首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract The formation and cytodifferentiation of egg envelopes were studied at the ultrastructural level in blastozooids of Botryllus schlosseri. The process was divided into five recognized stages of oogenesis. First, the small young oocytes (stage 1) are contacted by scattered cells (primary follicle cells—PFC) which adhere to the oolemma at several junctional spots. PFC extend all around the growing oocyte, acquire polarity, and form a layer covered externally by a thin basal membrane (stage 2). At stage 3 isolated cells are recognizable between the PFC layer and oocyte. They never form junctions with the oocyte and represent prospective inner follicle cells (IFC) and test cells (TC), the latter being progressively received in superficial depressions in the oocyte. The layer of PFC, which maintains junctions with the oolemma, represents prospective outer follicle cells (OFC). PFC are considered to be the source of the three cellular envelopes because a contribution from mesenchymatous elements was not observed. At the beginning of vitellogenesis (stage 4), the vitelline coat (VC) becomes recognizable as a loose net covering the oocyte and TC. It is crossed by the oocyte microvilli and OFC projections which meet and form numerous small junctional plaques, some of them resembling gap junctions. IFC, VC and TC show marked signs of differentiation with approaching ovulation. OFC differentiate completely before ovulation (stage 5) and are engaged in intense synthesis of proteins which may be transferred and taken by endocytosis into the oocyte for yolk formation. Experiments with injected horseradish peroxidase also revealed that proteins present in the blood may reach the oocyte via the intercellular pathway, overcoming OFC and IFC. The possible roles of all the egg envelopes are discussed.  相似文献   

2.
The organization, time‐course deposition and protein composition of the oocyte envelope in the whitemouth croaker, Micropogonias furnieri, were analyzed at different stages of oocyte maturation. Adult females were sampled in the Uruguayan coast of the Río de la Plata during three annual periods. Morphological organization and temporal deposition were assessed by histology and electron microscopy. Protein composition was analyzed using gel electrophoresis, followed by MALDI‐TOF‐MS. Oocyte envelope deposition starts in lipid‐yolk oocytes, reaching maximum width in fully grown oocytes when it shows a three‐layer organization. In mature oocytes, the envelope becomes narrower than in the previous stage and loses its trilaminar structure. In envelopes from fully grown oocytes, one‐dimensional gel electrophoresis revealed five bands; mature oocytes showed only three bands. Following two‐dimensional gel electrophoresis, 14 major polypeptides were detected in envelopes from fully grown oocytes. Considering that morphological and biochemical results obtained from samples of the three annual periods were remarkably similar, data reported here might provide a useful baseline to assess the future impact of pollutants on the oocyte envelope and reproductive success of whitemouth croakers inhabiting the geographic area.  相似文献   

3.
Reproductive cycle and oogenesis were studied in specimens of Salamandra salamandra infraimmaculata Mertens that inhabit fringe areas of the taxon's distribution in the Mediterranean region. Both ovarian mass and length are correlated significantly with body mass and length. Ovarian length is also correlated with the number of oocytes. During the oogenetic cycle six stages in oocyte development were recognized. Three occur during previtellogenesis: stage 1, in which oogonia divide and form cell nests; stage 2 in which oogonia differentiate into oocytes; and stage 3, in which the oocyte cytoplasm increases in volume. In the vitellogenic phase two additional stages, 4 and 5, were recognized: stage 4, in which lipid accumulates in vacuoles in the periphery followed by the appearance of yolk platelets near the cytoplasmic margin; and stage 5, in which oocyte volume increases rapidly due to increased number of yolk platelets until it reaches its maximal size. During postvitellogenesis one stage was recognized: stage 6, in which the beginning of maturation is characterized by movement of the nucleus toward the animal pole. Oogenesis continues year-round. The first four stages were seen in all ovaries examined. The ovarian cycle is independent of season and reproductive stage apart from the number of mature, postvitellogenic oocytes that increases following gestation toward the beginning of spring (March-April). J. Morphol 231:149–160, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

