首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hamilton''s rule is a central theorem of inclusive fitness (kin selection) theory and predicts that social behaviour evolves under specific combinations of relatedness, benefit and cost. This review provides evidence for Hamilton''s rule by presenting novel syntheses of results from two kinds of study in diverse taxa, including cooperatively breeding birds and mammals and eusocial insects. These are, first, studies that empirically parametrize Hamilton''s rule in natural populations and, second, comparative phylogenetic analyses of the genetic, life-history and ecological correlates of sociality. Studies parametrizing Hamilton''s rule are not rare and demonstrate quantitatively that (i) altruism (net loss of direct fitness) occurs even when sociality is facultative, (ii) in most cases, altruism is under positive selection via indirect fitness benefits that exceed direct fitness costs and (iii) social behaviour commonly generates indirect benefits by enhancing the productivity or survivorship of kin. Comparative phylogenetic analyses show that cooperative breeding and eusociality are promoted by (i) high relatedness and monogamy and, potentially, by (ii) life-history factors facilitating family structure and high benefits of helping and (iii) ecological factors generating low costs of social behaviour. Overall, the focal studies strongly confirm the predictions of Hamilton''s rule regarding conditions for social evolution and their causes.  相似文献   

2.
Inclusive fitness theory provides the conceptual framework for our current understanding of social evolution, and empirical studies suggest that kin selection is a critical process in the evolution of animal sociality. A key prediction of inclusive fitness theory is that altruistic behaviour evolves when the costs incurred by an altruist (c) are outweighed by the benefit to the recipient (b), weighted by the relatedness of altruist to recipient (r), i.e. Hamilton''s rule rb > c. Despite its central importance in social evolution theory, there have been relatively few empirical tests of Hamilton''s rule, and hardly any among cooperatively breeding vertebrates, leading some authors to question its utility. Here, we use data from a long-term study of cooperatively breeding long-tailed tits Aegithalos caudatus to examine whether helping behaviour satisfies Hamilton''s condition for the evolution of altruism. We show that helpers are altruistic because they incur survival costs through the provision of alloparental care for offspring. However, they also accrue substantial benefits through increased survival of related breeders and offspring, and despite the low average relatedness of helpers to recipients, these benefits of helping outweigh the costs incurred. We conclude that Hamilton''s rule for the evolution of altruistic helping behaviour is satisfied in this species.  相似文献   

3.
Long life is a typical feature of individuals living in cooperative societies. One explanation is that group living lowers mortality, which selects for longer life. Alternatively, long life may make the evolution of cooperation more likely by ensuring a long breeding tenure, making helping behaviour and queuing for breeding positions worthwhile. The benefit of queuing will, however, depend on whether individuals gain indirect fitness benefits while helping, which is determined by female promiscuity. Where promiscuity is high and therefore the indirect fitness benefits of helping are low, cooperation can still be favoured by an even longer life span. We present the results of comparative analyses designed to test the likelihood of a causal relationship between longevity and cooperative breeding by reconstructing ancestral states of cooperative breeding across birds, and by examining the effect of female promiscuity on the relationship between these two traits. We found that long life makes the evolution of cooperation more likely and that promiscuous cooperative species are exceptionally long lived. These results make sense of promiscuity in cooperative breeders and clarify the importance of life-history traits in the evolution of cooperative breeding, illustrating that cooperation can evolve via the combination of indirect and direct fitness benefits.  相似文献   

4.
When helping behaviour is costly, Hamiltonian logic implies that animals need to direct helpful acts towards kin, so that indirect fitness benefits justify the costs. We revisit inferences about nepotism and aggression in Hamilton''s 1964 paper to argue that he overestimated the general significance of nepotism, but that other issues that he raised continue to suggest novel research agendas today. We now know that nepotism in eusocial insects is rare, because variation in genetic recognition cues is insufficient. A lower proportion of individuals breeding and larger clutch sizes selecting for a more uniform colony odour may explain this. Irreversible worker sterility can induce both the fiercest possible aggression and the highest likelihood of helping random distant kin, but these Hamiltonian contentions still await large-scale testing in social animals.  相似文献   

