首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The decline of saltmarsh in Currambene Creek andCararma Inlet, in Jervis Bay, eastern Australia, inthe period 1944–1999 has been documented through photogrammetric analysis. The area of saltmarsh hasdeclined in Currambene Creek by approximately 52.5%and in Cararma Inlet by approximately 35%. InCurrambene Creek the decline of saltmarsh is primarilydue to the landward encroachment of mangroves, whilein Cararma Creek the seaward encroachment of Melaleuca and Casuarina have more significantlycontributed to losses of saltmarsh. Regional sea-levelrise is excluded as a primary cause of thistransgression. A more plausible hypothesis involvesan increase in the delivery of freshwater andnutrients to the intertidal environments in responseto higher rainfall and catchment modifications.  相似文献   

2.
Casuarinas are very important plants for their various uses and survival in adverse sites or harsh environments. As nitrogen fixation, in symbiosis with Frankia, is an important factor for the survival of these plants under various conditions, the basis for selecting both effective and tolerant Frankia strains and Casuarina spp., are provided. Enhancement of the symbiotic relationship between Frankia and Casuarina, by mycorrhizal infection and other biofertilizing microorganisms such as Bacillus and Azospirillum, is reflected by superior plant growth. Casuarina leaf litter is also a great source for both inorganic and organic nutrients. Therefore, careful management of the top soil layer under Casuarina trees is very important. Litter decomposition ratio is affected by many physical chemical and biological factors including temperature, moisture conditions, lignin, and C-to-N and N-to-P ratios in addition to soil biota. In general, here the above relations are discussed and an alleviation model is presented for important disturbances of natural and human origin made in soil and environment, especially in the dry regions. In conclusion, we suggest how to optimize the nitrogen fixation and plant growth under the prevalent conditions.  相似文献   

3.
It is essential to characterize the water use of plants that have potential for the stabilization of rising saline ground-water which could lead to increases in soil salinity. In this study, several techniques were used to determine the seasonal water use characteristics of the perennial grass Agropyron elongatum (tall wheatgrass) growing in a moderately saline, dryland environment with a fluctuating shallow groundwater table varying in electrical conductivity between 0 and 10 dS m?1. Soil conditions were examined in terms of water potential measurements, plant water sources were identified using a stable isotope of water (deuterium, 2H) and evapotranspiration was estimated using hydrological and ventilated chamber methods. Seasonal changes in soil water potential were caused by salt accumulation and soil moisture leading to changes in plant water availability, particularly in the surface soil region over summer and autumn. Evapotranspiration in A. elongatum was high over summer during the peak period of growth (4 mm d?1), with evidence of water use from groundwater and from specific regions of the soil profile. Evapotranspiration was low during the period that A. elongatum was partially senescent in autumn (< 0.5 mm d?1) and the lowest leaf water potential of -3 MPa that was measured occurred during this period of moderate water stress. Intermediate levels of water use (1.5 mm d?1) were measured during winter when the entire soil profile was available for water uptake. Based on physiological characteristics, including aspects of summer water use, root morphology and salt tolerance in A. elongatum, we conclude that this species is suitable for stabilizing the level of moderately saline groundwater in parts of southern Australia, which could reduce the potential for soil salinization.  相似文献   

4.
Salinity intrusion caused by land subsidence resulting from increasing groundwater abstraction, decreasing river sediment loads and increasing sea level because of climate change has caused widespread soil salinization in coastal ecosystems. Soil salinization may greatly alter nitrogen (N) cycling in coastal ecosystems. However, a comprehensive understanding of the effects of soil salinization on ecosystem N pools, cycling processes and fluxes is not available for coastal ecosystems. Therefore, we compiled data from 551 observations from 21 peer‐reviewed papers and conducted a meta‐analysis of experimental soil salinization effects on 19 variables related to N pools, cycling processes and fluxes in coastal ecosystems. Our results showed that the effects of soil salinization varied across different ecosystem types and salinity levels. Soil salinization increased plant N content (18%), soil NH4+ (12%) and soil total N (210%), although it decreased soil NO3? (2%) and soil microbial biomass N (74%). Increasing soil salinity stimulated soil N2O fluxes as well as hydrological NH4+ and NO2? fluxes more than threefold, although it decreased the hydrological dissolved organic nitrogen (DON) flux (59%). Soil salinization also increased the net N mineralization by 70%, although salinization effects were not observed on the net nitrification, denitrification and dissimilatory nitrate reduction to ammonium in this meta‐analysis. Overall, this meta‐analysis improves our understanding of the responses of ecosystem N cycling to soil salinization, identifies knowledge gaps and highlights the urgent need for studies on the effects of soil salinization on coastal agro‐ecosystem and microbial N immobilization. Additional increases in knowledge are critical for designing sustainable adaptation measures to the predicted intrusion of salinity intrusion so that the productivity of coastal agro‐ecosystems can be maintained or improved and the N losses and pollution of the natural environment can be minimized.  相似文献   

