首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Since accelerated turnover of histamine in oxyntic mucosa may be an important factor in the pathogenesis of peptic ulcers, the effect of dexamethasone and other glucocorticoids on the activity of gastric histidine decarboxylase (HDC) was studied in the rat. The activity of HDC in rat oxyntic mucosa increased significantly after dexamethasone was injected s.c. to rats at doses larger than 0.4 mg/kg body weight. The maximum response of the HDC activity to dexamethasone (4 mg/kg) was observed 8 h after the treatment. The activity of ornithine decarboxylase (ODC) increased at 4 h, while that of DOPA decarboxylase showed no significant change throughout the 16-h period following a single injection of dexamethasone. The mucosal levels of histamine, putrescine, and spermidine rose significantly after the steroid treatment, while the spermine levels remained nearly constant. There was no sex difference in these responses to dexamethasone. Betamethasone showed nearly the same effects as dexamethasone on the decarboxylase activities and the mucosal levels of diamines. Serum gastrin levels showed no significant change for the first 4 h and then rose significantly 8 and 16 h after dexamethasone treatment. Pentagastrin (0.5 mg/kg) increased the HDC activity, while it showed no significant effect on either the mucosal ODC activity or levels of polyamines and histamine. These data suggest that dexamethasone influences the metabolism of histamine and polyamines in rat oxyntic mucosa both directly and via stimulation of gastrin release.  相似文献   

3.
A mutant carrot callus line resistant to a high concentration (1 mM) of putrescine has been isolated. A high level of endogenous putrescine, about 13-fold higher than in the controls grown in the absence of putrescine, characterized this resistant mutant. Ornithine-, arginine- and S-adenosylmethionine decarboxylase activities were similar in the resistant line and in the controls by the fifth subculture. The uptake of putrescine when supplied to the medium at high concentration (1 mM), was similar in both the putrescine-treated calli and in the untreated controls. At low concentrations (0.64 M) however the putrescine absorbed by the resistant calli was less than that absorbed by the controls. Putrescine uptake took place almost always against a concentration gradient and might be due to an active mechanism.Abbreviations ADC arginine decarboxylase - 2,4D 2,4-dichlorophenoxyacetic acid - ODC ornithine decarboxylase - SAMDC S-adenosylmethionine decarboxylase - TCA trichloroacetic acid - TLC thin layer chromatography  相似文献   

4.
It has been known for more than four decades that during mammalian estrous cycles, luteinizing hormone stimulates a transitory rise in the ovaries of ornithine decarboxylase (ODC) activity and its enzymatic product putrescine, concurrent with oocyte maturation in vivo. Inhibition of this transitory ODC/putrescine rise, however, does not appear to affect oocyte maturation or ovulation. Using several mouse models and combining in vitro and in vivo approaches, we demonstrated that deficiency of ODC during oocyte maturation is correlated with increased levels of egg aneuploidies. These results suggest that the transitory ovarian ODC rise in late proestrus is important for ensuring proper chromosome segregation during oocyte maturation. Older mice (8 months of age) exhibited about 1/3 that of young mice in LH‐stimulated ovarian ODC activity and a corresponding increase in egg aneuploidies. Moreover, a combination of putrescine supplementation in mouse drinking water leading up to oocyte retrieval and in oocyte maturation medium reduced egg aneuploidies of the older mice from 12.7% to 5.3%. Therefore, ovarian ODC deficiency might be an important etiology of maternal aging‐related aneuploidies, and peri‐ovulatory putrescine supplementation might reduce the risk of aneuploid conceptions in older women.  相似文献   