4.
Ultrastructural features of the ovary and oogenesis in the polychaete Capitella jonesi (Hartman, '59) have been described. The ovaries are paired, sac-like follicles suspended by mesenteries in the ventral coelom throughout the midbody region of the mature worm. Oogenesis is unsynchronized and occurs entirely within the ovary, where developing gametogenic stages are segregated spatially within a germinal and a growth zone. Multiplication of oogonia and differentiation of oocytes into the late stages of vitellogenesis occur in the germinal region of the ovary, whereas late-stage vitellogenic oocytes and mature eggs are located in a growth zone. Follicle cells envelop the oocytes in the germinal zone of the ovary and undergo hypertrophy and ultrastructural changes that correlate with the onset of vitellogenesis. These changes include the development of extensive arrays of rough ER and numerous Golgi complexes, formation of microvilli along the surface of the ovary, and the initiation of extensive endocytotic activity. Oocytes undergo similar, concomitant changes such as the differentiation of surface microvilli, the formation of abundant endocytotic pits and vesicles along the oolemma, and the appearance of numerous Golgi complexes, cisternae of rough ER, and yolk bodies. Yolk synthesis appears to occur by both autosynthetic and heterosynthetic processes involving the conjoined efforts of the Golgi complex and rough ER of the oocyte and the probable addition of extraovarian (heterosynthetic) yolk precursors. Evidence is presented that implicates the follicle cells in the synthesis of yolk precursors for transport to the oocytes. At ovulation, mature oocytes are released from the overy after the overlying follicle cells apparently withdraw. Bundles of microfilaments within the follicle cells may play a role in this withdrawal process.  相似文献   

5.
Viviparous teleosts exhibit two patterns of embryonic nutrition: lecithotrophy (when nutrients are derived from yolk that is deposited in the oocyte during oogenesis) and matrotrophy (when nutrients are derived from the maternal blood stream during gestation). Nutrients contained in oocytes of matrotrophic species are not sufficient to support embryonic development until term. The smallest oocytes formed among the viviparous poeciliid fish occur in the least killifish, Heterandria formosa, these having diameters of only 400 μm. Accordingly, H. formosa presents the highest level of matrotrophy among poeciliids. This study provides histological details occurring during development of its microlecithal oocytes. Five stages occur during oogenesis: oogonial proliferation, chromatin nucleolus, primary growth (previtellogenesis), secondary growth (vitellogenesis), and oocyte maturation. H. formosa, as in all viviparous poeciliids, has intrafollicular fertilization and gestation. Therefore, there is no ovulation stage. The full‐grown oocyte of H. formosa contains a large oil globule, which occupies most of the cell volume. The oocyte periphery contains the germinal vesicle, and ooplasm that includes cortical alveoli, small oil droplets and only a few yolk globules. The follicular cell layer is initially composed of a single layer of squamous cells during early previtellogenesis, but these become columnar during early vitellogenesis. They are pseudostratified during late vitellogenesis and reduce their height becoming almost squamous in full‐grown oocytes. The microlecithal oocytes of H. formosa represent an extreme in fish oogenesis typified by scarce yolk deposition, a characteristic directly related to matrotrophy. J. Morphol., 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
Oogenesis in the anuran Xenopus laevis can be divided into six stages based on the anatomy of the developing oocyte. Stage I consists of small (50 to 100 μ) colorless oocytes whose cytoplasm is transparent. Their large nuclei and mitochondrial masses are clearly visible in the intact oocyte. Stage II oocytes range up to 450 μ in diameter, and appear white and opaque. Stage I and II are both previtellogenic. Pigment synthesis and yolk accumulation (vitellogenesis) begins during Stage III. Vitellogenesis continues through Stage IV (600 to 1000 μ), the oocytes grow rapidly, and the animal and vegetal hemispheres become differentiated. By Stage V (1000 to 1200 μ) the oocytes have nearly reached their maximum size and yolk accumulation gradually ceases. Stage VI oocytes are characterized by the appearance of an essentially unpigmented equatorial band. They range in size from 1200 to 1300 μ, are postivtellogenic and ready for ovulation. These stages of oocyte development have been correlated with physiological and biochemical data related to oogenesis in Xenopus.  相似文献   