5.
Darwin suggested that the discovery of altruism between species would annihilate his theory of natural selection. However, it has not been formally shown whether between‐species altruism can evolve by natural selection, or why this could never happen. Here, we develop a spatial population genetic model of two interacting species, showing that indiscriminate between species helping can be favoured by natural selection. We then ask if this helping behaviour constitutes altruism between species, using a linear‐regression analysis to separate the total action of natural selection into its direct and indirect (kin selected) components. We show that our model can be interpreted in two ways, as either altruism within species, or altruism between species. This ambiguity arises depending on whether or not we treat genes in the other species as predictors of an individual's fitness, which is equivalent to treating these individuals as agents (actors or recipients). Our formal analysis, which focuses upon evolutionary dynamics rather than agents and their agendas, cannot resolve which is the better approach. Nonetheless, because a within‐species altruism interpretation is always possible, our analysis supports Darwin's suggestion that natural selection does not favour traits that provide benefits exclusively to individuals of other species.  相似文献   

6.
Numerous studies have tested for indirect selection on female extra-pair reproduction (EPR) by quantifying whether extra-pair young (EPY) are fitter than their within-pair young (WPY) maternal half-siblings. In contrast, the hypothesis that offspring of EPY and WPY (rather than the EPY and WPY themselves) differ in fitness has not been tested, even though inter-generational effects of parental extra-pair status on offspring fitness could alter the magnitude and direction of indirect selection on EPR. We tested whether offspring of EPY song sparrows, Melospiza melodia, were more likely to recruit or produce hatched or recruited offspring over their lifetimes than offspring of WPY. Hatchlings with one or two EPY parents were more likely to recruit and produce hatched offspring than hatchlings with two WPY parents. Furthermore, these relationships differed between maternal versus paternal extra-pair status. Hatchlings with EPY fathers were more likely to recruit and produce offspring than hatchlings with WPY fathers. In contrast, hatchlings with EPY mothers were as likely to recruit as hatchlings with WPY mothers and tended to be less likely to produce recruited offspring. Depending on the causal genetic and environmental mechanisms, such conflicting inter-generational relationships between parental extra-pair status and offspring fitness could substantially influence the evolutionary dynamics of EPR.  相似文献   

7.
In cooperatively breeding species, extended living in natal families after maturity is often associated with limited breeding possibilities and the ability to gain indirect fitness from helping relatives, with family dynamics, such as parental presence and relatedness between family members, playing a key role in determining the timing of own reproduction. How family dynamics affect marriage and the onset of reproduction in humans is complex and less well-understood. While paternal absence can be associated with both earlier puberty and reproductive behaviour, or with delayed reproduction if marriage requires parental resources, in step-parent families, half-siblings could further decrease the benefits from helping and delaying own reproduction compared to families with only full-siblings. Such costs and benefits are likely age-dependent, but have not been addressed in previous studies. Using data from pre-industrial agrarian Finland, we investigated if parental loss and remarriage affected marriage probabilities of their differently-aged sons and daughters. We found that parental composition had divergent effects across adulthood: loss of a parent resulted in a higher probability to marry in early adulthood, whereas parental presence increased later adulthood marriage probability. Whilst the death of either parent was linked to an overall lowered marriage probability, remarriage of the widowed parent, especially mother, could mitigate this effect somewhat. Additionally, the presence of underage full-siblings lowered marriage probability, suggesting postponement of one's own reproduction in favour of helping parental reproduction. Overall, our results support the idea that humans are cooperative breeders, and show the importance of considering both relatedness and age when investigating family dynamics.  相似文献   