5.
Tasmania is a natural laboratory for investigating the evolutionary processes of the Quaternary. It is a large island lying 40-44 degrees S, which was repeatedly glaciated and linked to southeastern continental Australia during the Quaternary. Climate change promoted both the isolation of species in glacial refugia, and an exchange between Tasmanian and mainland floras. Eucalyptus is a complex and diverse genus, which has increased in abundance in Australia over the past 100 kyr, probably in response to higher fire frequency. Morphological evidence suggests that gene flow may have occurred between many eucalypt species after changes in their distribution during the Quaternary. This paper summarizes recent genetic evidence for migration and introgressive hybridization in Tasmanian Eucalyptus. Maternally inherited chloroplast DNA reveals a long-term persistence of eucalypts in southeastern Tasmanian refugia, coupled with introgressive hybridization involving many species. Detailed analysis of the widespread species Eucalyptus globulus suggests that migration from mainland Australia was followed by introgression involving a rare Tasmanian endemic. The data support the hypothesis that changes in distribution of interfertile species during the Quaternary have promoted reticulate evolution in Eucalyptus.  相似文献   

6.
Summary The daily course of stomatal conductance and transpiration was monitored on each separate face of vertical phyllodes of various acacias. The selected phyllodes had a north-south orientation so that one side faced eastwards and the other westwards. The principal measurements were made on Acacia longifolia and A. melanoxylon in Portugal in late summer and autumn, and additional measurements were made on A. ligulata and A. melanoxylon in Australia. In Portugal, irrespective of soil moisture status, conductance showed on early morning maximum with a subsequent gradual decline and sometimes a subsidiary peak in the late afternoon. Maximum conductances appeared to be a function of soil moisture status, whereas the decline in conductance in the late morning and afternoon was correlated with changes in phyllode-to-air vapour pressure deficits rather than changes in phyllode water status. The relationship of transpiration to phyllode water potential did not appear to be influenced by soil moisture status, although transpiration was less in drier soils and in the afternoons, this latter factor contributing to a marked hysteresis in the relationship. The opposing faces of the phyllodes exhibited a high degree of synchrony, showing parallel stomatal opening and closing, despite their large differences in irradiance. Stomatal conductance tended to be higher on the eastern faces in the morning and lower in the afternoon. In A. longifolia the daily average of relative conductance was much the same for both faces, but in A. melanoxylon that of the eastern face was higher and was retained even when the normal orientation of the phyllodes was reversed by turning them through 180°. Synchrony must be achieved by the stomata of both sides responding to common environmental or endogenous signals which are perceived by both surfaces with equal sensitivity.  相似文献   

7.
蒸发条件下潜水埋深对土壤-柽柳水盐分布的影响   总被引:1,自引:0,他引:1  
赵西梅  夏江宝  陈为峰  陈印平 《生态学报》2017,37(18):6074-6080
盐水矿化度下模拟设置4个潜水埋深(0.9、1.2、1.5、1.8 m),分析不同土层的土壤相对含水量(RWC)、含盐量(S_C)和土壤溶液绝对浓度(C_S)等水盐参数,及柽柳叶片和新生枝条的含水量及Na~+含量,探讨盐水矿化度下土壤-柽柳水盐参数对潜水埋深的响应规律。结果表明:各土层RWC与潜水埋深呈负相关,0.9 m潜水埋深下各土层的RWC均最高,且各土层RWC随土层深度的增加呈先降低后增加的趋势,其它潜水埋深下各土层RWC均逐渐增加,1.2 m是地下水所能上升且保持柽柳柱体土壤表层湿润的最高高度。各土层S_C和C_S与潜水埋深呈抛物线型,均表现为先增加后降低,潜水埋深1.2 m时,各土层S_C均最高。随土层深度的增加,各潜水埋深下S_C先降低后增加,而C_S呈现减少趋势;潜水埋深越高,土层间C_S变化幅度越激烈。潜水埋深对柽柳叶片和新生枝条的含水量无显著影响(P0.05),而随潜水埋深的增加,柽柳叶片Na~+含量逐渐增加,新生枝条Na~+含量则先增加后降低。从整个柽柳土柱看,随潜水埋深的增加,整个土壤剖面的RWC均值逐渐降低,而S_C和C_S均值先增加后降低,潜水埋深1.2 m是盐分变化的分界点,建议栽植柽柳的潜水埋深大于1.2 m。  相似文献   

