首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Malignant human glioma D-298 MG amplifies a rearranged epidermal growth factor receptor (EGFR) gene (c-erbB proto-oncogene), resulting in an in-frame deletion of 83 amino acids in domain IV of the extracellular domain of the EGFR. EGF and transforming growth factor-a (TGF-a) bound to the mutant EGFR with high affinity and enhanced the intrinsic mutant EGFR kinase activity. The mutant EGFR was capable of transducing EGF-stimulated glioma cell proliferation and invasiveness in an in vitro three-dimensional spheroid model. The deletion-mutant EGFR in D-298 MG is capable of being activated by growth factor; this suggests that overexpression of this mutant EGFR protein rather than structural alteration may be the more significant biologic event.  相似文献   

2.
Healing of mucosal damage takes place in two phases: restitution of mucosal integrity and remodeling towards recreating the original glandular arrangements. These processes can be observed in several experimental rodent models: e.g., cryoprobe or NSAID-generated ulcers in the gastric or duodenal mucosa and following surgical resection of the small or large bowel. In some studies, it has been possible to detect changes in the expression of peptides, either in the reparative epithelium or adjacent to the damage, that may contribute to the healing processes. Trefoil peptides are expressed constitutively by epithelial cells in specific regions of the gastrointestinal tract, in association with mucins. Several studies have shown that trefoil peptide expression is enhanced at sites of damage in man and rat, and experimental evidence supports their active participation in the healing process. Recombinant trefoil peptides are able to enhance the rate of epithelial cell migration in vitro and are able to protect against indomethacin-induced damage in vivo, yet they do not depend upon TGF-beta for enhancing cell migration and do not appear to affect acid secretion. The mode of action of trefoil peptides appears to be receptor-mediated but is not simple. There is good evidence that there are interactions between members of the trefoil family and the EGF family that are beneficial for mucosal defense and repair. This raises the possibility that combining trefoil peptides with other growth factors or small molecules may be advantageous for treatment of ulceration.  相似文献   

3.
Specific mitogens stimulate the proliferation and repress the differentiation of mouse myoblasts (MM14). When mitogens are depleted, MM14 cells cease proliferation, commit to terminal differentiation, and become refractory to growth stimulation. The behavior of mitogen receptors during the transition from a proliferative to a permanently postmitotic state was examined using the epidermal growth factor receptor (EGFR) as a model system. Whereas proliferating myoblasts bound substantial amounts of EGF, their binding capacity declined rapidly upon exposure to low-mitogen medium. The decline became irreversible when a cell differentiated. Within 24 h, less than 5% of the original EGF binding capacity remained. Since the ability to internalize and degrade bound EGF was unaffected, the change presumably reflected a decrease in EGFR availability. Several observations indicated that loss of EGFR following mitogen removal is related to differentiation rather than the result of starvation or cell-cycle arrest. First, the decline is correlated with the absence of a single mitogen (fibroblast growth factor) and is independent of serum concentrations. Second, myoblasts that are either cycling through G1 or arrested at G0, but prevented from differentiating, all bind large amounts of EGF. These findings suggest that specific reduction in mitogen receptors could be part of a mechanism whereby terminally differentiating cells become refractory to mitogenic stimulation.  相似文献   

4.
Neural progenitor cells (NPCs) are sensitive to epidermal growth factor (EGF), which is essential for their self-renewal. Recently we showed that high level of connexin43 (Cx43) expression and gap junctional intercellular communication (GJIC) are also required to maintain NPCs in a proliferative state. In this study the connection between EGF/EGFR signalling and Cx43 expression was investigated during proliferation and differentiation of cultured ReNcell VM197 human NPCs. We found that EGF, but not basic fibroblast growth factor (bFGF), strongly stimulated both Cx43 expression and GJIC in proliferating cells. This stimulatory effect was blocked by AG1478, a specific inhibitor for EGFR kinase. Notably, knockdown of Cx43 strongly inhibited the cell proliferation promoted by EGF/EGFR signalling. High sensitivity to EGF was still maintained in differentiated NPCs. Administration of EGF to differentiating cells led to a pronounced increase (9-fold) of Cx43 expression and a re-induction of proliferation. This strong impact of EGF was found to correlate with a surprisingly massive 60-fold up-regulation of EGFR expression in differentiated cells. Our data argue for a mutual regulation between Cx43 expression and EGF/EGFR signalling during self-renewal and differentiation of NPCs.  相似文献   

