首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Gene flow, in combination with selection and drift, determines levels of differentiation among local populations. In this study we estimate gene flow in a stream dwelling, flightless waterstrider, Aquarius remigis. Twenty-eight Aquarius remigis populations from Quebec, Ontario, New Brunswick, Iowa, North Carolina, and California were genetically characterized at 15 loci using starch gel electrophoresis. Sampling over two years was designed for a hierarchical analysis of population structure incorporating variation among sites within streams, streams within watersheds, watersheds within regions, and regions within North America. Hierarchical F statistics indicated that only sites within streams maintained enough gene flow to prevent differentiation through drift (Nm = 27.5). Above the level of sites within streams gene flow is highly restricted (Nm ≤ 0.5) and no correlation is found between genetic and geographic distances. This agrees well with direct estimates of gene flow based on mark and recapture data, yielding an Ne of approximately 170 individuals. Previous assignment of subspecific status to Californian A. remigis is not supported by genetic distances between those populations and other populations in North America. Previous suggestion of specific status for south-eastern A. remigis is supported by genetic distances between North Carolina populations and other populations in North America, and a high proportion of region specific alleles in the North Carolina populations. However, because of the high degree of morphological and genetic variability throughout the range of this species, the assignment of specific or subspecific status to parts of the range may be premature.  相似文献   

3.
Comparisons of cytoplasmic and nuclear diversity within and among natural plant populations have the potential to distinguish the relative influences of seed and pollen dispersal on contemporary gene flow, or alternatively, may permit inferences of the colonization history of a species via seed. We examined patterns of cpDNA and allozyme variation in Senecio gallicus, a diploid, annual plant that occurs in both coastal and ruderal inland areas of the Iberian Peninsula and southern France. The species appears to have a strong propensity for long-distance seed dispersal. Five cpDNA haplotypes were found by RFLP analysis among a sample of 111 individuals derived from 11 populations. Differences in haplotype frequencies across populations were most evident with respect to a dramatic increase in the frequency of a derived haplotype from coastal to inland localities. The level of cpDNA differentiation among populations within the inland group (θ0 = 0.07) was significantly less than that seen within the coastal group (θ0 = 0.41). In contrast, for allozymes, no significant difference in population structure was evident between collections from coastal and inland habitats. At the rangewide geographic scale, there was only a very weak association between inferred levels of gene flow and geographic distance for cpDNA, and no such association was found for allozymes. It appears that while seed movement in the species might be sufficiently great to disturb the pattern of isolation by distance for cpDNA, it cannot fully account for the nearly randomized spatial structure at polymorphic allozyme loci. It is suggested that isolation of populations in Atlantic-Mediterranean coastal refugia during previous glacial maxima, and the effects of subsequent colonization events in inland areas, have had an important effect on molding the present genetic structure of the species.  相似文献   

4.
The land snail genus Albinaria exhibits an extreme degree of morphological differentiation in Greece, especially in the island of Crete. Twenty-six representatives of 17 nominal species and a suspected hybrid were examined by sequence analysis of a PCR-amplified mitochondrial DNA fragment of the large rRNA subunit gene. Maximum parsimony and neighbor-joining phylogenetic analyses demonstrate a complex pattern of speciation and differentiation and suggest that Albinaria species from Crete belong to at least three distinct monophyletic groups, which, however, are not monophyletic with reference to the genus as a whole. There is considerable variation of genetic distance within and among “species” and groups. The revealed phylogenetic relations do not correlate well with current taxonomy, but exhibit biogeographical coherence. Certain small- and large-scale vicariance events can be traced, although dispersal and parapatric speciation may also be present. Our analysis suggests that there was an early and rapid differentiation of Albinaria groups across the whole of the range followed by local speciation events within confined geographical areas.  相似文献   