5.
We show herein that lipopolysaccharides (LPS), in vitro, synergize with GM-CSF to increase histamine synthesis by murine bone marrow cells. LPS has no effect on its own and does not potentiate histamine synthesis promoted by IL-3, the only other cytokine sharing this biological activity with GM-CSF. Despite the fact that GM-CSF and LPS synergistically increase PGE2 levels, the potentiating effect of LPS does not require PGE2 that have been previously shown to enhance GM-CSF-induced histamine synthesis. We provide evidence that this effect of LPS on histamine production by bone marrow cells is mediated by the intracellular cAMP transduction signal. In addition, LPS and cAMP enhance GM-CSF-induced histidine decarboxylase activity, showing that both substances act on histamine synthesis. Contrary to in vitro results, LPS injection into mice induces an increase in both intracellular histamine and HDC activity in bone marrow cells. Our results support the conclusion that this effect is mediated by GM-CSF. In conclusion, LPS appears to be a powerful HDC inducer in hematopoietic organs because of its ability, on one hand, to induce circulating GM-CSF and, on the other hand, to potentiate GM-CSF induction of HDC.  相似文献   

6.
Disorders of the microcirculation and reduced resistance to infection are major complications in diabetes. Histamine enhances capillary permeability, and may also reduce cellular immunity. Here we demonstrate that streptozotocin (STZ)-induced diabetes in mice not only enhances the activity of the histamine-forming enzyme, histidine decarboxylase (HDC), but also augments the lipopolysaccharide (LPS)-induced elevation of HDC activity in various tissues, resulting in a production of histamine. The augmentation of HDC activity occurred as early as 2 days after STZ injection, but was not seen in nondiabetic mice. When given to STZ-treated mice, nicotinamide, an inhibitor of poly(ADP-ribose) synthetase, reduced both the elevation of blood glucose and the elevations of HDC activity and histamine production. These results suggest that hyperglycemia may initiate a sequence of events leading not only to an enhancement of basal HDC activity, but also to a sensitization of mice to the HDC-inducing action of LPS. We hypothesize that bacterial infections and diabetic complications may mutually exacerbate one another because both involved an induction of HDC.  相似文献   

7.
8.
A role of IL-18 in the induction of gastric lesions by water immersion and restraint stress (WRS) was investigated. When wild-type BALB/c mice were exposed to WRS, levels of IL-18 in the serum and stomach increased rapidly with the development of acute gastric lesions. In IL-18-deficient mice [IL-18 knockout (KO) mice] similarly exposed to WRS, no gastric lesions were observed, but the administration of IL-18 before exposure to WRS resulted in the induction of WRS-induced gastric lesions. WRS enhanced gastric histidine decarboxylase (HDC) activity with concomitant increases in gastric histamine content. In IL-18 KO mice, the WRS-induced elevation of gastric HDC activity and histamine levels was much less than that in wild-type mice, but it was augmented by prior administration of IL-18. Treatment of wild-type mice with cimetidine, a histamine H2 receptor antagonist, inhibited the formation of WRS-induced gastric lesions with no effect on the induction of gastric IL-18 by WRS. Levels of corticosterone, one of the stress indicators, were lower in IL-18 KO mice than in wild-type mice. The glucocorticoid receptor antagonist mifepristone had no effect on gastric IL-18 and histamine levels but aggravated the stress-induced gastric lesions, indicating that corticosterone was not involved in the IL-18-mediated formation of stress-induced gastric lesions. These results indicate that IL-18 is involved in the induction of gastric lesions by WRS through augmentation of HDC activity and production of histamine in the stomach.  相似文献   

9.
The polyamine content of the skin of BALB/c and C3H mice was determined at intervals, after injecting Leishmania tropica major. In BALB/c mice, putrescine and spermidine levels increased three- to seven-fold; in C3H mice, spontaneous recovery occurred after 3 weeks, accompanied by a reduction in putrescine and spermidine levels. Ornithine decarboxylase activity was negligible in normal, uninfected skin of both BALB/c and C3H mice, but increased steadily during infection. Treatment with drugs that inhibit the growth of leishmanial amastigotes in the skin of mice also reduced polyamine levels and ornithine decarboxylase activity of previously infected skin. There was a close correlation between the therapeutic activity of the drugs and their effect on polyamine content and synthesis. The aminoglycoside paromomycin, which was chemotherapeutically more effective than pentamidine, also had a greater effect on polyamine levels. S-adenosyl-L-Methionine decarboxylase activity in the skin of BALB/c and C3H mice was only slightly affected by the parasites. Polyamine levels and ornithine decarboxylase activity could possibly serve as means for measuring the growth of leishmanial parasites in skin and other tissues and as a measure of the efficacy of anti-leishmanial chemotherapeutics.  相似文献   