7.
Oocyte development has been divided into five stages in the zebrafish Brachydanio rerio, based on morphological criteria and on physiological and biochemical events. In stage I (primary growth stage), oocytes reside in nests with other oocytes (Stage IA) and then within a definitive follicle (Stage IB), where they greatly increase in size. In stage II (cortical alveolus stage), oocytes are distinguished by the appearance of variably sized cortical alveoli and the vitelline envelope becomes prominent. In stage III (vitellogenesis), yolk proteins appear in oocytes and yolk bodies with crystalline yolk accrue during this major growth stage. Ooctes develop the capacity to respond in vitro to the steroid 17α, 20β-dihydroxy-4-pregnen-3-one (DHP) by undergoing oocyte maturation. In stage IV (oocyte maturation), oocytes increase slightly in size, become translucent, and their yolk becomes non-crystalline as they undergo final meiotic maturation in vivo (and in response to DHP in vitro). In stage V (mature egg), eggs (approx. 0.75 mm) are ovulated into the ovarian lumen and are capable of fertilization. This staging series lays the foundation for future studies on the cellular processes occurring during oocyte development in zebrafish and should be useful for experimentation that requires an understanding of stage-specific events. © 1993 Wiley-Liss, Inc.  相似文献   

8.
The distribution of contractile proteins, actin and myosin, and an actin-binding protein, spectrin, was studied in oogenesis of Xenopus laevis. These proteins are present in oocytes already at the previtellogenic stages, which are characterized by their diffuse distribution. The localization of proteins changed with the beginning of vitellogenesis. At all vitellogenic stages, including the fully grown oocyte, animal–vegetal differences were noted in localization of actin and myosin: in the animal hemisphere they appear as fibrillar-like structures, while in the vegetal one they are localized around the yolk platelets. By the end of the oocyte's growth, a cortical gradient appeared: predominant localization of actin and myosin in the cortical area. As the oocyte maturation proceeded, the distribution of actin and myosin again became diffuse and nonuniform, so that a cortical gradient appears. At the beginning of vitellogenesis spectrin is distributed as a network all over the ooplasm, while in the fully grown oocyte it is localized mostly in teh subcortical area of the animal hemisphere and, as individual inclusions, in other regions of the oocyte. No spectrin is found by the end of maturation. Actin, myosin, and spectrin are also present in the oocyte's nuclei. Changes in the distribution of contractile proteins and spectrin during oocyte maturation are discussed with respect to the development of cortical contractility, as well as to the changes in spatial distribution of yolk platelets and regional sensitivity of the maturing oocyte to cytochalasin B. © 1994 Wiley-Liss, Inc.  相似文献   

9.
Adult specimens of piabanha Brycon gouldingi were collected from Rio das Mortes (Mato Grosso, Brazil), adapted to captivity and induced to spawn at Buriti Fisheries (Nova Mutum, MT, Brazil). The early developmental stages of B. gouldingi were then characterized. Samples were collected at pre‐determined times from oocyte extrusion to total yolk absorption. Oocyte diameter, total larval length (LT) and yolk‐sac volume were measured. The mean ± s.d . duration of embryo developmental of B. gouldingi was 13·90 ± 0·06 h at 26·40 ± 1·13° C. The mean ± s.d . oocyte diameter was 1·13 ± 0·06 mm with 54% of oocytes ranging from 1·11 to 1·20 mm. Seven stages characterized the early developmental phase of this species: zygote, cleavage, morula, blastula, gastrula, histogenesis–organogenesis and hatching, with unique features related to each stage. At hatching, the larvae measured 3·40 ± 0·07 mm, presented an elongated shape with yolk‐sac volume of 0·46 ± 0·08 µl, non‐pigmented eyes and exhibited swimming ability. When the yolk was completely absorbed at 55 h post‐hatch, mean ± larval LT was 6·68 ± 0·65 mm, the eyes were highly pigmented and the teeth were visible. These are the first reported findings on the initial developmental stages of B. gouldingi and could be used to improve captive breeding management and conservation practices.  相似文献   

