rate and effective deme size. Second, we show how within- and between-deme identity probabilities may be calculated from restriction maps of mitochondrial (mt) DNA. These results, when coupled with our results on gene flow and genetic differentiation, allow estimation of relative interdeme gene flow when deme sizes are constant and genetic variants are selectively neutral. We illustrate use of our results by reanalyzing published data on mtDNA in mouse populations from around the world and show that their geographic differentiation is consistent with an island model of deme structure.  相似文献   

7.
The effect of population structure on the probability of fixation of a newly introduced mutant under weak selection is studied using a coalescent approach. Wright's island model in a framework of a finite number of demes is assumed and two selection regimes are considered: a beneficial allele model and a linear game among offspring. A first-order approximation of the fixation probability for a single mutant with respect to the intensity of selection is deduced. The approximation requires the calculation of expected coalescence times, under neutrality, for lineages starting from two or three sampled individuals. The results are obtained in a general setting without assumptions on the number of demes, the deme size or the migration rate, which allows for simultaneous coalescence or migration events in the genealogy of the sampled individuals. Comparisons are made with limit cases as the deme size or the number of demes goes to infinity or the migration rate goes to zero for which a diffusion approximation approach is possible. Conditions for selection to favor a mutant strategy replacing a resident strategy in the context of a linear game in a finite island population are addressed.  相似文献   

8.
A simple genealogical structure is found for a general finite island model of population subdivision. The model allows for variation in the sizes of demes, in contributions to the migrant pool, and in the fraction of each deme that is replaced by migrants every generation. The ancestry of a sample of non-recombining DNA sequences has a simple structure when the sample size is much smaller than the total number of demes in the population. This allows an expression for the probability distribution of the number of segregating sites in the sample to be derived under the infinite-sites mutation model. It also yields easily computed estimators of the migration parameter for each deme in a multi-deme sample. The genealogical process is such that the lineages ancestral to the sample tend to accumulate in demes with low migration rates and/or which contribute disproportionately to the migrant pool. In addition, common ancestor or coalescent events tend to occur in demes of small size. This provides a framework for understanding the determinants of the effective size of the population, and leads to an expression for the probability that the root of a genealogy occurs in a particular geographic region, or among a particular set of demes.  相似文献   

9.
In a metapopulation, the process of recurrent local extinction and recolonization gives rise to an age structure among demes. Recently established demes will tend to differ from older demes in terms of the levels of genetic diversity found within them and the way this diversity is distributed among demes in the same and different ages. The effects of population turnover on average levels of genetic diversity among demes in a metapopulation have been the focus of much attention, both for neutral and nonneutral loci, but much less is known about the distribution of nonneutral genetic diversity among demes of different ages. In this paper, we used computer simulations to study the distribution of genetic load, inbreeding depression and heterosis in an age‐structured metapopulation. We found that, for mildly deleterious mutations, within‐deme inbreeding depression increased, whereas heterosis and genetic load decreased with deme age following severe colonization bottlenecks. In contrast, recessive lethal alleles tended to be purged during colonization, with older populations showing higher genetic load and higher within‐deme inbreeding depression. Heterosis caused by recessive lethal alleles and resulting from gene flow among different demes tended to be greatest for young demes, because the mutations responsible tended to be purged in the first few generations after colonization, but its effects increased again as populations grow older as a result of immigration. Our results point to a need for estimates of genetic diversity, genetic load, within‐deme inbreeding depression and heterosis in demes of different age classes separately.  相似文献   