10.
11.
Genetic ablation of the histamine producing enzyme histidine decarboxylase (HDC) leads to alteration in exploratory behaviour and hippocampus-dependent learning. We investigated how brain histamine deficiency in HDC knockout mice (HDC KO) affects hippocampal excitability, synaptic plasticity, and the expression of histamine receptors. No significant alterations in: basal synaptic transmission, long-term potentiation (LTP) in the Schaffer collateral synapses, histamine-induced transient changes in the CA1 pyramidal cell excitability, and the expression of H1 and H2 receptor mRNAs were found in hippocampal slices from HDC KO mice. However, when compared to WT mice, HDC KO mice demonstrated: 1. a stronger enhancement of LTP by histamine, 2. a stronger impairment of LTP by ammonia, 3. no long-lasting potentiation of population spikes by histamine, 4. a decreased expression of H3 receptor mRNA, and 5. less potentiation of population spikes by H3 receptor agonism. Parallel measurements in the hypothalamic tuberomamillary nucleus, the origin of neuronal histamine, demonstrated an increased expression of H3 receptors in HDC KO mice without any changes in the spontaneous firing of “histaminergic” neurons without histamine and their responses to the H3 receptor agonist (R)-α-methylhistamine. We conclude that the absence of neuronal histamine results in subtle changes in hippocampal synaptic transmission and plasticity associated with alteration in the expression of H3 receptors.  相似文献   

12.
Murine embryonal carcinoma F9 cells can be induced to differentiate by 2-difluoromethylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase (ODC). The differentiated phenotype is similar to that of retinoic acid (RA)-treated F9 cells. In contrast to F9 cells the differentiated cells secrete plasminogen activator and express keratin intermediate filaments. Both DFMO and RA reduce ornithine decarboxylase activity, polyamine levels and inhibit cell proliferation of F9 cells. These compounds also reduce ODC, polyamine levels and proliferation of mouse BALB/c 3T6 fibroblasts. RA inhibits the induction of ODC by insulin, serum and to a lesser extent that of epidermal growth factor (EGF) and 12-O-tetradecanoylphorbol-13-acetate (TPA). The action of DFMO and RA can be distinguished by their response to putrescine. The induction of differentiation and the inhibition of cell proliferation by DFMO can be totally abolished upon the addition of putrescine, whereas the actions of RA are not affected at all. These results suggest that the inhibition of ODC and reduction of polyamines are not causal in the induction of differentiation and the inhibition of proliferation by RA.  相似文献   

13.
Prior treatment with commercially prepared and acetone-extracted lipopolysaccharide (LPS) was found to suppress the expression of antibody-directed, cell-mediated cytotoxicity (ADCC) to chicken red blood cells (CRBC) by spleen cells from C57/BL10, C3H, and BALB/c mice. The in vitro incubation with commercial LPS suppressed ADCC-CRBC activity of spleen cells from both C3H/HeJ and C3H/HeN mice. Only the C3H/HeN strain was suppressed when treated with purified LPS. ADCC-CRBC activity of neonatal spleen cells could be suppressed after a 3-hr in vivo incubation with LPS while adult spleen cells required a minimum of 15 hr preincubation.  相似文献   

14.
Histamine is a biogenic amine with multiple physiological functions. Its importance in allergic inflammation is well characterized; moreover, it plays a role in the regulation of gastric acid production, various hypothalamic functions, such as food uptake, and enhancing TH2 balance during immune responses. Using histidine decarboxylase gene targeted (HDC(-/-)) BALB/c mice, we studied the effect of the absence of histamine on four cytochrome p450 enzyme activities. Their selective substrates were measured: ethoxyresorufin O-dealkylase activity of CYP1A, pentoxyresorufin O-dealkylase activity of CYP2B, chlorzoxazone 6-hydroxylase activity of CYP2E1 and ethylmorphine N-demethylase activity of CYP3A.The results indicate a significant elevation of CYP2E1 and CYP3A activities, however, no change in CYP1A and CYP2B activities was seen in HDC targeted mice compared to wild type controls with identical genetic backgrounds.  相似文献   