8.
Premise of the study: The glacial cycles of the Quaternary did not impact Australia in the same way as Europe and North America. Here we investigate the history of population isolation, species differentiation, and hybridization in the southeastern Australian landscape, using five species of Lomatia (Proteaceae). We use a chloroplast DNA phylogeography to assess chloroplast haplotype (chlorotype) sharing among these species and whether species with shared distributions have been affected by shared biogeographic barriers. • Methods: We used six chloroplast DNA simple sequence repeats (cpSSR) across five species of Lomatia, sampled across their entire distributional range in southeastern Australia. Resulting size data were combined, presented as a network, and visualized on a map. Biogeographical barriers were tested using AMOVA. To explore hypotheses of chlorotype origin, we converted the network into a cladogram and reconciled with all possible species trees using parsimony-based tree mapping. • Key results: Some chlorotypes were shared across multiple species of Lomatia in the study, including between morphologically differentiated species. Chlorotypes were either widespread in distribution or geographically restricted to specific regions. Biogeographical structure was identified across the range of Lomatia. The most parsimonious reconciled tree incorporated horizontal transfer of chlorotypes. • Conclusions: Lomatia shows evidence of both incomplete lineage sorting and extensive hybridization between co-occurring species. Although the species in the study appear to have responded to a number of biogeographic barriers to varying degrees, our findings identified the Hunter River Valley as the most important long-term biogeographic barrier for the genus in southeastern Australia.  相似文献   

9.
Water use by plants in landscapes with shallow saline groundwater may lead to the accumulation of salt in the root zone. We examined the accumulation of Na+ and Cl? around the roots of the halophyte Atriplex nummularia Lindl. and the impacts of this increasing salinity for stomatal conductance, water use and growth. Plants were grown in columns filled with a sand–clay mixture and connected at the bottom to reservoirs containing 20, 200 or 400 mM NaCl. At 21 d, Na+ and Cl? concentrations in the soil solution were affected by the salinity of the groundwater, height above the water table and the root fresh mass density at various soil depths (P  < 0.001). However, by day 35, the groundwater salinity and height above the water table remained significant factors, but the root fresh mass density was no longer significant. Regression of data from the 200 and 400 mM NaCl treatments showed that the rate of Na+ accumulation in the soil increased until the Na+ concentration reached ~250 mM within the root zone; subsequent decreases in accumulation were associated with decreases in stomatal conductance. Salinization of the soil solution therefore had a feedback effect on further salinization within the root zone.  相似文献   

10.
Measuring the dispersal of wildlife through landscapes is notoriously difficult. Recently, the categorical least cost path algorithm that integrates population genetic data with species distribution models has been applied to reveal population connectivity. In this study, we use this method to identify the possible dispersal corridors of five plant species (Castanopsis tibetana, Schima superba, Cyclocarya paliurus, Sargentodoxa cuneata, Eomecon chionantha) in the Poyang Lake Basin (PLB, largely coinciding with Jiangxi Province), China, in the late Quaternary. The results showed that the strongest population connectivity for the five species occurred in the Wuyi Mountains and the Yu Mountains of the eastern PLB (East Corridor) during the late Quaternary. In the western PLB, populations of the five species were connected by the Luoxiao Mountains and the Jiuling Mountains (West Corridor) but with a lower degree of connectivity. There were some minor connections between the eastern and the western populations across the Gannan Hills. When the corridors of five species were overlaid, the East Corridor and the West Corridor were mostly shared by multiple species. These results indicate that plant species in the PLB could have responded to the Quaternary climate changes by moving along the East Corridor and the West Corridor. Given that dispersal corridors have seldom been considered in the governmental strategies of biodiversity conservation in the PLB, preserving and restoring natural vegetation along these corridors should be prioritized to mitigate the effects of anthropogenic climate change by facilitating migration of plant species and other biota.  相似文献   

