首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hair cell orientations of all inner ear sensory epithelia in glass eel, yellow eel and silver eel are presented. The patterns of hair cell orientation do not change with age. All sensory epithelia increase in area during growth of the eel. Examination of the hair cell population in macula utriculi show constant hair cell densities and increased hair cell population during development. Further, regional differences in hair cell densities and hair cell types are observed. The hair cells/axons ratio increases 3-fold from glass eel to silver eel stadium. Nerve stainings in silver eel reveal complex innervation patterns with large stubby fibres confined to restricted regions. Histograms of nerve fiber diameters show marked differences from glass eel to silver eel. Growth of sensory epithelia is discussed.  相似文献   

2.
Nils Wegner 《Acta zoologica》1982,63(3):133-146
The macula lagenae of the anabantide fish Colisa labiosa was studied with light and transmission electron microscopy. (1) The sensory area is naturally divided in a central area (A) surrounded by a peripheral part (B). (2) Generally the central hair cells are separated by supporting cells, while the peripheral hair cells are found in groups. The cells of a group are not separated by supporting cells. (3) Tubuli-like structures, hexagonal in cross section, are found in all cells. In peripheral hair cells the longitudinally oriented tubuli-like structures are aggregated in thick bundles. (4) Variation in shape, electron density, stereocilia arrangement and size of mitochondria was found in different hair cells. (5) The central hair cells contain large accumulations of presynaptic bodies (10–44). Contrarily, the peripheral hair cells contain only a few pre-synaptic bodies (1–3). (6) The central hair cells are innervated by thick afferent (6–15 μm) and fine presumed efferent (less than 1 μm nerve fibres, while the peripheral hair cells are innervated by thin (1–6 μm) afferent nerve fibres only.  相似文献   

3.
The Notch signaling pathway is thought to regulate multiple stages of inner ear development. Mutations in the Notch signaling pathway cause disruptions in the number and arrangement of hair cells and supporting cells in sensory regions of the ear. In this study we identify an insertional mutation in the mouse Sfswap gene, a putative splicing factor, that results in mice with vestibular and cochlear defects that are consistent with disrupted Notch signaling. Homozygous Sfswap mutants display hyperactivity and circling behavior consistent with vestibular defects, and significantly impaired hearing. The cochlea of newborn Sfswap mutant mice shows a significant reduction in outer hair cells and supporting cells and ectopic inner hair cells. This phenotype most closely resembles that seen in hypomorphic alleles of the Notch ligand Jagged1 (Jag1). We show that Jag1; Sfswap compound mutants have inner ear defects that are more severe than expected from simple additive effects of the single mutants, indicating a genetic interaction between Sfswap and Jag1. In addition, expression of genes involved in Notch signaling in the inner ear are reduced in Sfswap mutants. There is increased interest in how splicing affects inner ear development and function. Our work is one of the first studies to suggest that a putative splicing factor has specific effects on Notch signaling pathway members and inner ear development.  相似文献   

4.
Neurosensory epithelia in the inner ear are the crucial structures for hearing and balance functions. Therefore, it is important to understand the cellular and molecular features of the epithelia, which are mainly composed of two types of cells: hair cells (HCs) and supporting cells (SCs). Here we choose to study the inner ear sensory epithelia in adult zebrafish not only because the epithelial structures are highly conserved in all vertebrates studied, but also because the adult zebrafish is able to regenerate HCs, an ability that mammals lose shortly after birth. We use the inner ear of adult zebrafish as a model system to study the mechanisms of inner ear HC regeneration in adult vertebrates that could be helpful for clinical therapy of hearing/balance deficits in human as a result of HC loss.Here we demonstrate how to do gross and fine dissections of inner ear sensory epithelia in adult zebrafish. The gross dissection removes the tissues surrounding the inner ear and is helpful for preparing tissue sections, which allows us to examine the detailed structure of the sensory epithelia. The fine dissection cleans up the non-sensory-epithelial tissues of each individual epithelium and enables us to examine the heterogeneity of the whole epithelium easily in whole-mount epithelial samples.Open in a separate windowClick here to view.(51M, flv)  相似文献   