15.
Summary Treatment with -difluoromethylornithine (DFMO), an enzyme-activated irreversible inhibitor of ornithine decarboxylase (ODC), depletes the putrescine and spermidine content, and reduces the growth rate of Ehrlich ascites tumor cells.The addition of putrescine, which is the immediate precursor of spermidine, promptly replenished the intracellular putrescine and spermidine pools and completely reversed the antiproliferative effect of DFMO. A sequential accumulation of spermine, spermidine and putrescine was observed.1,3-diaminopropane, a lower homolog of putrescine, did not reverse the antiproliferative effect of DFMO, despite its structural similarity and identical positive charge. By inhibiting remaining ODC activity, resistant to 5 mM DFMO, and possibly by inhibiting spermine synthase activity, 1,3-diaminopropane produced a further decrease in total polyamine content by reducing the spermine content.Mg2+, which can replace putrescine in many in vitro reactions, completely lacked the capacity to reverse the antiproliferative effect of putrescine and spermidine deficiency.Abbreviations DFMO -difluoromethylornithine - ODC ornithine decarbxylase  相似文献   

16.
Histidine decarboxylase (HDC) catalyses the formation of histamine from L‐histidine. Histamine is a biogenic amine involved in many physiological and pathological processes, but its role in the regeneration of skeletal muscles has not been thoroughly clarified. Here, using a murine model of hindlimb ischaemia, we show that histamine deficiency in Hdc knockout (Hdc?/?) mice significantly reduces blood perfusion and impairs muscle regeneration. Using Hdc‐EGFP transgenic mice, we demonstrate that HDC is expressed predominately in CD11b+Gr‐1+ myeloid cells but not in skeletal muscles and endothelial cells. Large amounts of HDC‐expressing CD11b+ myeloid cells are rapidly recruited to injured and inflamed muscles. Hdc?/? enhances inflammatory responses and inhibits macrophage differentiation. Mechanically, we demonstrate that histamine deficiency decreases IGF‐1 (insulin‐like growth factor 1) levels and diminishes myoblast proliferation via H3R/PI3K/AKT‐dependent signalling. These results indicate a novel role for HDC‐expressing CD11b+ myeloid cells and histamine in myoblast proliferation and skeletal muscle regeneration.  相似文献   

17.
BALB/c mice have been shown to easily induce Th2 type responses in several infection models. In this study, to examine the mechanisms of Th2 dominant responses in BALB/c mice, we assessed several macrophage functions using C3H/HeN, C57BL/6, and BALB/c mouse strains. Peritoneal macrophages from three strains of mice equally produced IL-12 by stimulation with LPS plus IFN-gamma. However, IFN-gamma production in response to IL-12 or IL-12 plus IL-18 was much lower in macrophages from BALB/c mice than other strains. IFN-gamma produced by activated macrophages induced IL-12R mRNA expression in T cells and macrophages themselves depending on their amount of IFN-gamma; namely, macrophages from BALB/c mice induced lower expression of IL-12R. Intracellular levels of STAT4 were much lower in macrophages from BALB/c mice. However, other STATs, such as STAT1 or STAT6, were expressed similarly in the three mouse strains. STAT4 and IFN-gamma production by other cell types such as T cells and B cells were equal in C3H/HeN and BALB/c mice. These results indicate that macrophages from Th2-dominant BALB/c mice have different functional characters compared with other mouse strains; that is, STAT4 expression and IFN-gamma production are reduced, which is one of the causes to shift to Th2-type responses.  相似文献   