10.
A. population structure favorable to the evolution of an altruistic trait is studied by Monte Carlo simulation. The model is based on a small-scale nonindustrial human society but seems generalizable to other highly social mammals. Three hierarchical levels are recognized: 1) the ecologically isolated local group (hamlet) which may be composed of kin and/or unrelated individuals; 2) the deme (settlement) comprising several such groups which interbreed; and 3) the set of demes (metapopulation) among which gene flow occurs. The first two levels of the model are based on D. S. Wilson's structured deme concept; the third allows for gene flow among demes in the metapopulation and for the structured diffusion of alleles across a wider area than might be included within the scope of a single deme. The simulation models genetic drift by a process of hamlet formation which may be random, or variously kin-structured. Hamlets may then become extinct based on a probability function of their gene frequencies. Individual selection within settlements is modeled deterministically, and gene flow among settlements is modeled as two-dimensional steppingstone migration of random or kin-structured groups. Results of the simulations show that, with realistic values for group sizes, moderate extinction rate, and high rates of migration (m > 27%), disadvantageous alleles (s = 10% and 25%) may increase markedly due to differential hamlet extinction over the course of 50 generations. The greater the degree of kin-structuring of founder groups, the higher the variance among hamlets and the faster the rate of increase of the allele for altruism. Nonetheless, even in some randomly founded groups, a clear increase in the altruism gene frequency occurred. It is also notable that kin-structured group selection by hamlet extinction may be effective when the initial frequency of altruism genes is very low (average of one per deme) and among a relatively small number of demes (25). Thus the process of group extinction in a hierarchically structured population allows rapid increase of an allele for altruism under plausible demographic conditions.  相似文献   

11.
The t-lethal haplotypes (t) found in house mouse (Mus musculus) populations are recessive lethals favored by gametic selection whereby male heterozygotes exhibit a non-Mendelian transmission ratio of about 95% t. The expected equilibrium frequency is 0.385; however, empirical values are lower, averaging close to 0.13. We examined the hypothesis that interdemic selection is the cause of the low empirical values by using a deme-structured simulation model that included overlapping generations, a realistic breeding system, differential deme productivity, and a large total population. We found that under some conditions interdemic selection could lower t frequency below 0.13 in the face of immigration rates up to 5%. Low frequencies were correlated with effective deme size (ne), regardless of whether ne was changed through changing deme size (n) or through changing the proportion of breeding adults. Earlier workers showed how the first two phases of interdemic selection (random genetic differentiation and mass selection) interacted to reduce the haplotype frequency, but here we show the importance of the third phase (differential productivity of demes) once demes are linked by dispersal. The effect of this phase is not due to the (negative) covariation between deme productivity and haplotype frequency, but occurs when differential deme productivity generates a difference in t frequency between the population of juveniles recruited into their natal deme and the population of juvenile dispersers. This difference was maximized when the average productivity of demes was low, either because few adult females bred at any one time and/or because fecundity was low. Contrary to an earlier prediction, male-biased dispersal also reduced haplotype frequency, and this probably stems from the relative excess of wild-type genotypes among dispersers compared to the deme residents. Another unexpected finding was that the randomly generated excess of heterozygotes (FIS < 0) found in small demes favored t haplotypes; however, the effect was only seen when the more powerful influence of the third phase of interdemic selection was removed. Simulations of neutral polymorphisms showed that a deme structure giving FST ≤ 0.6 is inconsistent with a haplotype frequency below 0.13. Based on current empirical estimates of FST (about 0.2), we concluded that immigration rates in the field are too high for interdemic selection alone to cause the observed deficit of lethal haplotypes. One factor that could combine with population structure effects is the observation that the transmission ratio is lowered to around 0.6 in litters produced from postpartum estrus (PPE). Incorporating this factor, we showed that interdemic selection could be effective in lowering the frequency of t below 0.13 when FST was above 0.43 even when migration rates were up to 10%. These results suggest that if empirical haplotype and FST estimates are accurate, then additional factors such as a lowered fitness of heterozygotes may be involved.  相似文献   

12.
The "infinite sites" model in the absence of recombination is examined in a subdivided population in which there is arbitrary migration among demes. It is shown that, if the migration matrix is symmetric and irreducible, the average number of sites that differ in two alleles chosen from the same deme depends only on an effective size of the whole population and not on either the elements of the migration matrix or the size of each deme separately. If there are n demes all of size N, the average number of sites that differ in two alleles chosen from the same deme is 4nN mu, where mu is the average mutation rate per site. This is the same value as for two alleles drawn from a panmictic population of size nN. The average number of sites that differ in alleles drawn from the same and from different demes can provide some information about the degree of population subdivision, as is illustrated by using the data of Kreitman and Aquadé (1986, Proc. Nat. Acad. Sci. U.S.A., 83, 3562) on Drosophila melanogaster.  相似文献   

