首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Two hybridizing species of newts, Triturus cristatus and T. marmoratus, with overlapping distributions show a parapatric distribution when surveyed in detail. The factors that govern the distribution of cristatus vs. marmoratus in the département (province) of Mayenne in western France are identified as forestation and relief. The parapatric hybrid zone running through Mayenne is narrow but widens to approximately 20 km in an area with mixed habitat. In this area most breeding sites are shared and F1 hybrids form about 4% of the total population. Analysis of survey data collected about 30 years previously also shows an essentially parapatric distribution. Comparison of past and present distribution maps reveals that cristatus has superseded marmoratus over large areas in the south of Mayenne. An area where marmoratus replaced cristatus also exists, but it is more limited in size. Gene flow between cristatus and marmoratus is analyzed using 10 diagnostic genetic markers [9 protein loci and mitochondrial (mt) DNA]. In syntopic populations nuclear gene flow is bidirectional with a mean frequency of introgressed alleles (f) of 0.3%. In allotopic populations of cristatus and marmoratus gene flow is present in areas of species replacement (f = 0.3%), while gene flow appears to be absent in those areas that have been continuously occupied by a single species. At the biogeographic level, the presence or absence of introgression is paralleled by the persistence or absence, respectively, of pockets of cristatus–marmoratus syntopy. All F1 hybrids possess the cristatus type mtDNA. This may be due to asymmetric interspecific mate choice and would explain the observed absence of introgression of the maternally inherited mtDNA genome in areas where cristatus replaced marmoratus. The cristatus–marmoratus hybrid zone bears characteristics of both the clinal (parapatric) hybrid zone model and the mosaic hybrid zone model. Such a mixed model—for which we propose the term “reticulate hybrid zone”—can be appreciated only if studied over a two-dimensional geographic area and also through time.  相似文献   

3.
Gene flow, in combination with selection and drift, determines levels of differentiation among local populations. In this study we estimate gene flow in a stream dwelling, flightless waterstrider, Aquarius remigis. Twenty-eight Aquarius remigis populations from Quebec, Ontario, New Brunswick, Iowa, North Carolina, and California were genetically characterized at 15 loci using starch gel electrophoresis. Sampling over two years was designed for a hierarchical analysis of population structure incorporating variation among sites within streams, streams within watersheds, watersheds within regions, and regions within North America. Hierarchical F statistics indicated that only sites within streams maintained enough gene flow to prevent differentiation through drift (Nm = 27.5). Above the level of sites within streams gene flow is highly restricted (Nm ≤ 0.5) and no correlation is found between genetic and geographic distances. This agrees well with direct estimates of gene flow based on mark and recapture data, yielding an Ne of approximately 170 individuals. Previous assignment of subspecific status to Californian A. remigis is not supported by genetic distances between those populations and other populations in North America. Previous suggestion of specific status for south-eastern A. remigis is supported by genetic distances between North Carolina populations and other populations in North America, and a high proportion of region specific alleles in the North Carolina populations. However, because of the high degree of morphological and genetic variability throughout the range of this species, the assignment of specific or subspecific status to parts of the range may be premature.  相似文献   

4.
Nasonia vitripennis is a parasitoid wasp that harbors several non-Mendelian sex-ratio distorters. These include MSR (Maternal Sex Ratio), a cytoplasmic element that causes nearly all-female families, and PSR (Paternal Sex Ratio), a supernumerary chromosome that causes all-male families. As in other hymenoptera, N. vitripennis has haplodiploid sex determination. Normally, unfertilized (haploid) eggs develop into males and fertilized (diploid) eggs develop into females. The PSR chromosome violates this normal pattern; it is inherited through sperm, but then causes destruction of the paternal chromosomes (except itself), thus converting diploid fertilized eggs (normally females) into haploid eggs that develop into PSR-bearing males. PSR is an extreme example of “parasitic” or “selfish” DNA. Because N. vitripennis has a highly subdivided population structure in nature, population-level selection may be important in determining the dynamics of PSR in natural populations. A theoretical analysis shows that subdivided population structure reduces PSR frequency, whereas high fertilization proportion (such as produced by the MSR element) increases PSR frequency. Population experiments using two deme sizes (3- and 12-foundress groups) and strains producing two fertilization proportions [wild-type (LabII)–57–67% female, and MSR (MI)–90–93% female] confirm these predictions. PSR achieved frequencies over 0.90 in 12–foundress group MSR populations in contrast to 0.20–0.40 in wild-type 12–foundress populations. PSR was selected against in wild-type populations composed of three-foundress groups. In MSR populations with three-foundress groups, presence of PSR selected against the MSR cytoplasmic element, eventually leading to low frequencies of both PSR and MSR. Complicated dynamics may occur when these two sex-ratio distorters are both present in highly subdivided populations. The existence of PSR in natural populations may depend on the presence of MSR. Results indicate that population subdivision could be important in determining the frequency of sex ratio distorters in N. vitripennis.  相似文献   