10.
The polychaete Ophryotrocha does not show a distinct breeding season. Egg masses are produced throughout the year (continuous breeder sensu Olive and Clark, 1978). A female specimen may contain up to three different generations of oocytes with oocyte growth and maturation in each batch being well synchronized. Oogenesis takes about 18 days from proliferation of the oogonia to mature eggs. In each segment pairs of sister cells interconnected by cytoplasmic bridges are located in outpocketings of the ventral mesentery which form the gonad wall. Presumptive oocytes and nurse cells are not easily distinguished at that time. Vitellogenesis is initiated while both oocytes and nurse cells are still in the ovary. Mitochondria, multivesicular bodies (transformed mitochondria ?), dense bodies, preformed yolk bodies of smaller size and lipid droplets are probably passed through the cytoplasmic bridge from the nurse cell to the oocyte. Yolk formation includes different mechanisms and materials of different origin. Autosynthetic yolk formation predominates during the first intraovarial growth phase. After detachment of oocyte-nurse cell-complexes from the gonad pinocytotic activity of nurse cells and particularly oocytes, increases considerably. The existence of coated vesicles suggests that external sources of yolk precursors contribute to yolk formation. Prior to oocyte maturation the remnants of the nurse cell are incorporated by oocytes.  相似文献   

11.
Ultrastructure of oogenesis in the bluefin tuna, Thunnus thynnus   总被引:1,自引:0,他引:1  
Ovarian ultrastructure of the Atlantic bluefin tuna (Thunnus thynnus) was investigated during the reproductive season with the aim of improving our understanding of the reproductive biology in this species. The bluefin, like the other tunas, has an asynchronous mode of ovarian development; therefore, all developmental stages of the oocyte can be found in mature ovaries. The process of oocyte development can be divided into five distinct stages (formation of oocytes from oogonia, primary growth, lipid stage, vitellogenesis, and maturation). Although histological and ultrastructural features of most these stages are similar among all studied teleosts, the transitional period between primary growth and vitellogenesis exhibits interspecific morphological differences that depend on the egg physiology. Although the most remarkable feature of this stage in many teleosts is the occurrence of cortical alveoli, in the bluefin tuna, as is common in marine fishes, the predominant cytoplasmic inclusions are lipid droplets. Nests of early meiotic oocytes derive from the germinal epithelium that borders the ovarian lumen. Each oocyte in the nest becomes surrounded by extensions of prefollicle cells derived from somatic epithelial cells and these form the follicle that is located in the stromal tissue. The primary growth stage is characterized by intense RNA synthesis and the differentiation of the vitelline envelope. Secondary growth commences with the accumulation of lipid droplets in the oocyte cytoplasm (lipid stage), which is then followed by massive uptake and processing of proteins into yolk platelets (vitellogenic stage). During the maturation stage the lipid inclusions coalesce into a single oil droplet, and hydrolysis of the yolk platelets leads to the formation of a homogeneous mass of fluid yolk in mature eggs.  相似文献   

12.
Early development from the egg fertilization to complete resorption of the yolk‐sac is a critical period in the life cycle of teleost fish. Knowledge of this process provides essential parameters for aquaculture and identification of spawning sites in the wild. In the present study, a comparative morphological analysis of the oocyte surface as well as early development was performed in four commercially valuable species from the São Francisco River: Brycon orthotaenia, Leporinus obtusidens, Prochilodus argenteus, and Salminus franciscanus. Stripped oocytes, embryo, and yolk‐sac larvae were analyzed by scanning electron microscopy (SEM) and histology. A set of 10 lectins was used for investigation of lectin‐binding pattern in oocytes. In the four species, the outer layer of the zona radiata reacted to most lectins, indicating complex polysaccharides at the oocyte surface while no reactivity was detected in the inner zona radiata and yolk globules. Typical structural arrangements were recognized at the micropylar region by SEM. The four species showed nonadhesive eggs, short embryonic period (18–20 h at 24 ± 1°C), and poorly developed larvae at hatching. At 24 h posthatching (hph), larvae of the four species had neuromasts on the body surface. Rudimentary cement glands for larval attachment were identified on the cephalic region at 24 and 48 hph in B. orthotaenia and S. franciscanus, and following they were in regression. The time for whole yolk resorption varied among species from 48 to 120 hph, occurring earlier in S. franciscanus, followed by B. orthotaenia, P. argenteus, and L. obtusidens. The formation of the digestive tract and the mouth opening indicated initiation of exogenous feeding 24 h before complete resorption of the yolk. Together, our data indicate similarities in the early development among species that may be related to the life cycle strategies and phylogeny. J. Morphol. 276:1258–1272, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