11.
The establishment of a woody crop component within dryland agricultural systems in Australia is gaining momentum. Perennial woody crops are assumed to prevent recharge to groundwater and thus control landscape-scale salinization. To optimize the design of these new farming systems it is important to (1) understand the factors limiting woody crop growth and (2) be able to predict survival and growth. On a hill slope, in a water-limited site in southwestern Australia, tree-height was measured across several established belts of a woody crop (Eucalyptus polybractea). The major factor limiting growth was soil depth, with tree-height limited by depths at < 4 m. The tallest trees were associated with a soil depth of 4–6 m in the mid slope position of the sandplain landform. To model growth across the field site, tree-height was regressed against geophysical (magnetic, radiometric, electromagnetic) and topographic data using a multivariate regression tree method. Radiometric and topographic data distinguished two tree-height units which were associated with different soil depths. Radiometric data identified the sandplain landform which included the best growth evident at the field site. Within the sandplain landform, shorter trees were associated with lower elevations. This paper demonstrates the utility of radiometric and topographic data as tools for identifying suitable sites for the establishment of woody crops.  相似文献   

12.
The salinity problem is becoming increasingly widespread in arid countries. In semiarid Tunisia about 50% of the irrigated land is considered as highly sensitive to salinization. To avoid the risk of salinization, it is important to control the soil salinity and keep it below plant salinity tolerance thresholds. The objective of the present study was to provide farmers and rural development offices with a tool and methodology for predicting, monitoring of soil salinity for a better agronomical strategy. The experiments were carried out in the highly complex and heterogeneous semiarid Kalâat Landalous irrigated district of Tunisia. The field and laboratory measurements of soil and water properties were conducted in 1989 and 2006 at different observation scales (2900 ha, 1400 ha, 5200 m long transect, and soil profiles). Seventeen years of reclamation of a saline and waterlogged soil led to the reduction of average electrical conductivity of the soil saturated paste extract (ECe), measured at 5 soil depths (from 0 to 2 m) below the plant salt tolerance threshold and the dilution of groundwater salinity from 18.3 to 6.6 dS m−1. The variation in soil salt storage (ΔMss = Mss2006  Mss1989) in the vadose zone was negative, equal to about −145 × 103 ton (≈−50 ton ha−1). During the same period, the salt balance (Siw–Sdw) estimated from the input dissolved salt brought by irrigation water (Siw) and output salts exported by the drainage network (Sdw) was equal to −685 × 106 kg and the Sdw was 945 × 106 kg. Under irrigation and efficient drainage, the soil salinization could be considered as a reversible process. At the transect scale, the high clay content and the exchangeable sodium percentage was negatively correlated to saturated hydraulic conductivity. The textural stratification, observed at soil profile scale, favors accumulation of salt in the soil. Based on the findings related to the multiscale assessment of soil salinity and groundwater properties, soil salinization factors were identified and a soil salinization risk map (SRU) was elaborated. The shallow groundwater constitutes the main risk of soil salinization. This map can be used by both land planners and farmers to make appropriate decisions related to crop production, and soil and water management.  相似文献   

13.
不同土壤深度对宁夏石嘴山盐碱地细菌菌群多样性的影响   总被引:3,自引:0,他引:3  
水燕  徐增洪  刘国锋 《生态学报》2019,39(10):3597-3606
宁夏自治区是我国受到土壤次生盐渍化危害的重点区域,然而对该地区盐碱化形成机制及影响因素的研究资料较少。在宁夏石嘴山地区采集土壤样本,采用基于16S rRNA的PCR-DGGE技术对不同深度土壤的细菌群落多样性和优势种群进行分析,以期从土壤生态角度探索该地盐渍化成因及改良措施。带谱相似性和UPGMA聚类结果表明,表层(D20 cm)土壤和底层(D80 cm)土壤样本中细菌菌群相似程度较高;而中间层(20 cmD80 cm)土壤样本中细菌菌群相似程度很低。多样性指数分析显示,随着地层深度的增加,菌落的丰富度和多样性均趋于下降;而均匀程度变化幅度不大。对其中5个优势条带进行测序比对的结果表明,该地区土壤可识别优势细菌菌群为变形细菌门Proteobacteria和拟杆菌门Bacteroidetes,但大部分条带未可识别。结果表明该地区盐碱土壤中的细菌菌群多样性程度较高,且优势菌群不尽相同;土壤深度与细菌菌落多样性在一定程度上存在线性关系。为深入研究次生盐渍化土壤的形成机制以及影响因素提供理论参考。  相似文献   