5.
An unusually well documented case of secondary hybridization and introgression involving two morphologically dissimilar species of land snails is described. In 1915, 55 Bahamian Cerion casablancae were established on Bahia Honda Key, Florida. The introduced snails thrived, bred true to form, and the colony grew until about 1928 when it began to hybridize with C. incanum, the unrelated Florida species. In 1977, morphological hybrids occupied an area of about 3.5 ha. Spatial and temporal aspects of the interaction were characterized morphologically (18 shell characters were studied in source populations, founders, and hybrids sampled in 1933 and 1977) and genetically (variation at 17 allozyme loci in relevant populations sampled in 1977). In addition, special circumstances permitted us to discern the genetics of the founders: C. incanum is isogenic locally, C. casablancae is variable (Po = 0.29–0.35), and the two species are well-differentiated (Nei's D? = 0.27). Hybrid intermediacy of form and continued enhanced variation appeared in characters from three covariance sets, while some unique hybrid morphologies resulted from characters in a fourth set. Comparison of 1933 with 1977 samples showed that the hybrids are gradually approaching C. incanum in phenotype. Regardless of phenotype, the snails on Bahia Honda Key were panmictic and outbreeding. There was no evidence for strong selection against hybrids, and by 1977 introduced alleles had spread over 5 ha. However, no pure C. casablancae remain; low (m = 0.026/generation) but persistent gene flow has brought about a 30% diminution of the introduced genome. These observations are useful in interpreting Cerion's remarkable variability as colonization following hurricane dispersal has undoubtedly played a role in the group's complex evolution. More generally, the results are relevant to the problem of interpreting hybrid zones of unknown origin, and the differences in the generally concordant patterns of morphological and genetic introgression reveal constraints on the way components of different coadapted genomes interact.  相似文献   

6.
Two models developed to discern the mode of selection in hybrid zones differ in some predictions. The tension-zone model predicts that selection acts against hybrids and independently of the environment (endogenous selection) and that selection is invariant throughout the hybrid zone. The ecological selection-gradient, or ecotone, model maintains that fitness of different genotypes varies in response to environmental variation (exogenous selection) and thus, that in a region of the zone, fitness of hybrids is at least equal to that of the parental species. Therefore, to assess the predominant mode of selection operating in a hybrid zone, it is fundamental to evaluate whether selection is acting specifically against hybrid individuals, that is, whether hybridity alone is the basis for deficiencies of hybrids, and to evaluate whether the relative fitness of hybrids versus that of pure species varies across the zone. In a hardclam (genus Mercenaria) hybrid zone located in a polyhaline lagoon in east-central Florida, we used age-specific and location-specific analyses to determine that a hybrid deficit occurrs, that the deficit seems to be due to selection against hybrids, and that selection varies across the zone. Various measures of deviation from Hardy-Weinberg equilibrium, linkage disequilibrium analyses, and shifts in allele frequencies at semidiagnostic loci support the idea that selection is strongest in the northern region of the lagoon, the zone of sympatry and hybridization. Southward, into the range of M. mercenaria (the numerically predominant species), the percentage of hybrids remains relatively high and selection against hybrids decreases. For some genetic linkage groups, selection for M. mercenaria alleles seems to be occurring, but selection seems to be acting principally against alleles characteristic of M. mercenaria and, to a lesser degree, for alleles characteristic of M. campechiensis (the rarer species). These findings and others from previous analyses we have done on this hybrid zone demonstrate that selection in the zone is complex, and that characteristics of both the tension-zone and ecotone models are present. Supporting the tension-zone model, selection against hybrids per se clearly occurs, but specific genotypes seem to be at a selective disadvantage, whereas others have a selective advantage, and selection operates differentially on the two parental species within the zone. Supporting the ecotone model, the strength of overall selection varies throughout the zone, and environmentally mediated selection in which each species and hybrids have an advantage in specific habitats occurs, but some selection against hybrids is invariant throughout the zone. Thus, the structure and genetic architecture of this hybrid zone appear to be products of a complicated interaction between both types of selective forces cited in the two competing models.  相似文献   