13.
We describe a provitellogenic stage, a previously unrecognized stage of follicle development in moths, and show that oocytes begin yolk sphere formation prior to the development of patency by the follicular epithelium. The vitellogenic activities of follicles from pharate adult femalePlodia interpunctella (Hübner) were determined by visualizing the subunits of vitellin (YP1 and YP3) and the follicular epithelium yolk protein (YP2 and YP4) using monospecific antisera to each subunit to immunolabel whole-mounted ovaries or ultrathin sections. At 92 h after pupation, yolk spheres that contained only YP2 began to proliferate in the oocytes. The inter-follicular epithelial cell spaces were closed at 92 h making vitellogenin inaccessible to the oocyte, and consequently, the vitellin subunits were not observed in the yolk spheres. YP2 uptake most likely occurred across the brush border from the follicular epithelial cells to the oocyte at this time. At 105 h, the inter-follicular epithelial cell spaces appeared closed yet trace amounts of labeling for vitellin were observed in the spaces and also in the yolk spheres along with YP2. Equivalent labeling for all four YPs in yolk spheres was finally observed at 112 h after pupation when the follicular epithelium had become patent. These data indicate that the provitellogenic stage is an extended transition period between the previtellogenic and vitellogenic stages that lasts for approximately 13 h, and it is marked at the beginning by YP2 yolk sphere formation in the oocyte and at the end by patency in the follicular epithelium.  相似文献   

14.
Summary The unpaired germarium of Dicrocoelium dendriticum contains many female germ cells at different stages of maturation and is enveloped by a fibrous basal lamina-like structure and a multilayered cytoplasmic sheath whose origins and functions are discussed. The maturation process of primary oocytes occurs completely within the prophase of the first meiotic division. It has been divided into three stages, as previously suggested for monogeneans. Stage I corresponds to oogonia and early oocytes which are located in the distal germinative area of the gonad. These cells are characterized by a high nucleo/cytoplasmic ratio and a poorly differentiated cytoplasm. Stage II corresponds to maturing oocytes grouped in the central area of the gonad and exhibiting long synaptonemal complexes and a prominent nucleolus. The main feature of cytoplasmic differentiation is the increase in the number of RER and Golgi complex which are involved in the production of small electron-dense granules. Stage III corresponds to mature oocytes located in the proximal area of the germarium near the origin of the oviduct. In this stage, the granules become regularly distributed in a monolayer in the peripheral ooplasm and make contact with the oolemma. They show a distinctive complex structure, are composed of proteins and glycoproteins and do not contain polyphenols. Their possible role as cortical granules is discussed in relation to chemical composition and previous studies on other Plathelminthes. Neither yolk globules nor glycogen are present in the oocytes.Abbreviations I oogonium and early oocyte - II growing oocyte - III mature oocyte - cg cortical granule - cs cytoplasmic sheath - db dense body - ecm extra cellular matrix - ER endoplasmic reticulum - fl fibrous extracellular layer - gc Golgi complex - m mitochondria - N nucleus - nu nucleolus - RER rough endoplasmic reticulum - sc synaptonemal complex  相似文献   

15.
The ovary of the roach Periplaneta americana has been studied by techniques of light and electron microscopy. Each ovariole (panoistic type) contains a linear array of oocytes in varying stages of development. Newly formed oocytes become encased by a layer of follicle cells and begin pinocytosis. All subsequent growth stages of the oocytes are dependent, in part, on this phenomenon. All of the pinocytotic caveolae show an unique surface modification; i.e., on their internal surface they have an amorphous or filamentous substance and their external surface is studded with many fine radially oriented spike-like projections. The pinosomes of early oocytes do not contain a demonstrable internal structure; they are thought to contain nutritive substances for the developing oocytes rather than yolk precursors. When the oocyte enters its last stage of growth, characterized by yolk deposition, the caveolae become filled with a dense material which is thought to be the precursors of yolk. Hence the conclusion is drawn that yolk formation is independent of any cytoplasmic organelle system of the oocyte and that the precursors of this deutoplasmic substance are manufactured outside the ovary and are internalized by the process of pinocytosis. Under the phase-contrast microscope the nucleoli of early oocytes are large irregular masses and show the phenomenon of nucleolar emission (fragmentation). These "emissions" become randomly dispersed in the nucleoplasm and some of them come to be intimately associated with the fenestrated nuclear envelope. After this process ceases, the main nucleolar mass becomes vacuolated. Electron micrographs suggest that the constituent particles of the nucleolar emissions migrate from the nucleus through patent pores of the nuclear envelope.  相似文献   