5.
The epidermal growth factor receptor (EGFR) kinase catalyzes phosphorylation of tyrosines in its C terminus and in other cellular targets upon epidermal growth factor (EGF) stimulation. Here, by using peptides derived from EGFR autophosphorylation sites and cellular substrates, we tested the hypothesis that ligand may function to regulate EGFR kinase specificity by modulating the binding affinity of peptide sequences to the active site. Measurement of the steady-state kinetic parameters, K(m) and k(cat), revealed that EGF did not affect the binding of EGFR peptides but increased the binding affinity for peptides corresponding to the major EGFR-mediated phosphorylation sites of the adaptor proteins Gab1 (Tyr-627) and Shc (Tyr-317), and for peptides containing the previously identified optimal EGFR kinase substrate sequence EEEEYFELV (3-7-fold). Conversely, EGF stimulation increased k(cat) approximately 5-fold for all peptides. Thus, ligand changed the relative preference of the EGFR kinase for substrates as evidenced by EGF increases of approximately 5-fold in the specificity constants (k(cat)/K(m)) for EGFR peptides, whereas approximately 15-40-fold increases were observed for other peptides, such as Gab1 Tyr-627. Furthermore, we demonstrate that EGF (i) increased the binding affinity of EGFR to Gab1 Tyr-627 and Shc Tyr-317 sites in purified GST fusion proteins approximately 4-6-fold, and (ii) EGF significantly enhanced the phosphorylation of these sites, relative to EGFR autophosphorylation, in cell lysates containing the full-length Gab1 and Shc proteins. Analysis of peptides containing amino acid substitutions indicated that residues C-terminal to the target tyrosine were critical for EGF-stimulated increases in substrate binding and regulation of kinase specificity. To our knowledge, this represents the first demonstration that ligand can alter specificity of a receptor kinase toward physiologically relevant targets.  相似文献   

6.
We apply a mathematical model for receptor-mediated cell uptake and processing of epidermal growth factor (EGF) to analyze and predict proliferation responses to fibroblastic cells transfected with various forms of the EGF receptor (EGFR) to EGF. The underlying conceptual hypothesis is that the mitogenic signal generated by EGF/EGFR binding on the cell surface, via stimulation of receptor tyrosine kinase activity, is attenuated when the receptors are downregulated and growth factor is depleted by endocytic internalization and subsequent intracellular degradation. Hence, the cell proliferation rate ought to depend on receptor/ligand binding and trafficking parameters as well as on intrinsic receptor signal transduction properties. The goal of our modeling efforts is to formulate this hypothesis in quantitative terms. The mathematical model consists of kinetic equations for binding, internalization, degradation, and recycling of EGF and EGFR, along with an expression relating DNA synthesis rate to EGF/EGFR complex levels. Parameter values have been previously determined from independent binding and trafficking kinetic experiments on B82 fibroblasts transfected with wild-type and mutant EGFR. We show that this model can successfully interpret literature data for EGF-dependent growth of NR6 fibroblasts transfected with wild-type EGFR. Moreover, it successfully predicts the literature observation that NR6 cells transfected with a delta 973 truncation mutant EGFR, which is kinase-active but internalization-deficient, require an order of magnitude lower EGF concentration than cells with wild-type EGFR for half-maximal proliferation rate. This result demonstrates that it may be feasible to genetically engineer mammalian cell lines with reduced growth factor requirements by a rational, nonempirical approach. We explore by further model computations the possibility of exploiting other varieties of EGFR mutants to alter growth properties of fibroblastic cells, based on relationships between changes in the primary structure of the EGF receptor and the rates of specific receptor/ligand binding and trafficking processes. Our studies show that the ability to predict cell proliferation as a function of serum growth factors such as EGF could lead to the designed development of cells with optimized growth responses. This approach may also aid in elucidation of mechanisms underlying loss of normal cell proliferation control in malignant transformation, by demonstrating that receptor trafficking dynamics may in some cases play as important a role as intrinsic signal transduction in determining the overall resulting mitogenic response.  相似文献   