8.
Empirical data suggest that low levels of promiscuity have played a key role in the evolution of cooperative breeding and eusociality. However, from a theoretical perspective, low levels of promiscuity can favour dispersal away from the natal patch, and have been argued to select against cooperation in a way that cannot be explained by inclusive fitness theory. Here, we use an inclusive fitness approach to model selection to stay and help in a simple patch-structured population, with strict density dependence, where helping increases the survival of the breeder on the patch. Our model predicts that the level of promiscuity has either no influence or a slightly positive influence on selection for helping. This prediction is driven by the fact that, in our model, staying to help leads to increased competition between relatives for the breeding position-when promiscuity is low (and relatedness is high), the best way to aid relatives is by dispersing to avoid competing with them. Furthermore, we found the same results with an individual-based simulation, showing that this is not an area where inclusive fitness theory 'gets it wrong'. We suggest that our predicted influence of promiscuity is sensitive to biological assumptions, and that if a possibly more biologically relevant scenario were examined, where helping provided fecundity benefits and there was not strict density dependence, then low levels of promiscuity would favour helping, as has been observed empirically.  相似文献   

9.
A multitude of factors may determine reproductive skew among cooperative breeders. One explanation, derived from inclusive fitness theory, is that groups can partition reproduction such that subordinates do at least as well as noncooperative solitary individuals. The majority of recent data, however, fails to support this prediction; possibly because inclusive fitness models cannot easily incorporate multiple factors simultaneously to predict skew. Notable omissions are antagonistic selection (across generations, genes will be in both dominant and subordinate bodies), constraints on the number of sites suitable for successful reproduction, choice in which group an individual might join, and within‐group control or suppression of competition. All of these factors and more are explored through agent‐based evolutionary simulations. The results suggest the primary drivers for the initial evolution of cooperative breeding may be a combination of limited suitable sites, choice across those sites, and parental manipulation of offspring into helping roles. Antagonistic selection may be important when subordinates are more frequent than dominants. Kinship matters, but its main effect may be in offspring being available for manipulation while unrelated individuals are not. The greater flexibility of evolutionary simulations allows the incorporation of species‐specific life histories and ecological constraints to better predict sociobiology.  相似文献   

10.
Objective: To examine the relationship between children's overweight status and other cardiovascular risk fitness factors and academic performance among fifth‐grade students. Research Methods and Procedures: Using a sample of 968 fifth‐grade students (50.7% boys; mean age = 10.6 years), children's cardiovascular risks (BMI, blood pressure, acanthosis nigricans) and fitness measures were compared with their mean group performance scores across four subscales (mathematics, reading/language arts, science, and social studies) of a statewide standardized academic performance test. Results: Of this sample, 39% were either at risk for being overweight or were already overweight; slightly over one half were of normal weight. Initial findings revealed a significant relationship between children's weight category and their reading/language arts, mathematics, and science test scores even after controlling for a proxy of socioeconomic status. When additional cardiovascular risk and fitness measures were included in the model, however, children's BMI status had no association. Instead, a composite fitness index, children's blood pressure, sex, and proxy of socioeconomic status were significantly associated with children's academic test scores. Discussion: This study expanded our understanding of the connection between children's overweight risks and academic performance by examining the impact of other cardiovascular risk factors such as high blood pressure and measures of fitness. These findings support the development and implementation of childhood cardiovascular risk surveillance programs that evaluate not only children's overweight risks but also their fitness, risk for type 2 diabetes, and/or high blood pressure by showing a relationship between some of these risks and children's academic test performance.  相似文献   

11.
The social organization of cooperatively breeding species is extremely variable, with diverse social group composition and patterns of relatedness. Species that exhibit alternative routes to helping within the same population are potentially useful systems to investigate the causes and fitness consequences of diverse evolutionary pathways to cooperative behaviour. In this study, we use microsatellite markers and field observations to describe helping behaviour and patterns of relatedness in the unusual cooperative breeding system of the rifleman Acanthisitta chloris. First, we show that rifleman helpers consist of a remarkably diverse demographic, including males and females, who may be adult or juvenile, failed breeders or nonbreeders, or even successful breeders that simultaneously feed their own brood. Adult helpers mostly helped at first‐brood nests, while first‐brood juveniles assisted their parents at second broods. Second, we show that rifleman pairs are strictly sexually monogamous, and helpers did not gain any current reproductive success through helping. Third, genotyping showed that contrary to previous assumptions, helpers were closely related to the recipients of their care and preferentially directed care towards relatives over contemporaneous nests of nonrelatives. Finally, we show that variation in helper provisioning effort was attributed to age: juvenile helpers provisioned less than adults and were less responsive to the demands of a growing brood. Overall, our results show that the diverse routes to helping in this unusual species are driven by the common theme of kinship between helper and recipients, resulting in a previously underestimated potential for helpers to gain indirect fitness benefits.  相似文献   