16.
We analyzed the organization of the microtubular cytoskeleton and the distribution of centrosomes at the different stages of differentiation of the ovarian follicle of the lizard Podarcis sicula by examining immunolabeled α‐ and γ‐tubulins using confocal microscopy. We observed that in the follicular epithelium the differentiation of the nurse pyriform cells is accompanied by a reorganization of the microtubules in the oocyte cortex, changing from a reticular to a radial pattern. Furthermore, these cortical microtubules extend in the cytoplasm of the connected follicle cells through intercellular bridges. Radially oriented microtubules were still more marked in the oocyte cortex during the final stages of oogenesis, when the yolk proteins were incorporated by endocytosis. The nucleation centres of the microtubules (centrosomes) were clearly detectable as γ‐tubulin immunolabeled spots in the somatic stromal cells of the germinal bed. A diffuse cytoplasmic immunolabeling together with multiple labeled foci, resembling the desegregation of the centrosomes in early oogenesis of vertebrates and invertebrates, was revealed in the prediplotenic germ cells. In the cytoplasm of growing oocytes, a diffuse labeling of the γ‐tubulin antibody was always detectable. In the growing ovarian follicles, immunolabeled spots were detected in the mono‐layered follicle cells which surrounded the early oocytes. In follicles with a polymorphic follicular epithelium, only the small follicle cells showed labeled spots. A weak and diffuse labeling was observed in the pyriform cells while in the enlarging intermediate cells the centrosomes degenerated like in the early oocytes. Our observations confirm that in P. sicula most of the oocyte growth is supported by the structural and functional integration of the developing oocyte with the pyriform nurse cells and suggest that their fusion with the oocyte results in an acquirement by these somatic cells of characteristics typical of the germ cells. J. Morphol. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
Annual changes in gonadal maturation of female Japanese eel Anguilla japonica in sea water were investigated histologically over 5 years in the Mikawa Bay, Japan, where they occurred throughout the year except in March. Almost all immature Japanese eels (yellow eels) occurred mainly from April to September, and they were rare after November. In contrast, maturing Japanese eels (silver eels) occurred from October to February. The gonado‐somatic index ( I G) and oocyte diameters of yellow eels were <1·0 and 150 μm, respectively, and oocytes were at the peri‐nucleolus or the oil droplet stages. The I G and oocyte diameters of silver eels were greater than those of yellow eels and most oocytes developed to the primary yolk globule stage. The numbers of silver eels lacking oocytes at the primary yolk globule stage increased after January in Mikawa Bay, although I G and oocyte diameters remained unchanged. In contrast, silver eels caught at the mouth of the bay in January possessed oocytes that had advanced to the secondary yolk globule stage. These observations indicate that oocyte development changes seasonally, especially after winter in Mikawa Bay.  相似文献   

18.
Haemaphysalis longicornis is an important vector of various pathogens in domestic animals and humans. The tick is a unique species with bisexual and parthenogenetic races. Although mating induces oocyte development, it is possible in the parthenogenetic race to complete oogenesis without copulation. Here we examined the developmental process of oocytes from unfed to the oviposition period in parthenogenetic H. longicornis. We classified the developmental stages of oocytes into five stages: stage I, germinal vesicle occupies more than half of the cytoplasm; stage II, germinal vesicle occupies less than half of the cytoplasm; stage III, germinal vesicle migrates from the center in the oocyte to the vicinity of the pedicel cells; stage IV, the cytoplasm is filled with yolk granules of various sizes; stage V, the cytoplasm is occupied by large yolk granules. Oocytes at the unfed period were undeveloped and classified as stage I. Stage I and II oocytes were observed at the rapid feeding period, indicating that oocyte development began after the initiation of blood feeding. All developmental stages of oocytes were observed at the pre-oviposition period. At 10?days after the beginning of the oviposition period, the ratios of stage I and II oocytes were higher than those of the previous period, suggesting that the ovarian development and activity may be continuing. Based on these findings, we propose classification criteria for the oocyte development in the parthenogenetic H. longicornis. The criteria will be useful for understanding the mechanisms of tick reproduction and transovarial transmission of pathogens.  相似文献   