5.
In a series of experiments conducted over two seasons, we used arrays of experimental populations to examine the effects of flower number and distance between patches on gene flow by pollen. For this study we used the dioecious, short-lived perennial plant Silene alba (Caryophyllaceae). This species lives in disturbed roadside and agricultural habitats and displays a weedy population dynamic with high colonization and extinction rates. The motivation for the study was to understand what factors may be influencing genetic connectedness among newly colonized populations within a regional metapopulation. By using experimental populations composed of genotypes homozygous at a diagnostic locus, it was possible to identify explicitly pollen movement into a focal patch as a function of flower number and distance to the nearest neighboring patch. Overall, the mean immigration rate (measured as the fraction of seeds sired by males outside the focal patch) at 20 m was just over 47%, whereas at 80 m immigration rates were less than 6%. In addition, by knowing the context in which each of these gene-flow events occurred, it was possible to understand some of the factors that influenced the exchange of genes. Both the number of flowers in the focal population (target) and in the neighboring populations (source) had a significant effect on the frequency of gene flow. Our experimental data also demonstrate that factors that influence gene flow at one spatial scale may not act in the same way at another. Specifically, the influence of target size and the relative size of the target and source patches on rates of gene flow depended on whether the patches were separated by 20 m or 80 m. These data suggest that the patterns of gene flow within a metapopulation system can be complex and may vary within a growing season.  相似文献   

6.
Spatial and temporal patterns of gene flow determine the extent to which populations can differentiate from one another as a result of natural selection or genetic drift. In this study, we investigated pollen-mediated gene flow in two eastern Kansas populations of the subdioecious tree species, Gleditsia triacanthos L. (Leguminosae), or honeylocust. In 2 yr at each site, we used paternity-exclusion analysis to estimate the proportion of seeds sired by immigrant pollen. We also used a single-parent and parent-pair exclusion analysis on naturally established seedlings and saplings to estimate gene flow into one site over a 12-yr period and into the second site over a 22-yr period. Results of both analyses showed high minimum estimates of pollen gene flow into each site (17%–30%). In each population, we found significantly less gene flow in years of high fruit production than in years of low fruit production, but in one population, we observed little variation in gene-flow rates among age classes of seedlings and saplings. The level of pollen gene flow showed weak negative dependence on the relative isolation distances of the maternal trees sampled (140–240 m at one site vs. 85–120 m at the second site), and gene-flow estimates from naturally established juveniles were very similar at the two sites. Within populations, a multiple regression model showed that maximum-likelihood estimates of male fertility were negatively associated with distances between mates and positively associated with male size as measured by stem diameter. In neither population, however, did the regression explain more than 16% of the total variation in male fertilities.  相似文献   

7.
The Australian ghost bat is a large, opportunistic carnivorous species that has undergone a marked range contraction toward more mesic, tropical sites over the past century. Comparison of mitochondrial DNA (mtDNA) control region sequences and six nuclear microsatellite loci in 217 ghost bats from nine populations across subtropical and tropical Australia revealed strong population subdivision (mtDNA φST = 0.80; microsatellites URST = 0.337). Low-latitude (tropical) populations had higher heterozygosity and less marked phylogeographic structure and lower subdivision among sites within regions (within Northern Territory [NT] and within North Queensland [NQ]) than did populations at higher latitudes (subtropical sites; central Queensland [CQ]), although sampling of geographically proximal breeding sites is unavoidably restricted for the latter. Gene flow among populations within each of the northern regions appears to be male biased in that the difference in population subdivision for mtDNA and microsatellites (NT φST = 0.39, URST = 0.02; NQ φST = 0.60, URST = ?0.03) is greater than expected from differences in the effective population size of haploid versus diploid loci. The high level of population subdivision across the range of the ghost bat contrasts with evidence for high gene flow in other chiropteran species and may be due to narrow physiological tolerances and consequent limited availability of roosts for ghost bats, particularly across the subtropical and relatively arid regions. This observation is consistent with the hypothesis that the contraction of the species' range is associated with late Holocene climate change. The extreme isolation among higher-latitude populations may predispose them to additional local extinctions if the processes responsible for the range contraction continue to operate.  相似文献   