12.

Background

Conditions during an individual''s rearing period can have far reaching consequences for its survival and reproduction later in life. Conditions typically vary due to variation in parental quality and/or the environment, but in cooperative breeders the presence of helpers adds an important component to this. Determining the causal effect of helpers on offspring fitness is difficult, since high-quality breeders or territories are likely to produce high-quality offspring, but are also more likely to have helpers because of past reproductive success. This problem is best resolved by comparing the effect of both helping and non-helping subordinates on offspring fitness, however species in which both type of subordinates commonly occur are rare.

Methodology/Principal Findings

We used multi-state capture-recapture models on 20 years of data to investigate the effect of rearing conditions on survival and recruitment in the cooperatively breeding Seychelles warbler (Acrocephalus sechellensis), with both helping and non-helping subordinates. The number of helpers in the rearing territory, but not territory quality, group- or brood size, was positively associated with survival of offspring in their first year, and later in life. This was not a result of group size itself since the number of non-helpers was not associated with offspring survival. Furthermore, a nestling cross-foster experiment showed that the number of helpers on the pre-foster territory was not associated with offspring survival, indicating that offspring from territories with helpers do not differ in (genetic) quality.

Conclusions/Significance

Our results suggest that the presence of helpers not only increase survival of offspring in their first year of life, but also subsequent adult survival, and therefore have important fitness consequences later in life. This means that when calculating the fitness benefits of helping not only short-term but also the late-life benefits have to be taken into account to fully understand the evolution of cooperative breeding.  相似文献   

13.
Sex-ratio theory states that if the fitness costs to the parents of producing one offspring's sex relative to the other are higher, parents should discount these costs by producing fewer individuals of the more costly sex. In the co-operatively breeding Seychelles warbler (Acrocephalus sechellensis) mothers adaptively modify the sex of their single egg toward daughters, the helping sex, when living on territories with rich resources where helpers increase parental reproductive success, but toward sons, the dispersing sex, when living on territories where resources are scarce and/or no helping benefits accrue. By modifying offspring sex ratio, parents maximize their inclusive fitness benefits. Pairs in high-quality territories gained significantly more inclusive fitness benefits (through helping and reproducing offspring) from the production of daughters than from sons, and vice versa in low-quality territories (through reproducing offspring). Experimental manipulation of the offspring's sex shows that the consequences of sex allocation are adaptive for parents on high-quality territories. On high-quality territories with female production, breeding pairs raising step-daughters gained significantly higher inclusive benefits (through indirect and direct fitness gains) than by raising step-sons.  相似文献   

14.
In cooperatively breeding species, helping close relatives may provide important fitness benefits. However, helping can be energetically expensive and may result in increased generation of reactive oxygen species. Consequently, an oxidant/antioxidant imbalance can lead to higher oxidative stress susceptibility. Given the potential costs of helping, it may be that only individuals with a sufficiently good body condition and/or stable oxidative balance can afford to help. Knowledge about relationships between social status and oxidative balance in cooperatively breeding systems is still limited. Studying these relationships is important for understanding the costs of helping and physiological pressures of reproduction. Here we evaluate the relationship between helping behaviour, body condition and oxidative balance in a wild population of the cooperatively breeding Seychelles warbler (Acrocephalus sechellensis). In this species, some subordinate individuals help dominant birds with the rearing of young, while others refrain from any assistance. We assessed body condition and oxidative parameters of birds of different social status caught during different breeding stages. We found that, prior to breeding, female subordinates that did not subsequently help (non-helpers) had significantly lower body condition and higher ROMs (reactive oxygen metabolites) than helpers and dominants. During the later stages of breeding, body condition was low in dominants and helpers, but high in non-helpers. Differences in oxidative balance between individuals of different social status were found only during nest care: Dominant males occupied with guarding behaviours tended to have relatively high oxidative stress susceptibility. Furthermore, dominant and helper females showed elevated antioxidant capacity (measured as OXY) in the weeks just prior to egg-laying, possibly representing a change in their reproductive physiology. The results imply that an individuals' oxidative balance may be influenced by factors related to reproduction, which can differ with sex and--within cooperative breeding systems--social status.  相似文献   