19.
The distribution of carbohydrate moieties in lancelet (Branchiostoma belcheri) oocytes has been studied at different stages of development, using a peroxidase-labeled lectin incubation technique, the PAS-reaction and Alcian Blue staining. Binding sites of 5 lectins, indicating the presence of different sugar moieties (Wheat germ agglutinin (WGA) for N-acetylglucosamine, Concanavalin A (Con A) for glucose/mannose, Helix pomatia agglutinin (HPA) for N-acetyl-D-galactosamine, Ricinus communis agglutinin (RCA-I) for galactose and Ulex europaeus agglutinin (UEA-I) for fucose), were identified and were shown to undergo considerable variation during oocyte development. In the previtellogenic stage, HPA, RCA-I and UEA-I were not identified on the oocyte surface, but WGA and Con A gave strongly positive reactions at this site. In the cytoplasm, 4 lectins (Con A, HPA, RCA-I and UEA-I) gave a weak or moderate reaction, and Con A was also observed in the perinuclear region. In vitellogenic oocytes, these 4 lectins were found to also bind to the nuclear envelope, karyoplasm and nucleolus, and, with the exception of Con A, could also be found in the nuclei of more mature stages. The cytoplasmic yolk granules and Golgi vesicles of the vitellogenic oocyte, were moderately positive for Con A, HPA, RCA-I and UEA-I, but HPA, RCA-I and UEA-I were only weakly bound at the oocyte surface. In mature oocytes, all 5 lectins bound moderately or strongly to yolk granules and cell surface. HPA, RCA-I and UEA-I bound moderately or strongly to various nuclear compartments. Thus, carbohydrate content varied with the development and maturation of the oocytes, and the PAS results were in agreement with the lectin-binding results. Charged carbohydrate residues were observed in the egg envelope and Golgi bodies.These results suggest that the appearence of Con A-, HPA-, RCA-I- and UEA-I-binding glycoconjugates in the nuclei of developing oocytes show a varying pattern indicating different phases of nuclear activity which correlate with different carbohydrate synthetic activities of the oocyte.  相似文献   

20.
The ovaries of the largescale yellowfish, Labeobarbus marequensis (Teleostei: Cypriniformes: Cyprinidae), are made up of the germinal epithelium, nests of late chromatin nucleolus stage oocytes, and ovarian follicles. Each follicle is composed of a single oocyte, which is surrounded by somatic follicular cells and a basal lamina covered by thecal cells. We describe polarization and ultrastructure of oocytes during the primary growth stage. The oocyte nucleus contains lampbrush chromosomes, nuclear bodies and fibrillar material in which multiple nucleoli arise. Nuage aggregations composed of material of a nuclear origin are present in the perinuclear cytoplasm. The Balbiani body (Bb) contains aggregations of nuage, rough endoplasmic reticulum, individual mitochondria and complexes of mitochondria with nuage (cement). Some mitochondria in the Bb come into close contact with endoplasmic reticulum cisternae and vesicles that contain granular material. At the start of primary growth, the Bb is present in the cytoplasm close to the nucleus. Next, it expands towards the oocyte plasma membrane. In these oocytes, a spherical structure, the so-called yolk nucleus, arises in the Bb. It consists of granular nuage in which mitochondria and vesicles containing granular material are immersed. Later, the Bb becomes fragmented and a fully grown yolk nucleus is present in the vegetal region. It contains numerous threads composed of granular nuage, mitochondria, lysosome-like organelles and autophagosomes. We discuss the formation of autophagosomes in the cytoplasm of primary growth oocytes. During the final step of primary growth, the cortical alveoli arise in the cytoplasm and are distributed evenly. The eggshell is deposited on the external surface of the oocyte plasma membrane and is made up of two egg envelopes that are pierced by numerous pore canals. The external egg envelope is covered in protuberances. During primary growth no lipid droplets are synthesized or stored in the oocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号