7.
The trefoil peptide intestinal trefoil factor (ITF) plays a critical role in the protection of colonic mucosa and is essential to restitution after epithelial damage. These functional properties are accomplished through coordinated promotion of cell migration and inhibition of apoptosis. ITF contains a unique three-looped trefoil motif formed by intrachain disulfide bonds among six conserved cysteine residues, which is thought to contribute to its marked protease resistance. ITF also has a seventh cysteine residue, which permits homodimer formation. A series of cysteine-to-serine substitutions and a C-terminally truncated ITF were made by PCR site-directed mutagenesis. Any alteration of the trefoil motif or truncation resulted in loss of protease resistance. However, neither an intact trefoil domain nor dimerization was required to promote cell migration. This pro-restitution activity correlated with the ability of the ITF mutants to activate mitogen-activated protein (MAP) kinase independent of phosphorylation of the epidermal growth factor (EGF) receptor. In contrast, only intact ITF retained both phosphatidylinositol 3-kinase and the EGF receptor-dependent antiapoptotic effect in HCT116 and IEC-6 cells. The inability to block apoptosis correlated with a loss of trefoil peptide-induced transactivation of the EGF receptor or Akt kinase in HT-29 cells. In addition to defining structural requirements for the functional properties of ITF, these findings demonstrate that distinct intracellular signaling pathways mediate the effects of ITF on cell migration and apoptosis.  相似文献   

8.
The use of genetically engineered mice with both gain-of-function and loss-of-function mutations has been particularly informative about the normal and pathophysiological actions of a number of regulatory peptides of the gastrointestinal tract. This review highlights some of the major findings pertinent to the epidermal growth factor (EGF) receptor and its ligands, particularly the major gut ligand transforming growth factor-alpha, as well as the trefoil peptides. Both of these peptide families have important local actions in maintaining tissue homeostasis and repair after injury, and when mechanisms governing their regulation are disrupted they may contribute to disease progression. Future applications of transgenic technology to these areas are likely to be productive in furthering our understanding of the biology of these peptides in health and disease.  相似文献   

9.
Gangliosides are shed by tumor cells and can bind to normal cells in the tumor microenvironment and affect their function. Exposure of fibroblasts to exogenous gangliosides increases epidermal growth factor (EGF)-induced fibroblast proliferation and enhances EGF receptor (EGFR)-mediated activation of the mitogen-activated protein kinase signaling pathway (Li, R., Liu, Y., and Ladisch, S. (2001) J. Biol. Chem. 276, 42782-42792). Here we report that the EGFR itself is the target of this ganglioside effect: Preincubation of normal human dermal fibroblasts with G(D1a) ganglioside enhanced both EGF-induced EGFR autophosphorylation and receptor-tyrosine kinase activity. The enhancement was rapid (within 30 min), not due to alteration of time kinetics of the EGFR response to EGF, and reproduced in purified G(D1a)-enriched cell membranes isolated from ganglioside-preincubated fibroblasts. Evaluating the initial steps underlying activation, EGF binding, and EGFR dimerization, we found that G(D1a) enrichment of the cell membrane increased EGFR dimerization and the effective number of high affinity EGFR without increasing total receptor protein. Unexpectedly, G(D1a) enrichment also triggered increased EGFR dimerization in the absence of growth factor. This resulted in enhanced activation of the EGFR signal transduction cascade when EGF was added. We conclude that membrane ganglioside enrichment of normal fibroblasts (such as by tumor cell ganglioside shedding) facilitates receptor-receptor interactions (possibly by altering membrane topology), causing ligand-independent EGFR dimerization and, in turn, enhanced EGF signaling.  相似文献   