15.
Parents can influence the phenotype of their offspring through various mechanisms, besides the direct effect of heredity. Such parental effects are little explored in parasitic organisms, perhaps because in many parasites, per capita investment into offspring is low. I investigated whether parental identity, beyond direct genetic effects, could explain variation in the performance of the tapeworm Schistocephalus solidus in its first intermediate host, a copepod. I first determined that two breeding worms could be separated from one another after ~48 h of in vitro incubation and that the isolated worms continued producing outcrossed eggs, that is, rates self‐fertilization did not increase after separation. Thus, from a breeding pair, two sets of genetically comparable eggs can be collected that have unambiguous parental identities. In an infection experiment, I found that the development of larval worms tended to vary between the two parental worms within breeding pairs, but infection success and growth rate in copepods did not. Accounting for this parental effect decreased the estimated heritability for development by nearly half. These results suggest that larval performance is not simply a function of a worm's genotype; who mothered or fathered an offspring can also affect offspring fitness, contradicting the perhaps naïve idea that parasites simply produce large quantities of uniformly low‐quality offspring.  相似文献   

16.
A genetic interpretation of ecologically dependent isolation   总被引:6,自引:0,他引:6  
Hybrids may suffer a reduced fitness both because they fall between ecological niches (ecologically dependent isolation) and as a result of intrinsic genetic incompatibilities between the parental genomes (ecologically independent isolation). Whereas genetic incompatibilities are common to all theories of speciation, ecologically dependent isolation is a unique prediction of the ecological model of speciation. This prediction can be tested using reciprocal transplants in which the fitness of various genotypes is evaluated in both parental habitats. Here we expand a quantitative genetic model of Lynch (1991) to include two parental environments. We ask whether a sufficient experimental design exists for detecting ecologically dependent isolation. Analysis of the model reveals that by using both backcrosses in both parental environments, environment-specific additive genetic effects can be estimated while correcting for any intrinsic genetic isolation. Environment-specific dominance effects can also be estimated by including the F1 and F2 in the reciprocal transplant. In contrast, a reciprocal transplant comparing only F1s or F2s to the parental species cannot separate ecologically dependent from intrinsic genetic isolation. Thus, a reduced fitness of F1 or F2 hybrids relative to the parental species is not sufficient to demonstrate ecological speciation. The model highlights the importance of determining the contribution of genetic and ecological mechanisms to hybrid fitness if inferences concerning speciation mechanisms are to be made.  相似文献   

17.
Helpers at the nest in the cooperative breeding system of long-tailedtits Aegithalos caudatus exhibit kin preference in their helpingbehavior. The aim of this study was to use multivariate analysesto investigate whether helpers accrue indirect fitness benefitsthrough their cooperation by increasing the productivity ofrelatives. All birds started each season breeding independentlyin pairs, but birds that failed in their own breeding attemptoften redirected their care to help another pair provision theiroffspring. About half of all broods had one or more helpers,86% of which were male. Provisioning rates increased and therewas a corresponding increase in the mass of nestlings withinbroods as the number of helpers increased. Helpers had no significantshort-term effect on productivity because nest predation, nestlingsurvival, and brood size were unaffected by the presence ofhelpers. However, in the long term helpers had a highly significanteffect on the recruitment of fledglings, the positive effectof helpers being linear within the range of helper numbers thatwe observed. We found no evidence to suggest that these resultswere confounded by the effects of individual or habitat quality.We conclude that long-tailed tits accrue indirect fitness benefitsby helping kin. Nevertheless, the inclusive fitness benefitfrom helping is substantially lower than that of independentbreeding, showing that helpers are making the best of a badjob.  相似文献   