8.
Polyploidy is a major feature of angiosperm evolution and diversification. Most polyploid species have formed multiple times, yet we know little about the genetic consequences of recurrent formations. Among the clearest examples of recurrent polyploidy are Tragopogon mirus and T. miscellus (Asteraceae), each of which has formed repeatedly in the last ~80 years from known diploid progenitors in western North America. Here, we apply progenitor‐specific microsatellite markers to examine the genetic contributions to each tetraploid species and to assess gene flow among populations of independent formation. These data provide fine‐scale resolution of independent origins for both polyploid species. Importantly, multiple origins have resulted in considerable genetic variation within both polyploid species; however, the patterns of variation detected in the polyploids contrast with those observed in extant populations of the diploid progenitors. The genotypes detected in the two polyploid species appear to represent a snapshot of historical population structure in the diploid progenitors, rather than modern diploid genotypes. Our data also indicate a lack of gene flow among polyploid plants of independent origin, even when they co‐occur, suggesting potential reproductive barriers among separate lineages in both polyploid species.  相似文献   

9.
Helix texta is endemic to the Mediterranean regions of Israel.It has a seasonal activity pattern which starts in the autumn,with the first rains, and dwindles towards the spring, whenthe snails dig into the ground for a six months long aestivation.A cold spell of 0°C will, however, terminate the activeseason of the adult snail, even in the middle of the rainy season.Survival of the young is very low and most of them (90%) donot survive their first year, because of the winter cold andthe summer drought. Massive predation of adult snails by wild boar was observedin December 1986: within a few days, about 50% of the adultsin the study in the area were eaten. A very rapid growth ofyoung and subadults was observed immediately after this predation.These observations suggest that the extent of recruitment ofnew adults to the population may be partly controlled by existingadults, through a growth-inhibiting pheromone in the mucus.After predation this inhibiting factor disappears, enablinga subsequent rapid growth of the young. In this manner, massive,irregular predation of the adults by a large predator, and changesin juvenile survival, result in sharp fluctuations in the agestructure of the population. The resulting pattern of unstablepopulation dynamics is different from that described for theEuropean species of Helix. (Received 16 January 1989; accepted 17 April 1989)  相似文献   

10.
This is the first report to explore the fine‐scale diversity, population genetic structure, and biogeography of a typical planktonic microbe in Japanese and Korean coastal waters and also to try to detect the impact of natural and human‐assisted dispersals on the genetic structure and gene flow in a toxic dinoflagellate species. Here we present the genetic analysis of Alexandrium tamarense (Lebour) Balech populations from 10 sites along the Japanese and Korean coasts. We used nine microsatellite loci, which varied widely in number of alleles and gene diversity across populations. The analysis revealed that Nei's genetic distance correlated significantly with geographic distance in pair‐wise comparisons, and that there was genetic differentiation in about half of 45 pair‐wise populations. These results clearly indicate genetic isolation among populations according to geographic distance and restricted gene flow via natural dispersal through tidal currents among the populations. On the other hand, high P‐values in Fisher's combined test were detected in five pair‐wise populations, suggesting similar genetic structure and a close genetic relationship between the populations. These findings suggest that the genetic structure of Japanese A. tamarense populations has been disturbed, possibly by human‐assisted dispersal, which has resulted in gene flow between geographically separated populations.  相似文献   

11.
Abstract.— Introduced species often possess low levels of genetic diversity relative to source populations as a consequence of the small population sizes associated with founder events. Additionally, native and introduced populations of the same species can possess divergent genetic structuring at both large and small geographic scales. Thus, genetic systems that have evolved in the context of high diversity may function quite differently in genetically homogeneous introduced populations. Here we conduct a genetic analysis of native and introduced populations of the Argentine ant (Linepithema humile) in which we show that the population‐level changes that have occurred during introduction have produced marked changes in the social structure of this species. Native populations of the Argentine ant are characterized by a pattern of genetic isolation by distance, whereas this pattern is absent in introduced populations. These differences appear to arise both from the effects of recent range expansion in the introduced range as well as from differences in gene flow within each range. Relatedness within nests and colonies is lower in the introduced range than in the native range as a consequence of the widespread genetic similarity that typifies introduced populations. In contrast, nestmates and colony‐mates in the native range are more closely related, and local genetic differentiation is evident. Our results shed light on the problem posed for kin selection theory by the low levels of relatedness that are characteristic of many unicolonial species and suggest that the loss of genetic variation may be a common mechanism for the transition to a unicolonial colony structure.  相似文献   