14.
The in vitro growth and sporulation of Frankia isolate HFPCcI3, a nitrogen-fixing symbiont of Casuarina, was inhibited by both the toxic and osmotic effects of sodium chloride. This was demonstrated by comparing HFPCcI3 halotolerance with its tolerance to metabolically neutral melibiose osmoticum at sodium chloride and melibiose concentrations from 0 to 500 mmol L-1. The osmotolerance of this strain is similar to that of other Frankia strains, whereas the halotolerance of this strain is greater than that reported for Frankia strains isolated from actinorhizal plants from moist, temperate regions lacking sodic soils. This finding suggests that differential strain-specific mechanisms are involved in Frankia's ability to tolerate dry versus sodic soil conditions and has important implications for the microbial ecology of soils supporting Casuarina spp.  相似文献   

15.
为研究新疆准噶尔盆地艾比湖湿地不同植物群落近10年土壤水盐及养分的动态变化,以环湖1周160km范围内的典型植被梭梭-柽柳、梭梭、胡杨、芦苇群落为研究对象,分析其在2006和2015年土壤含水量、盐分含量、pH值和有机质含量的变化和空间分布特征。结果表明:(1)近10年艾比湖湿地不同植物群落土壤有机质含量和含水量明显下降且整体水平较低,二者分别下降了24.65%~48%和5.41%~20.16%;土壤含盐量、pH值分别上升81.92%~128.74%和2.99%~4.21%,土壤盐碱程度加强。(2)通过土壤水分-盐分-养分空间分布分析显示,各群落近10年土壤盐渍化增加、养分降低程度大小表现为梭梭-柽柳群落胡杨群落梭梭群落芦苇群落,其中梭梭-柽柳群落土壤达到重度盐化水平,有机质降到6级,而其他群落土壤均为中度盐化,有机质为4级,但芦苇群落土壤退化程度较小。研究发现,近10年艾比湖湿地不同植物群落土壤养分不断下降、水分含量降低、盐渍化程度加剧,土壤处于退化状态;土壤质地、降水和气温暖干化是不同植物群落下土壤退化程度差异的基础,人口、耕地面积和农业用水等人类活动使各群落土壤退化程度的差异更加显著。  相似文献   

16.
We examined growth of Eucalyptus microcarpa seedlings in soil collected from four sites in southeastern Australia, in which retired pasture land has been revegetated with mixed plantings of Eucalyptus and Acacia species. Revegetation of farm land in southeastern Australia is an area of major investment. The focus of the study was to examine the influence of soil biota on seedling growth and its possible interaction with soil enrichment from a legume (Acacia) and decomposition rates. We used a soil freezing treatment (−80°C for 3 days) to retard the soil biota, with the expectation that invertebrates in particular would be killed. Soil freezing did not cause a nutrient pulse, but did reduce the level of ammonium in soil. Nitrate levels increased with time in pots, regardless of the soil treatment. Decomposition rates measured using cellulose substrate were significantly reduced by the freeze treatment, but only for approximately 90 days. Eucalyptus microcarpa seedlings grown in freeze-treated soil were approximately 40% smaller (total biomass), had marginally lower LAR (leaf area ratio), and significantly lower LMA (leaf mass per area). Low LMA indicates that leaves are either thinner in cross-section or less dense. We hypothesise that both the poor growth of seedlings and production of less robust leaves are consequences of reduced availability of soil nutrients due to the diminished soil biota after freeze treatment. Litter under Acacia was richer in nitrogen than litter under Eucalyptus but there was no difference in nitrogen content of soil, and consequently no soil source effects on plant growth or decomposition. We suggest that variation in the soil biota has the potential to greatly enhance or hinder the success of revegetation on retired agricultural land, but enrichment of soil by decomposition of nitrogen rich litter in these sites requires longer than the 8–15 years since they were revegetated.  相似文献   