5.
Slitrks are type I transmembrane proteins that share conserved leucine-rich repeat domains similar to those in the secreted axonal guidance molecule Slit. They also show similarities to Ntrk neurotrophin receptors in their carboxy-termini, sharing a conserved tyrosine residue. Among 6 Slitrk family genes in mammals, Slitrk6 has a unique expression pattern, with strong expression in the sensory epithelia of the inner ear. We generated Slitrk6-knockout mice and investigated the development of their auditory and vestibular sensory organs. Slitrk6-deficient mice showed pronounced reduction in the cochlear innervation. In the vestibule, the innervation to the posterior crista was often lost, reduced, or sometimes misguided. These defects were accompanied by the loss of neurons in the spiral and vestibular ganglia. Cochlear sensory epithelia from Slitrk6-knockout mice have reduced ability in promoting neurite outgrowth of spiral ganglion neurons. Indeed the Slitrk6-deficient inner ear showed a mild but significant decrease in the expression of Bdnf and Ntf3, both of which are essential for the innervation and survival of sensory neurons. In addition, the expression of Ntrk receptors, including their phosphorylated forms was decreased in Slitrk6-knockout cochlea. These results suggest that Slitrk6 promotes innervation and survival of inner ear sensory neurons by regulating the expression of trophic and/or tropic factors including neurotrophins from sensory epithelia.  相似文献   

6.
A comparative study of the sensory line system and the lateralis nerve complex in osteostracans on one hand, and in petromyzontids on the other, reveals further similarities between these two groups. The interrelationships between the lateralis nerve complex and the other cranial nerves in osteostracans lead to the conclusion that, in these forms, the first, second and third branchial nerves correspond respectively to the ramus maxillaris trigemini, the ramus mandibularis trigemini and the facialis of petromyzontids.

Résumé


L'étude comparative des lignes sensorielles et du complexe du nerf latéral chez les Ostéostracés et les Pétromyzontides révele A nouveau de grandes similarités entre ces deux groupes. En outre, les rapports anatomiques entre le complexe du nerf latéral et les autres nerfs crâniens conduisent a la conclusion que les trois premiéres paires de nerfs branchiaux des Ostéostracés correspondaient respectivement aux rameaux maxillaire et mandibulaire du trijumeau ainsi qu'au nerf facial chez les Pétromyzontidés.  相似文献   

7.
8.
Aminoglycoside antibiotics, like gentamicin, kill inner ear sensory hair cells in a variety of species including chickens, mice, and humans. The zebrafish (Danio rerio) has been used to study hair cell cytotoxicity in the lateral line organs of larval and adult animals. Little is known about whether aminoglycosides kill the hair cells within the inner ear of adult zebrafish. We report here the ototoxic effects of gentamicin on hair cells in the saccule, the putative hearing organ, and utricle of zebrafish. First, adult zebrafish received a single 30 mg/kg intraperitoneal injection of fluorescently-tagged gentamicin (GTTR) to determine the distribution of gentamicin within inner ear sensory epithelia. After 4 hours, GTTR was observed in hair cells throughout the saccular and utriclar sensory epithelia. To assess the ototoxic effects of gentamicin, adult zebrafish received a single 250 mg/kg intraperitoneal injection of gentamicin and, 24 hours later, auditory evoked potential recordings (AEPs) revealed significant shifts in auditory thresholds compared to untreated controls. Zebrafish were then euthanized, the inner ear fixed, and labeled for apoptotic cells (TUNEL reaction), and the stereociliary bundles of hair cells labeled with fluorescently-tagged phalloidin. Whole mounts of the saccule and utricle were imaged and cells counted. There were significantly more TUNEL-labeled cells found in both organs 4 hours after gentamicin injection compared to vehicle-injected controls. As expected, significantly fewer hair cell bundles were found along the rostral-caudal axis of the saccule and in the extrastriolar and striolar regions of the utricle in gentamicin-treated animals compared to untreated controls. Therefore, as in other species, gentamicin causes significant inner ear sensory hair cell death and auditory dysfunction in zebrafish.  相似文献   