7.
Many investigators categorize individuals from hybrid zones to facilitate comparisons among genotypic classes (e.g., parental, F1, backcross) for comparative studies in which components of fitness or geographic variation are being analyzed. Frequently, multiple character sets representing genetically independent traits are used to classify these individuals and various methodologies are employed to combine the classifications obtained from the different character sets. We adapted the principles of total evidence and taxonomic congruence (two formalized approaches used by systematists in formulating phylogenetic hypotheses) to address the problem of discriminating hybridizing species and classifying individuals from hybrid zones. As our model, we used two morphological (coloration and morphometric) and two molecular (allozyme and mitochondrial DNA restriction-fragment-length polymorphism) character sets that differentiate two stone crab species (Menippe adina and M. mercenaria). Using principal-components analysis, we determined that combining character sets and eliminating characters or character sets that did not have large eigenvector coefficients for the principal component that best separated the two species yielded the highest level of discrimination between species and allowed us to classify a broad range of morpho-genotypes as hybrids. For the stone crabs, three diagnostic allozyme loci and five diagnostic coloration characters best separated the species. The two character sets were not completely congruent, but they agreed in their classification of 50% of the individuals from the hybrid zone and rarely strongly disagreed in their classifications. Classification discrepancies between the two character sets probably represent variation between traits in interspecific gene flow rather than intraspecific, ecologically mediated variation. Our results support the assertions of previous investigators who espoused the benefits associated with using multiple character sets to classify individuals from hybrid zones and demonstrate that, if character sets are reasonably congruent and numerically balanced, combining diagnostic characters from multiple character sets (a total-evidence approach) can enhance discriminatory power between species and facilitate the assignment of hybrid-zone individuals to genotypic classes. On the contrary, classifying hybrid-zone individuals using character sets separately (a taxonomic-congruence approach) provides the opportunity to compare levels of introgression between species and to assess reasons for discordance among the data sets.  相似文献   

8.
Geographic patterns of genetic variation (mitochondrial DNA [mtDNA] and allozymes) were used to examine effects of intrinsic characteristics (e.g., vagility, habitat specificity, and reproductive behaviors) and extrinsic factors (e.g., climatic and geological history) on population fragmentation. The three species of cyprinid fishes examined (Tiaroga cobitis, Meda fulgida, and Agosia chrysogaster) occupied similar historical ranges within the lower Colorado River drainage, but differ in intrinsic characteristics conducive to population fragmentation. Relationships among populations were similar across species, reflecting common historical influences, but results indicate the distribution of variation among species is strongly affected by intrinsic characteristics. Variation within two species (T. cobitis and M. fulgida) is subdivided among populations, suggesting little gene flow among rivers. In contrast, similarity of A. chrysogaster populations throughout the Gila River drainage supports the hypothesis that levels of gene flow are high for this species. Levels of mtDNA divergence were much higher than expected for both T. cobitis and A. chrysogaster suggesting long-term isolation of geographic regions. These results indicate that both long-term and short-term extrinsic factors have shaped basic patterns of variation within these fishes; however, the intrinsic characteristics of each species have strongly affected the population genetic structure of these fishes.  相似文献   