10.
Autocrine EGF-receptor (EGFR) ligands are normally made as membrane-anchored precursors that are proteolytically processed to yield mature, soluble peptides. To explore the function of the membrane-anchoring domain of EGF, we expressed artificial EGF genes either with or without this structure in human mammary epithelial cells (HMEC). These cells require activation of the EGFR for cell proliferation. We found that HMEC expressing high levels of membrane- anchored EGF grew at a maximal rate that was not increased by exogenous EGF, but could be inhibited by anti–EGFR antibodies. In contrast, when cells expressed EGF lacking the membrane-anchoring domain (sEGF), their proliferation rate, growth at clonal densities, and receptor substrate phosphorylation were not affected by anti–EGFR antibodies. The sEGF was found to be colocalized with the EGFR within small cytoplasmic vesicles. It thus appears that removal of the membrane-anchoring domain converts autocrine to intracrine signaling. Significantly, sEGF inhibited the organization of HMEC on Matrigel, suggesting that spatial restriction of EGF access to its receptor is necessary for organization. Our results indicate that an important role of the membrane-anchoring domain of EGFR ligands is to restrict the cellular compartments in which the receptor is activated.  相似文献   

11.
Heterodimerizing peptides, such as the de novo designed E5/K5 peptide pair, have several applications including as tags for protein purification or immobilization. Recently, we demonstrated that E5-tagged epidermal growth factor (EGF), when bound to a K4 expressing adenovirus, promotes retargeting of the adenovirus to EGFR expressing target cells. In this study, we present the Escherichia coli expression, refolding and purification of human EGF fused with the E5-coil (E5-coil-EGF) or with the K5-coil (K5-coil-EGF). EGF receptor phosphorylation and cell proliferation assays demonstrated that the biological activity of the coil-tagged EGF versions was comparable to that of non-tagged EGF. Additionally, analysis of the binding of E5/K5-coil-EGF to cell surface EGFR or to soluble EGFR ectodomain, as measured by cell-based binding competition assays and by SPR-based biosensor experiments, indicated that the coil-tagged EGF versions bound to EGFR with affinities similar to that of non-tagged EGF. Finally, we show that E-coil-tagged EGF, but not non-tagged EGF, can retarget a K-coil containing adenovirus to EGF receptor expressing glioblastoma tumor cells. Overall these results indicate that E. coli expression offers a practical platform for the reproducible production of fully biologically active E5/K5-coil-tagged EGF, and support applications of heterodimerizing coil-tagged ligands, e.g. the targeting of viruses or other entities such as nanoparticles to tumor cells, or growth factor immobilization on cell culture scaffolds for tissue engineering.  相似文献   

12.
Epidermal growth factor (EGF) acts, in a dose dependent manner, as both a mitogen and an inhibitor of growth of the A431 squamous carcinoma cell line. gamma-interferon (IFN) also inhibits A431 cell growth. The dual effects of EGF on A431 growth and expression of the oncogenes, EGF receptor (EGFR) and Ha-ras, were evaluated with or without gamma-IFN. A mitogenic level (10pM) of EGF had no effect on expression of EGFR 10 kb mRNA or protein. gamma-IFN combined with 10pM EGF caused an initial drop in EGFR mRNA not reflected at the protein level; at 72 hours, the level of EGFR 10kb mRNA rose and inhibition of cell growth was observed. Treatment with a cytostatic amount (10nM) of EGF resulted in decreased expression of EGFR 10kb mRNA and protein within 24 hours; combined treatment with gamma-IFN caused rapid cell death. Expression of Ha-ras mRNA paralleled that of EGFR mRNA upon treatment with 10pM EGF and/or gamma-IFN, but differed with 10nM EGF.  相似文献   

13.
14.
The epidermal growth factor receptor (EGFR) gene is frequently amplified and/or overexpressed in human malignancies. To investigate the biological effects of its overexpression, we constructed a eukaryotic vector containing human EGFR cDNA. Introduction of this construct led to reconstitution of functional EGF receptors in NR6 mutant cells, which are normally devoid of this receptor. Transfection of NIH 3T3 resulted in no significant alterations in growth properties. However, EGF addition led to the formation of densely growing transformed foci in liquid culture and colonies in semisolid medium. NIH 3T3-EGFR clonal lines, which expressed the EGF at 500- to 1000-fold levels over control NIH 3T3 cells, demonstrated a marked increase in DNA synthesis in response to EGF. Thus EGF receptor overexpression appears to amplify normal EGF signal transduction. Finally, high levels of EGFR expression, which conferred a transformed phenotype to NIH 3T3 cells in the presence of ligand, were demonstrated in representative human tumor cell lines that contained amplified copies of the EGFR gene.  相似文献   