17.
玛纳斯河流域盐渍化灌区生态环境遥感监测研究   总被引:8,自引:4,他引:4  
张添佑  王玲  王辉  彭丽  罗冲 《生态学报》2017,37(9):3009-3018
土壤盐渍化已成为全球性问题,给生态环境及农业生产带来严重的威胁。为了快速、准确评价土壤盐渍化给区域生态坏境带来的影响,该文提出了新的完全基于遥感数据的遥感生态指数(SSEI,Soil Salinization Ecology Index)来监测玛纳斯河流域盐渍化灌区生态环境变化。该指数利用主成分分析的方法耦合与土壤盐渍化相关的土壤盐度、地表反照率、植被覆盖度和土壤湿度四大地表参数,指数构建是数据本身性质所决定,不同于以往遥感与非遥感指数加权叠加易受人为影响。研究结果表明:耦合与盐渍化信息相关的各遥感指数得到的生态指数,能够对土壤盐渍化影响区域的生态环境进行快速、定量、客观的监测。将该指数应用到新疆玛纳斯河流域灌区,结果表明在近26年优和良等级生态环境面积增加了12.89%,这说明灌区生态环境有所改善。该研究对土壤盐渍化监测与评价具有一定参考意义。  相似文献   

18.
Tasmanian rotifera: Affinities with the Australian fauna   总被引:2,自引:2,他引:0  
Plankton was collected from more than 100 lentic and lotic habitats in Tasmania. Of the 131 rotifer taxa identified, 126 are first records for the island, and 9 are first records for Australia. Three new species, Aspelta tilba, sp. nov., Lepadella tyleri sp. nov., and Testudinella unicornuta sp. nov. are described and figured. Horaëlla brehmi, which has a disjunct distribution (equatorial regions and southeastern Australia), also occurs in Tasmanian waters. The morphology and development of this rare species are discussed. Geographical affinities of the Tasmanian assemblage are considered. There appears to be a significant tropical component in the Tasmanian Rotifera.  相似文献   

19.
The Casuarinaceae consists of the 4 genera Gymnostoma, Ceuthostoma, Casuarina and Allocasuarina. All the genera are found living today in Australia, Malaysia, Melanesia, and Southeast Asia. An abundant and widespread fossil record of the genus Gymnostoma is known from New Zealand, Argentina, South Africa, and Australia. This paper provides a compilation of basic vegetative and reproductive morphological data of the 4 genera of the Casuarinaceae with special emphasis on these features in Gymnostoma. The features are presented in tabular form and the data are compared and discussed. Most of the genera can be clearly distinguished by the morphology of their vegetative and reproductive organs. Species differences within the extant genera often are difficult to distinguish; therefore, comparative systematic analysis of these fossils from fragmentary and incomplete remains ranging through time will be very difficult, and care must be taken when interpreting evolutionary trends from them.  相似文献   

20.
D. D. Baker  D. Du  M. Fried 《Protoplasma》1994,183(1-4):24-28
Summary Experiments were conducted to determine the effect on biological dinitrogen fixation byCasuarina of available nitrogen (N) in the substrate and competition by interplantedEucalyptus. In these experiments, combined N was applied to the plants after nodules were developed and functioning. Both environmental factors, nitrate and competition, were observed to influence biological dinitrogen fixation byCasuarina, but not yield (total dry weight). In one experiment, the proportion of nitrogen derived byCasuarina from atmospheric fixation (pNdfa) was observed to be inhibited by potassium nitrate in a linear fashion. However, substrate N did not significantly affect the weight of root nodules. Thus nodule dry weight was not highly correlated with the proportion of nitrogen fixed. In a second experiment, the presence of a non-fixing interplanted species,Eucalyptus, increased dinitrogen fixation inCasuarina.Casuarina interplanted withEucalyptus obtained a greater proportion of its nitrogen (94.75%) from fixation than didCasuarina grown alone (86.68%) suggesting that competition for substrate N influences the proportion of nitrogen fixed by this actinorhizal plant.Dedicated to the memory of Professor John G. Torrey  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号