9.
10.
Molecular techniques provide powerful tools for studying the geographic structure of hybrid zones and the dynamics of gene exchange between incipient species. We examined allozyme variation at five loci (PGM, GPI, MDH-1, MDH-2, and LDH) for 27 populations of Palaemonetes kadiakensis from the central, coastal, and eastern regions of Texas. Central Texas populations of P. kadiakensis exhibited highly significant linkage disequilibrium and departures from Hardy-Weinberg genotype proportions. In populations with linkage disequilibrium, allelic differences at GPI defined two types of P. kadiakensis, designated A and B. Both types existed in central Texas with little or no evidence of interbreeding, whereas the populations from all other localities showed complete introgression of type B alleles into the type A gene pool. We also examined ribosomal DNA (rDNA) and mitochondrial DNA (mtDNA) variation in a subset of populations, chosen to cover a range of geographic locations and levels of linkage disequilibrium. Two groups of mtDNA haplotypes and two restriction fragment patterns for the rDNA corresponded to allozyme type A and B individuals in populations exhibiting linkage disequilibrium. In populations with ongoing hybridization, all hybrid animals (N= 15) exhibited type A mtDNA. Exhibition of type A mtDNA indicated that type A females had mated successfully with type B males, but type B females had not mated successfully with type A males. Genotype distributions suggest reduced reproduction by hybrid offspring in central Texas populations. These patterns are consistent with a mosaic model of hybrid zone dynamics.  相似文献   

11.
Few studies have determined how gene flow and selection interact to generate population genetic structure in heterogeneous environments. One way to identify the potential role played by natural selection is to compare patterns of spatial genetic structure between different life cycle stages and among microenvironments. We examined patterns of spatial structure in a population of the snow buttercup (Ranunculus adoneus), using both adult plants and newly emerged seedlings. The study population spans a steep environmental gradient caused by gradual melting of snow within a permanent snowbed. Early-melting sites are characterized by denser vegetation, more fertile soils, and a longer growing season than late-melting sites tens of meters away. The flowering time of R. adoneus is controlled entirely by time of snowmelt, so the contiguous population is phenologically substructured into a series of successively flowering cohorts, reducing the opportunity for direct pollen transfer between early- and late-melting sites. For four highly polymorphic enzyme loci in this tetraploid species, there was subtle, but statistically significant, genetic differentiation between early, middle, and late-melting cohorts; adults usually showed greater differentiation among snowmelt zones than did seedlings. At two loci in adults and one locus in seedlings, homozygotes were more common than predicted at Hardy-Weinberg equilibrium, even when assuming maximum levels of double reduction during meiosis. This pattern suggests the occurrence of self-fertilization and/or population substructure. To determine how spatial isolation and phenological separation each contribute to genetic substructure, we used bivariate regression models to predict the numbers of allele differences between randomly paired individuals as a function of meters separation in space and days separation in flowering time. For newly emerged seedlings, we found that spatial separation was positively associated with genetic difference, but that the additional contribution of phenological separation to genetic difference was not significant. This implies that seeds and/or pollen move effectively across the snowmelt gradient, despite differences in flowering time. As was true for seedlings, spatial separation between paired adults contributed to greater genetic difference, but for a given spatial separation, the genetic difference between adult plants was reduced by phenological separation. This result implies that postemergence selection is favoring at least some seeds that migrate across the snowmelt gradient. Directional gene flow across the snowmelt gradient probably results from a genetic source-sink interaction, that is, the colonization of ecologically marginal late-melting sites by high quality seeds produced by the larger subpopulation in early-melting sites. Effective gene flow from high to low quality microenvironments is likely to impede adaptation to late-melting locations.  相似文献   