13.
F(st) in a Hierarchical Island Model   总被引:1,自引:0,他引:1       下载免费PDF全文
M. Slatkin  L. Voelm 《Genetics》1991,127(3):627-629
It is shown that in a hierarchical island model, in which demes within a neighborhood exchange migrants at a much higher rate than do demes in different neighborhoods, hierarchical F statistics introduced by S. Wright can indicate the extent of gene flow within and between neighborhoods. At equilibrium, the within-neighborhood inbreeding coefficient, FSN, is approximately 1/(1 + 4Nm1) where N is the deme size and m1 is the migration rate among demes in the same neighborhood. The between-neighborhood inbreeding coefficient, FNT, is approximately 1/(1 + 4Ndm2) where d is the number of demes in a neighborhood and m2 is the migration rate among demes in different neighborhoods.  相似文献   

14.
Nonequilibrium migration in human history   总被引:1,自引:0,他引:1  
Wakeley J 《Genetics》1999,153(4):1863-1871
A nonequilibrium migration model is proposed and applied to genetic data from humans. The model assumes symmetric migration among all possible pairs of demes and that the number of demes is large. With these assumptions it is straightforward to allow for changes in demography, and here a single abrupt change is considered. Under the model this change is identical to a change in the ancestral effective population size and might be caused by changes in deme size, in the number of demes, or in the migration rate. Expressions for the expected numbers of sites segregating at particular frequencies in a multideme sample are derived. A maximum-likelihood analysis of independent polymorphic restriction sites in humans reveals a decrease in effective size. This is consistent with a change in the rates of migration among human subpopulations from ancient low levels to present high ones.  相似文献   

15.
For two genotypes that have the same mean number of offspring but differ in the variance in offspring number, naturalselection will favor the genotype with lower variance. In such cases, the average growth rate is not sufficient as a measure of fitness or as a predictor of fixation probability. However, the effect of variance in offspring number on the fixationprobability of mutant strategies has been calculated under several scenarios with the general conclusion that variance in offspring number reduces fitness in proportion to the inverse of the population size [Gillespie, J., Genetics 76:601–606, 1974; Proulx, S.R., Theor. Popul. Biol. 58:33–47, 2000]. This relationship becomes more complicated under a metapopulation scenario where the “effective” population size depends on migration rate, population structure, and lifecycle. It is shown that in a life cycle where reproduction and migration (the birth-migration-regulation life cycle, or BMR)occur prior to density regulation within every deme, the fitness of a strategy depends on migration rate. When migration rates are near zero, the fitness of the strategy is determined by the size of individual demes, so that the strategy favoredin small populations tends to be fixed. As migration rate increases and approaches panmixis between demes, the fitness ofa reproductive strategy approaches what its value would be in a single, panmictic deme with a population size correspondingtothe census size of the metapopulation. Interestingly, when the life cycle is characterized by having density regulation in each deme prior to migration (the BRM life cycle) the fixation probability of a strategy is independent of migration rate. These results are found to be qualitatively consistent with the individual-based simulation results in Shpak [Theor. Biosci.124:65–85, 2005]. An erratum to this article can be found at  相似文献   

16.
The potential of maintaining multilocus polymorphism by migration-selection balance is studied. A large population of diploid individuals is distributed over finitely many demes connected by migration. Generations are discrete and nonoverlapping, selection may vary across demes, and loci are multiallelic. It is shown that if migration and recombination are strong relative to selection, then with weak or no epistasis and intermediate dominance at every locus and in every deme, arbitrarily many alleles can be maintained at arbitrarily many loci at a stable equilibrium. If migration is weak relative to selection and recombination, then with weak or no epistasis and intermediate dominance at every locus and in every deme, as many alleles as there are demes can be maintained at arbitrarily many loci at equilibrium. In both cases open sets of such parameter combinations are constructed, thus the results are robust with respect to small, but arbitrary, perturbations in the parameters. For weak migration, the number of demes is, in fact, a generic upper bound to the number of alleles that can be maintained at any locus. Thus, several scenarios are identified under which multilocus polymorphism can be maintained by migration-selection balance when this is impossible in a panmictic population.   相似文献   