15.
Cell growth andmigration are essential processes for the differentiation, maintenance,and repair of the intestinal epithelium. Epidermal growth factor (EGF)is an important factor in the reorganization of the cytoskeletonrequired for both processes. Because we had previously foundsignificant changes in the cytoskeleton during polyamine deficiency, itwas of interest to know whether those changes could prevent EGF fromstimulating growth and migration. Polyamine biosynthesis in IEC-6 cellswas interrupted by treatment with -difluoromethylornithine (DFMO), aspecific inhibitor of ornithine decarboxylase, the primaryrate-limiting enzyme of polyamine biosynthesis. DFMO halted cellproliferation and inhibited cell migration, and neither function couldbe normally stimulated by EGF. Immunocytochemistry of the transferrinreceptor (used as a marker for the endocytic pathway) revealed anabnormal distribution of the EGF receptor (EGFR) 10 min after bindingEGF. Polyamine deficiency depleted the cells of interiormicrofilaments, thickened the actin cortex, and prevented the promptassociation of EGF-bound EGFR with actin. EGF-stimulated 170-kDaprotein tyrosine phosphorylation and the kinase activity of purifiedmembrane EGFR were reduced by 50%. Immunoprecipatated EGFR proteinconcentration, however, was not reduced by polyamine deficiency. All ofthese changes could be prevented by supplementation with putrescine.Cytoskeletal disruption, reduced EGFR phosphorylation and kinaseactivity, aberrant intracellular EGFR distribution, and delayedassociation with actin filaments suggest a partial explanation for thedependence of epithelial cell growth and migration on polyamines.

  相似文献   

16.
The biological activity of epidermal growth factor (EGF) is mediated through the intrinsic tyrosine kinase activity of the EGF receptor (EGFR). In numerous cell types, binding of EGF to the EGFR stimulates the tyrosine kinase activity of the receptor eventually leading to cell proliferation. In tumor-derived cell lines, which overexpress the EGFR, however, growth inhibition is often seen in response to EGF. The mechanism for growth inhibition is unclear. To study the relationship between growth inhibition and EGFR kinase activity, we have used a cell line (PC-10) derived from a human squamous cell carcinoma that overexpresses EGFR. When exposed to 25 ng/ml EGF at low cell densities (1,300 cells/cm2), PC-10 cells exhibit cell death. In contrast, if EGF is added to high density cultures, no EGF mediated cell death is seen. When PC-10 cells were maintained at confluency in the presence of 25 ng/ml EGF for a period of 1 month, they were subsequently found competent to proliferate at low density in the presence of EGF. We designate these cells APC-10. The APC-10 cells exhibited a unique response to EGF, and no concentration of EGF tested could produce cell death. By 125I-EGF binding analysis and [35S]methionine labeling of EGFR, it was found that the total number of EGFR on the cell surface of APC-10 was not decreased relative to PC-10. No difference between PC-10 and APC-10 was seen in EGF binding affinity to the EGFR. Significantly, EGF stimulated autophosphorylation of the EGFR of APC-10 was 8–10-fold lower than that of PC-10. This reduced kinase activity was also seen in vitro in membrane preparations for EGFR autophosphorylation as well as phosphorylation of an exogenously added substrate. No difference between PC-10 and APC-10 in the overall pattern of EGFR phosphorylation in the presence or absence of EGF was detectable. However, the serine and threonine phosphorylation of the EGFR of APC-10 cells was consistently 2–3-fold lower than that seen in PC-10 cells. These results suggest a novel mechanism for EGFR overexpressing cells to survive EGF exposure, one that involves an attenuation of the tyrosine kinase activity of the EGFR in the absence of a change in receptor levels or receptor affinity. © 1994 Wiley-Liss, Inc.  相似文献   