12.
ABSTRACT

Although ultrasonic vocalizations (USVs) have been recorded in many species of rodent and in various contexts, e.g. sexual behaviour and aggression, it has not been demonstrated for the endangered Turkish Spiny Mouse Acomys cilicius Spitzenberger. This study investigated whether A. cilicius emits USVs and, if so, how these USVs associated with non-vocalization behaviour. Ultrasonic recording equipment was set up for 12 days in an off-exhibit enclosure of A. cilicius at Bristol Zoo. At least seven different types of USV were recorded. For eight of the 12 study days, ultrasonic and video recording equipment were run concurrently. From these observations it was found that emission of USVs were associated with sexual behaviour, aggression and social investigation. The results of this study show for the first time that captive A. cilicius produce USVs that resemble those produced by other rodent species, including its close relative the Egyptian Spiny Mouse A. cahirinus Desmarest. As these findings apply only to a captive Turkish Spiny Mouse population, additional work should be carried out to investigate the behaviour and USV production in the wild in addition to further research on captive populations investigating the apparent communicative function of these vocalizations.  相似文献   

13.
The amount of gene flow among local populations partly determines the relative importance of genetic drift and natural selection in the differentiation of such populations. Land snails, because of their limited powers for dispersal, may be particularly likely to show such differentiation. In this study, we directly estimate gene flow in Albinaria corrugata, a sedentary, rock-dwelling gastropod from Crete, by mark-recapture studies. In the same area, 23 samples were taken and studied electrophoretically for six polymorphic enzyme loci. The field studies indicate that the population structure corresponds closely to the stepping-stone model: demes are present on limestone boulders that are a few meters apart, and dispersal takes place mainly between adjacent demes. Average deme size (N) is estimated at 29 breeding individuals and the proportion of migrants per generation at 0.195 (Nm = 5.7). We find no reason to assume long-distance dispersal, apart from dispersal along occasional stretches of suitable habitat. Genetic subdivision of the population, as derived from FST values, corresponds to the direct estimate only at the lowest spatial level (distance between sample sites < 10 m), where values for Nm of 5.4 and 17.6 were obtained. In contrast, at the larger spatial scales, FST values give gene-flow estimates that are incompatible with the expected amount of gene flow at these scales. We explain these discrepancies by arguing that gene flow is in fact extremely limited, making correct estimates of Nm from FST impossible at the larger spatial scales. In view of these low levels of gene flow, it is concluded that both genetic drift and natural selection may play important roles in the genetic differentiation of this species, even at the lowest spatial scales.  相似文献   

14.
Multiple-peak epistasis is one of the four premises that underlie Wright's shifting-balance theory of evolution. A selection experiment was conducted in an attempt to push different geographic populations to different fitness peaks as a correlated response to selection for an additively controlled character (desiccation resistance). Four populations of Drosophila serrata, sampled from central and marginal areas of its distribution along a 3000-km stretch of Australia's east coast, underwent selection for desiccation resistance for 14 generations. After selection had ceased, control lines from each of the populations were crossed to determine the amount of hybrid breakdown that existed before selection and selected lines were crossed to determine the amount of hybrid breakdown after selection. Hybrid breakdown was measured in three fitness traits: developmental time, viability, and fecundity. When the individual crosses were examined, virtually no evidence was found for hybrid breakdown between these populations. However, the level of hybrid breakdown in development time in the control lines increased as the distance between the populations in the field increased. This relationship was lost in the selected lines. Therefore, selection for desiccation resistance influenced the level of hybrid breakdown in a fitness trait, although selection may need to be maintained for longer than 14 generations if a new relationship between hybrid breakdown and distance is to be formed.  相似文献   

15.
Genetically polymorphic species offer the possibility to study maintenance of genetic variation and the potential role for genetic drift in population divergence. Indirect inference of the selection regimes operating on polymorphic traits can be achieved by comparing population divergence in neutral genetic markers with population divergence in trait frequencies. Such an approach could further be combined with ecological data to better understand agents of selection. Here, we infer the selective regimes acting on a polymorphic mating trait in an insect group; the dorsal structures (either rough or smooth) of female diving beetles. Our recent work suggests that the rough structures have a sexually antagonistic function in reducing male mating attempts. For two species (Dytiscus lapponicus and Graphoderus zonatus), we could not reject genetic drift as an explanation for population divergence in morph frequencies, whereas for the third (Hygrotus impressopunctatus) we found that divergent selection pulls morph frequencies apart across populations. Furthermore, population morph frequencies in H. impressopunctatus were significantly related to local bioclimatic factors, providing an additional line of evidence for local adaptation in this species. These data, therefore, suggest that local ecological factors and sexual conflict interact over larger spatial scales to shape population divergence in the polymorphism.  相似文献   