18.
Selenomonas ruminantium synthesizes cadaverine and putrescine from L-lysine and L-ornithine as the essential constituents of its peptidoglycan by a constitutive lysine/ornithine decarboxylase (LDC/ODC). S. ruminantium grew normally in the presence of the specific inhibitor for LDC/ODC, DL-alpha-difluoromethylornithine, when arginine was supplied in the medium. In this study, we discovered the presence of arginine decarboxylase (ADC), the key enzyme in agmatine pathway for putrescine synthesis, in S. ruminantium. We purified and characterized ADC and cloned its gene (adc) from S. ruminantium chromosomal DNA. ADC showed more than 60% identity with those of LDC/ODC/ADCs from Gram-positive bacteria, but no similarity to that from Gram-negative bacteria. In this study, we also cloned the aguA and aguB genes, encoding agmatine deiminase (AguA) and N-carbamoyl-putrescine amidohydrolase (AguB), both of which are involved in conversion from agmatine into putrescine. AguA and AguB were expressed in S. ruminantium. Hence, we concluded that S. ruminantium has both ornithine and agmatine pathways for the synthesis of putrescine.  相似文献   

19.
Ornithine decarboxylase (ODC) is feedback regulated by polyamines. ODC antizyme mediates this process by forming a complex with ODC and enhancing its degradation. It has been reported that polyamines induce ODC antizyme and inhibit ODC activity. Since exogenous polyamines can be converted to each other after they are taken up into cells, we used an inhibitor of S-adenosylmethionine decarboxylase, diethylglyoxal bis(guanylhydrazone) (DEGBG), to block the synthesis of spermidine and spermine from putrescine and investigated the specific roles of individual polyamines in the regulation of ODC in intestinal epithelial crypt (IEC-6) cells. We found that putrescine, spermidine, and spermine inhibited ODC activity stimulated by serum to 85, 46, and 0% of control, respectively, in the presence of DEGBG. ODC activity increased in DEGBG-treated cells, despite high intracellular putrescine levels. Although exogenous spermidine and spermine reduced ODC activity of DEGBG-treated cells close to control levels, spermine was more effective than spermidine. Exogenous putrescine was much less effective in inducing antizyme than spermidine or spermine. High putrescine levels in DEGBG-treated cells did not induce ODC antizyme when intracellular spermidine and spermine levels were low. The decay of ODC activity and reduction of ODC protein levels were not accompanied by induction of antizyme in the presence of DEGBG. Our results indicate that spermine is the most, and putrescine the least, effective polyamine in regulating ODC activity, and upregulation of antizyme is not required for the degradation of ODC protein.  相似文献   

20.
The role of ornithine decarboxylase (ODC) in polyamine metabolism has long been established, but the exact source of ornithine has always been unclear. The arginase enzymes are capable of producing ornithine for the production of polyamines and may hold important regulatory functions in the maintenance of this pathway. Utilizing our unique set of arginase single and double knockout mice, we analyzed polyamine levels in the livers, brains, kidneys, and small intestines of the mice at 2 wk of age, the latest timepoint at which all of them are still alive, to determine whether tissue polyamine levels were altered in response to a disruption of arginase I (AI) and II (AII) enzymatic activity. Whereas putrescine was minimally increased in the liver and kidneys from the AII knockout mice, spermidine and spermine were maintained. ODC activity was not greatly altered in the knockout animals and did not correlate with the fluctuations in putrescine. mRNA levels of ornithine aminotransferase (OAT), antizyme 1 (AZ1), and spermidine/spermine-N1-acetyltransferase (SSAT) were also measured and only minor alterations were seen, most notably an increase in OAT expression seen in the liver of AI knockout and double knockout mice. It appears that putrescine catabolism may be affected in the liver when AI is disrupted and ornithine levels are highly reduced. These results suggest that endogenous arginase-derived ornithine may not directly contribute to polyamine homeostasis in mice. Alternate sources such as diet may provide sufficient polyamines for maintenance in mammalian tissues. ornithine; putrescine; spermidine; spermine; decarboxylase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号