17.
We study the ancestral recombination graph for a pair of sites in a geographically structured population. In particular, we consider the limiting behavior of the graph, under Wrights island model, as the number of subpopulations, or demes, goes to infinity. After an instantaneous sample-size adjustment, the graph becomes identical to the two-locus graph in an unstructured population, but with a time scale that depends on the migration rate and the deme size. Interestingly, when migration is gametic, this rescaling of time increases the population mutation rate but does not affect the population recombination rate. We compare this to the case of a partially-selfing population, in which both mutation and recombination depend on the selfing rate. Our result for gametic migration holds both for finite-sized demes, and in the limit as the deme size goes to infinity. However, when migration occurs during the diploid phase of the life cycle and demes are finite in size, the population recombination rate does depend on the migration rate, in a way that is reminiscent of partial selfing. Simulations imply that convergence to a rescaled panmictic ancestral recombination graph occurs for any number of sites as the number of demes approaches infinity.Send offprint request to: Sabin LessardS. Lessard was supported by grants from the Natural Sciences and Research Council of Canada, the Fonds Québécois de la Recherche sur la Nature et les Technologies, and the Université de Montréal.J. Wakeley was supported by a Career Award (DEB-0133760) and by a grant (DEB-9815367) from the National Science Foundation.  相似文献   

18.
Wakeley J  Lessard S 《Genetics》2003,164(3):1043-1053
We develop predictions for the correlation of heterozygosity and for linkage disequilibrium between two loci using a simple model of population structure that includes migration among local populations, or demes. We compare the results for a sample of size two from the same deme (a single-deme sample) to those for a sample of size two from two different demes (a scattered sample). The correlation in heterozygosity for a scattered sample is surprisingly insensitive to both the migration rate and the number of demes. In contrast, the correlation in heterozygosity for a single-deme sample is sensitive to both, and the effect of an increase in the number of demes is qualitatively similar to that of a decrease in the migration rate: both increase the correlation in heterozygosity. These same conclusions hold for a commonly used measure of linkage disequilibrium (r(2)). We compare the predictions of the theory to genomic data from humans and show that subdivision might account for a substantial portion of the genetic associations observed within the human genome, even though migration rates among local populations of humans are relatively large. Because correlations due to subdivision rather than to physical linkage can be large even in a single-deme sample, then if long-term migration has been important in shaping patterns of human polymorphism, the common practice of disease mapping using linkage disequilibrium in "isolated" local populations may be subject to error.  相似文献   

19.
We consider evolutionary game dynamics in a finite population subdivided into two demes with both unequal deme sizes and different migration rates. Assuming viability differences in the population according to a linear game within each deme as a result of pairwise interactions, we specify conditions for weak selection favoring a mutant strategy to go to fixation, under the structured-coalescent assumptions, and their connections with evolutionary stability concepts. In the framework of the Iterated Prisoner's Dilemma with strategy ‘tit-for-tat’ as mutant strategy and ‘always defect’ as resident strategy, we deduce a condition under which the emergence of cooperation is favored by selection, when the game matrix is the same in both demes. We show how this condition extends the one-third law for a panmictic population and when an asymmetry in the spatial structure of a two-deme population facilitates the emergence of the cooperative tit-for-tat strategy in comparison with both its symmetric and panmictic population structure counterparts. We find that the condition is less stringent in the asymmetric scenario versus the symmetric scenario if both the fraction of the population in the deme where the mutant was initially introduced, and the expected proportion of migrant offspring in this deme among all migrant offspring after population regulation, are smaller than, or equal to, , provided they are not too small. On the other hand, the condition is less stringent than the one-third law, which holds in the panmictic case, if the latter proportion remains not too close to 1.  相似文献   

20.
In cyclic populations, high genetic diversity is currently reported despite the periodic low numbers experienced by the populations during the low phases. Here, we report spatio-temporal monitoring at a very fine scale of cyclic populations of the fossorial water vole (Arvicola terrestris) during the increasing density phase. This phase marks the transition from a patchy structure (demes) during low density to a continuous population in high density. We found that the genetic diversity was effectively high but also that it displayed a local increase within demes over the increasing phase. The genetic diversity remained relatively constant when considering all demes together. The increase in vole abundance was also correlated with a decrease of genetic differentiation among demes. Such results suggest that at the end of the low phase, demes are affected by genetic drift as the result of being small and geographically isolated. This leads to a loss of local genetic diversity and a spatial differentiation among demes. This situation is counterbalanced during the increasing phase by the spatial expansion of demes and the increase of the effective migration among differentiated demes. We provide evidences that in cyclic populations of the fossorial water voles, the relative influence of drift operating during low density populations and migration occurring principally while population size increases interacts closely to maintain high genetic diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号