16.
Sequence variation in the mitochondrial cytochrome b gene was examined in the arboreal spiny rat, Mesomys hispidus, collected at 15 sites along the Rio Juruá in western Amazonia, Brazil, to determine the importance of riverine barriers in the diversification of this taxon. Twenty individual haplotypes were uncovered, most of which were unique to single localities but some of which were shared among adjacent sites either along or across the river. Genealogical analyses suggest that gene flow is limited and, in combination with the unique distribution of most haplotypes, suggest that populations of this species are strongly substructured along the river. Thus, most sharing of haplotypes between adjacent localities is probably caused by historical association rather than to ongoing gene flow. Two haplotype clades were uncovered, but these correspond to headwaters versus mouth areas, not to opposite sides of the river, as would be expected by the Riverine Barrier Hypothesis. Moreover, haplotype sharing across the river was greater at its mouth than in the headwaters, a pattern opposite that expected if the river were a substantive barrier. Broader scale phylogeographic patterns of this species show that both clades have relationships to areas well outside the Rio Juruá basin. This suggests that the basin represents a relatively recent point of invasion between two more broadly distributed and differentiated geographic units of the species.  相似文献   

17.
18.
Summary

Recently, a specimen of Glossogobius callidus was collected in the Marico Oog, a major source of the Limpopo River in the western Transvaal. This locality is some 1500 km from the river mouth. Earlier taxonomic confusion of Glossogobius giuris and G. callidus has resulted in the omission of G. callidus from identification keys published before 1979. As a result, that species has not been recorded from the Limpopo system. A previously published record of G. giuris from that system, at a locality about 950 km from the sea, is now shown to be based on a misidentification of G. callidus specimens.  相似文献   

19.
Open oceanic calcification is mainly driven by unicellular organisms and in particular by eukaryotes such as coccolithophores and foraminifers. Open ocean microcalcifiers, like most planktonic protists, are characterized by extremely fast generation times and occasional sexual reproduction. Populations can alternate between diploid and haploid stages, which often build different kinds of cell covers. In the most important pelagic calcifiers, the coccolithophores, the diploid and haploid stages, which can self‐replicate and grow independently, display radically different morphologies with different modes of calcification or even with the absence of calcification in at least one life cycle stage. Although life cycle strategies seem likely to fundamentally influence the where and when of open ocean calcification, this issue has yet to be seriously addressed in the natural environment. Here, we introduce a new morphogenetic method, “combined CaCO3 optical detection with fluorescent in situ hybridization,” or COD‐FISH, which is based on a combination of TSAFISH and polarized optical microscopy. This technique allows simultaneous assessment of the taxonomic and life cycle status of single coccolithophore cells collected from the ocean. We demonstrate the application of COD‐FISH using both laboratory culture and field samples and discuss its potential value for assessing the ecology, biodiversity, population structure, and life cycles of coccolithophores and other open ocean unicellular calcifiers.  相似文献   

20.
The intertidal snail Littorina saxatilis displays a range ofshell morphologies associated with a variety of habitats. Sincemorphology has an environmental and genetic basis, shell-basedtaxonomy may not accurately reflect genetic relationships. Weexplored genetic structure among adjacent populations of L.saxatilis (the robust open-shore type), L. neglecta (the tinybarnacle-dwelling type) and L. tenebrosa (the fragile brackish-watertype), at nine sites in Britain. Using single-strand conformationalpolymorphism analysis of a 375bp fragment of cytochrome-b wefound no evidence of species distinction. In AMOVA tests significantvariation was contained among populations (68%) and among individuals(32%, both P < 0.001), and insignificant variation was foundamong ecotypes. Genetic patterns suggested gene flow among ecotypesover small scales and a strong random input over larger scales. * To whom correspondence should be addressed. (Received 27 March 2000; accepted 10 July 2000)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号