9.
Abstract In some living osteichthyans (e.g. the armoured catfishes) the postcranial dermal skeleton exhibits tooth-like structures (odontodes) similar to those present in the dermal skeleton of the ancient craniates. We have undertaken this work to compare odontode with tooth development, structure, attachment to a bony support and replacement. We studied the odontodes fixed on the scutes (i.e. postcranial dermal plates) in a growth series of Corydoras aeneus using light, scanning and transmission electron microscopy. Odontodes are constituted of a pulp cavity surrounded by a cone of dentine itself capped with hypermineralized substance. The pulp cavity is devoid of nerves and blood vessels and there are no odontoblastic processes in the dentine. The dentine cone is firmly attached to a circular bony protuberance of the scute surface, the pedicel or attachment bone, by means of a ligament. An odontode anlage develops as a small invagination of a dermal papilla projecting into the epidermis, the basal cell layer of which constitutes a dental epithelium. First, dentine is deposited, next the hypermineralized substance, then the ligament and attachment bone. Odontodes develop in two positions with regard to the scute surface: a primary position when new odontodes form at the posterior border of the enlarging scute; a secondary position when new odontodes replace old odontodes that have been shed during thickening of the scute. In this case, the ligament and part of the base of the dentine cone are resorbed but not the pedicel of attachment bone, which is covered by deposition of scute matrix after the odontode has been shed. Within the scute matrix, the embedded pedicels of successive generations of odontodes are preserved, forming piles in the scutes of adult specimens.  相似文献   

10.
Antennal sensilla of Micropterix calthella were studied with the scanning electron microscope to determine their morphological types, relative abundance, distribution, location and possible functions. Of the 12 types occurring in both male and female moths, seven are found in most higher Lepidoptera: sensilla trichodea, multiporous s. basiconica, s. coeloconica, s. styloconica, s. chaetica, s. campaniformia and Böhm's bristles. Two types (uniporous s. basiconica and cupuliform organs) are found only in a few families. Three structures are peculiar to Micropterix : ascoïd sensilla, multiporous s. placodea and circular organs. All types of sensilla have characteristic distribution and location pattern similar in both sexes.  相似文献   

11.
12.
Abstract In the duplex retina of the catfish Clarias batrachus(Linnaeus, 1758), the apical processes of the pigment epithelial cells have been found by transmission electron microscopy to be in intimate contact with the calycal processes around the basal portion of the photoreceptor outer segments. It is hypothesized that the retinal pigment epithelium effectively transports synthesized products and metabolites to the photoreceptor inner segments via the anatomical zone of the apical–calycal processes interface in this species.  相似文献   

13.
We present a review of our own and literature data on reparative regeneration in ixodoid ticks (chelicerate arthropods). Ticks have a high potential for reparative regeneration and a close relationship between regeneration and development determined by similar hormonal regulatory mechanisms. These mechanisms depend on ecdysteroid hormones, which participate in the initiation of both processes, and juvenile hormones, which direct these processes either to the maintenance of larval features or to the development of nymphal and adult features. We present a detailed analysis of the regeneration of Haller's sensory organs in ixodid ticks and propose an hypothesis about the role of juvenile hormones in the modification of morphogenetic processes in this group. Furthermore, we present data on the effects of insect juvenile hormone analogs (methoprene and fenoxycarb) on the regeneration of Haller's organ, which support this hypothesis. Studies on reparative regeneration in arthropods provide a broader view of the problem of repair morphogenesis in animals.  相似文献   

14.
The molecular composition of the hair cell transduction channel has not been identified. Here we explore the novel hypothesis that hair cell transduction channels include HCN subunits. The HCN family of ion channels includes four members, HCN1-4. They were orginally identified as the molecular correlates of the hyperpolarization-activated, cyclic nucleotide gated ion channels that carry currents known as If, IQ or Ih. However, based on recent evidence it has been suggested that HCN subunits may also be components of the elusive hair cell transduction channel. To investigate this hypothesis we examined expression of mRNA that encodes HCN1-4 in sensory epithelia of the mouse inner ear, immunolocalization of HCN subunits 1, 2 and 4, uptake of the transduction channel permeable dye, FM1-43 and electrophysiological measurement of mechanotransduction current. Dye uptake and transduction current were assayed in cochlear and vestibular hair cells of wildtype mice exposed to HCN channel blockers or a dominant-negative form of HCN2 that contained a pore mutation and in mutant mice that lacked HCN1, HCN2 or both. We found robust expression of HCNs 1, 2 and 4 but little evidence that localized HCN subunits in hair bundles, the site of mechanotransduction. Although high concentrations of the HCN antagonist, ZD7288, blocked 50–70% of the transduction current, we found no reduction of transduction current in either cochlear or vestibular hair cells of HCN1- or HCN2- deficient mice relative to wild-type mice. Furthermore, mice that lacked both HCN1 and HCN2 also had normal transduction currents. Lastly, we found that mice exposed to the dominant-negative mutant form of HCN2 had normal transduction currents as well. Taken together, the evidence suggests that HCN subunits are not required for mechanotransduction in hair cells of the mouse inner ear.  相似文献   