18.
Helping at the nest in birds is often termed altruism. However, so far, no study has ever demonstrated high costs to a helper's own lifetime reproductive success (=direct fitness), nor its compensation through benefits from relatives other than its own offspring (=indirect fitness). In this paper on pied kingfishers (Ceryle rudis) the relationship between investment, relatedness and inclusive fitness (expressed in terms of genetic equivalents) is investigated for breeding males, and males that help either relatives (=primary helpers) or strangers (=secondary helpers). With respect to guarding nests against predators and feeding young, primary helpers invest as much as breeders, but secondary helpers contribute significantly less. These differences in status and investment (measured in energy expenditure) affect the birds' future to such an extent that primary helpers have a lower chance of surviving and mating than secondary helpers. However, their costs in direct fitness are compensated by pronounced benefits to indirect fitness, resulting from improved survival of siblings and parents. An attempt is made to calculate the inclusive fitness of birds following different strategies over a 2-year period. It is concluded that (a) breeding is superior to helping and helping superior to doing nothing and (b) that kin-selection must be invoked to explain why surplus males choose the more costly primary helper strategy instead of the cheaper secondary helper strategy. Alternative explanations, including group selection, parental manipulation and reciprocity, are discussed.  相似文献   

19.
We used a reproductive skew framework to consider the evolutionof parental and alloparental effort in cooperatively breedinggroups. The model provides the first theoretical treatmentof rent payment (the "pay-to-stay" hypothesis) for the evolutionof helping behavior of subordinates. According to this hypothesis,not all helping behavior is kin selected, but group membershelp in order to be allowed to stay in the group and potentiallygain breeding positions later in life. We show that reproductiveconcessions may be replaced by complete skew and voluntary,costly alloparental effort by subordinates once future prospectsare included in fitness calculations. This suggests that incompleteskew observed in long-lived species is not due to dominantcontrol over reproduction. Rent payment is predicted to occurwhen relatedness between subordinate and dominant is low, survivalis high, ecological constraints are at least moderately tight,and retaining nonhelping subordinates harms the dominant'sfitness. Rent may also be required from related subordinatesif helping is very costly (leading to low voluntary helpingeffort) and ecological constraints are moderately tight. However, related subordinates do not need to have a positive net effecton the dominant's direct fitness to be accepted as group members.We also consider compensatory responses of dominant group membersas a potential threat to the stability of renting behavior.If dominants trade off parental effort against their own survival,they may selfishly reduce their own parental effort as a responseto increased help. As this improves their own survival, theprospects of territorial inheritance diminish for the subordinate,and subordinates should hence be less willing to accept therent agreement. However, we show that compensatory responsesby "lazy" parents prevent group formation only in borderlinecases.  相似文献   

20.
Whereas in constant environments parental survival has no effect on optimal clutch size in the absence of trade-offs between juvenile and parental survival, the situation is drastically different in fluctuating environments. We consider a model in which, with respect to reproduction, parents and offspring are equivalent at the start of the next breeding season. When generations are non-overlapping, the clutch size maximizing geometric mean surviving number of offspring is optimal among all pure clutch size strategies. We prove that, as parental survival increases relative to that of the offspring, the optimal clutch size converges to the arithmetic mean maximizing clutch size (the so-called ‘Lack clutch size’). We also give a numerical procedure for calculating optimal mixed strategies and we show that, as environmental variance increases and/or parental survival decreases, mixed rather than pure strategies become optimal. Furthermore, we explain how to estimate fitness from empirical data under the assumptions of our model. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号