17.
18.
The epidermal growth factor receptor (EGFR) and its ligand amphiregulin (AR) have been shown to be co-over expressed in breast cancer. We have previously shown that an AR/EGFR autocrine loop is required for SUM149 human breast cancer cell proliferation, motility and invasion. We also demonstrated that AR can induce these altered phenotypes when expressed in the normal mammary epithelial cell line MCF10A, or by exposure of these cells to AR in the medium. In the present studies, we demonstrate that SUM149 cells and immortalized human mammary epithelial MCF10A cells that over express AR (MCF10A AR) or are cultured in the presence of exogenous AR, express higher levels of EGFR protein than MCF10A cells cultured in EGF. Pulse-chase analysis showed that EGFR protein remained stable in the presence of AR, yet was degraded in the presence of EGF. Consistent with this observation, tyrosine 1045 on the EGFR, the c-cbl binding site, exhibited less phosphorylation following stimulation with AR than following stimulation with EGF. Ubiquitination of the receptor was also dramatically less following stimulation with AR than following stimulation with EGF. Flow cytometry analysis showed that EGFR remained on the cell surface following stimulation with AR but was rapidly internalized following stimulation with EGF. Immunofluorescence and confocal microscopy confirmed the flow cytometry results. EGFR in MCF10A cells cultured in the presence of EGF exhibited a predominantly intracellular, punctate localization. In stark contrast, SUM149 cells and MCF10A cells growing in the presence of AR expressed EGFR predominantly on the membrane and at cell-cell junctions. We propose that AR alters EGFR internalization and degradation in a way that favors accumulation of EGFR at the cell surface and ultimately leads to changes in EGFR signaling.  相似文献   

19.
The epidermal growth factor receptor (EGFR) is important for normal development, differentiation, and cell proliferation. Deregulation of EGFR has been observed in breast cancer. EGFR and signal pathways activated by these receptors have been associated with an advanced tumor stage and a poor clinical prognosis in breast cancer, however, the precise mechanisms responsible for this process are still not known. Here we show that treatment of MCF-7 breast cancer cells with EGF activated Akt and ERK, induced morphological changes, and increased cell motility. In addition, the constitutive expression of Raf-1 and the use of a MEK inhibitor demonstrated the participation of the Raf/MEK/ERK pathway in these processes. Importantly we detected that EGF induced MRP-1, 3, 5 and 7 gene expression and an increase in MRP1 promoter activity. In conclusion, treatment of MCF-7 breast cancer cells with EGF, in the absence of other growth factors, resulted in activation of EGFR signal transduction pathways; which were related with cell motility and drug resistance.  相似文献   

20.
Y Feng  X Dai  X Li  H Wang  J Liu  J Zhang  Y Du  L Xia 《Cell proliferation》2012,45(5):413-419

Objectives

Cancer stem cells (CSCs) compose a subpopulation of cells within a tumour that can self‐renew and proliferate. Growth factors such as epidermal growth factor (EGF) and basic fibroblast growth factor (b‐FGF) promote cancer stem cell proliferation in many solid tumours. This study assesses whether EGF, bFGF and IGF signalling pathways are essential for colon CSC proliferation and self‐renewal.

Material and methods

Colon CSCs were cultured in serum‐free medium (SFM) with one of the following growth factors: EGF, bFGF or IGF. Characteristics of CSC gene expression were evaluated by real time PCR. Tumourigenicity of CSCs was determined using a xenograft model in vivo. Effects of EGF receptor inhibitors, Gefitinib and PD153035, on CSC proliferation, apoptosis and signalling were evaluated using fluorescence‐activated cell sorting and western blotting.

Results

Colon cancer cell HCT116 transformed to CSCs in SFM. Compared to other growth factors, EGF was essential to support proliferation of CSCs that expressed higher levels of progenitor genes (Musashi‐1, LGR5) and lower levels of differential genes (CK20). CSCs promoted more rapid tumour growth than regular cancer cells in xenografts. EGFR inhibitors suppressed proliferation and induced apoptosis of CSCs by inhibiting autophosphorylation of EGFR and downstream signalling proteins, such as Akt kinase, extracellular signal‐regulated kinase 1/2 (ERK 1/2).

Conclusions

This study indicates that EGF signalling was essential for formation and maintenance of colon CSCs. Inhibition of the EGF signalling pathway may provide a useful strategy for treatment of colon cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号