15.
16.
Mekhanikova  I. V. 《Biology Bulletin》2021,48(8):1250-1262
Biology Bulletin - The list of endemic calcioliferous (carrying calceoli, the antennal sensory organs) amphipods is presented for Lake Baikal. It includes 47 species and subspecies (13% of the...  相似文献   

17.
Synthesis The interplay between bottom‐up and top‐down effects is certainly a general manifestation of any changes in both species abundances and diversity. Summary variables, such as species numbers, diversity indices or lumped species abundances provide too limited information about highly complex ecosystems. In contrast, species by species analyses of ecological communities comprising hundreds of species are inevitably only snapshot‐like and lack generality in explaining processes within communities. Our synthesis, based on species matrices of functional groups of all trophic levels, simplifies community complexity to a manageable degree while retaining full species‐specific information. Taking into account plant species richness, plant biomass, soil properties and relevant spatial scales, we decompose variance of abundance in consumer functional groups to determine the direction and the magnitude of community controlling processes. After decades of intensive research, the relative importance of top–down and bottom–up control for structuring ecological communities is still a particularly disputed issue among ecologists. In our study, we determine the relative role of bottom–up and top–down forces in structuring the composition of 13 arthropod functional groups (FG) comprising different trophic consumer levels. Based on species‐specific plant biomass and arthropod abundance data from 50 plots of a grassland biodiversity experiment, we quantified the proportions of bottom–up and top–down forces on consumer FG composition while taking into account direct and indirect effects of plant diversity, functional diversity, community biomass, soil properties and spatial arrangement of these plots. Variance partitioning using partial redundancy analysis explained 21–44% of total variation in arthropod functional group composition. Plant‐mediated bottom–up forces accounted for the major part of the explainable variation within the composition of all FGs. Predator‐mediated top–down forces, however, were much weaker, yet influenced the majority of consumer FGs. Plant functional group composition, notably legume composition, had the most important impact on virtually all consumer FGs. Compared to plant species richness and plant functional group richness, plant community biomass explained a much higher proportion of variation in consumer community composition.  相似文献   

18.
Summary The retinofugal and retinopetal connections in the upside-down catfish Synodontis nigriventris were studied by use of the horseradish-peroxidase (HRP) techniques, autoradiography, and degeneration-silver methods. An unusual retinal projection to the torus semicircularis as well as projections to the retina from three different sources in the brain are described. After intra-ocular injections of HRP, labeled cells were found in the optic tectum, the dorsomedial optic nucleus and one of the pretectal nuclei. These new findings support the basic hypothesis (i) that neuronal connections are more extensive in primitive brains, and (ii) that the evolutionary development of more complex brains involves the loss of some selected connections.  相似文献   

19.
The inner ear of Ichthyophis glutinosus is described with emphasis on the position of the sensory organs and the polarization of the hair cells. The hair cell polarization patterns of the maculae, cristae and papilla basilaris is similar to previous observations in other tetrapods. The papilla amphibiorum shows a simpler bidirectional polarization than described in other amphibians. The papilla neglecta, a sensory organ in the utriculus shows a unidirectional posteriorly directed polarization. A neglecta has not been found in the utriculus of anurans and urodeles previously.  相似文献   

20.
We studied cerebellar projections of primary afferents coming from the lagena, the third inner ear otolith endorgan of the pigeon, using a technique of anterograde axonal transport of biotinylated dextran amine, BDA, applied to the region of the lagenar epithelium. Labelled fibers were found ipsilaterally in different lobules of the cerebellum, but mostly in caudoventral regions of the latter (lobules IX and X) and in lobule І. Among the cerebellar nuclei, labelled fibers were observed only in the lateral nucleus, and they passed along its lateral edge. Localization of the predominant part of primary lagenar afferents in the caudoventral cerebellar regions (which are classified as the vestibulocerebellum where primary and secondary vestibular fibers terminate) shows that the lagena in birds is functionally related to the vestibular system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号