12.
Our study of the genetic structure of Mazzaella laminarioides (Bory) Fredericq (Gigartinales) in the central Chilean region documented a high level of genetic diversity based on random amplified polymorphic DNA (RAPD) markers and indicated the occurrence of significant genetic structure at different spatial scales. A total of 288 haploid gametophytes was analyzed with 17 polymorphic RAPD bands, which produced 202 distinct multilocus genotypes. Within stands, mean gene diversity ranged from 0.210 to 0.249 and no significant linkage disequilibrium could be detected among pairs of alleles, revealing that recombination (sexual reproduction) regularly shuffles the genes at that scale. Analysis of molecular variance within stands (less than 30 m) showed that the structure was very low, only marginally significant, and did not increase with increasing hierarchical levels at this lowest spatial scale. In contrast, at a larger spatial scale (among stands, from 5 to 60 km), increasing geographical distance seemed to account for increasing isolation between populations even if natural barriers, such as sandy beaches or river estuaries, may play a role in such isolation. Moreover, the strong genetic differentiation occurring between locations separated by 60 km allowed the assignment of individuals to their original population through a canonical discriminant analysis. This approach further allowed the identification of potential recent migrants from one population to the other. Thus, in species like M. laminarioides for which the dominance of RAPD markers can be avoided by selecting haploid individuals, RAPD analysis appeared to be specially appropriate for the study of genetic differentiation.  相似文献   

13.
The giant kangaroo rat, Dipodomys ingens (Heteromyidae), is an endangered rodent that inhabits approximately 3% of its estimated historic range. Its current distribution is centered in two geographic areas, situated about 150 km apart, in south-central California. We sequenced a 293 base-pair fragment at the 5' end of the control region in 95 giant kangaroo rats from nine localities to examine the genetic structure of extant populations. We determine that mutations in this section of the control region follow a negative binominal distribution, rather than a Poisson. However, the distance between haplotypes is small enough that the difference between a tree that corrects for the non-Poisson distribution of mutations and one that does not, is minimal. This implies that the use of methods that assume a Poisson distribution of mutations, such as those based on coalescent theory, are justified. We find that the correlation between levels of genetic diversity and estimated census size is poor. This suggests that population sizes have fluctuated over time or that populations have not been isolated from one another, or both. We also examine the hierarchical structure of populations and find that the southern populations are not genetically subdivided but that there is significant subdivision between northern and southern populations and between some northern subpopulations. The phylogeographic relationship between northern and southern populations can primarily be attributed to isolation by distance, although the time since divergence between them appears to be less than the age of either. To examine the phylogeographic relationships in more detail we construct a minimum spanning tree based on Tamura-Nei gamma-corrected distances and superimpose on it the geographic position of haplotypes. This reveals that there is more genetic distance between some northern haplotypes than between any northern and southern haplotypes, despite the geographic distance separating north from south and the larger size of the southern population. It also reveals that one northern population, in the Panoche Valley, contains old allelic lineages and shares ancestral polymorphism with several other populations. It also shows that two, small, geographically remote populations contain a surprising amount of genetic diversity, but that different population/geographic processes have affected the structure of that diversity. We estimate the average migration rate among all populations to be 7.5 per generation, and conclude that a disproportionate number of migration events involve gene flow with one northern population, the Panoche Valley. We find evidence for the hypothesis that there has been an increase in population size in the remaining populations in the north and suggest that the Panoche Valley could play a role in these expansions. Finally we discuss the probabilitiy that the genetic structure of the southern populations has been affected by fluctuations in size. These results are briefly compared to other studies on the genetic structure of rodent populations.  相似文献   

14.
Attempts to relate estimates of regional FST to gene flow and drift via Wright's (1931) equation FST ≈ 1/ (4Nm + 1) are often inappropriate because most natural sets of populations probably are not at equilibrium (McCauley 1993), as assumed by the island model upon which the equation is based, or ineffective because the influences of gene flow and drift are confounded in the product Nm. Evaluations of the association between genetic (FST) and geographic distances separating all pairwise populations combinations in a region allows one to test for regional equilibrium, to evaluate the relative influences of gene flow and drift on population structure both within and between regions, and to visualize the behavior of the association across all degrees of geographic separation. Tests of the model using microsatellite data from 51 populations of eastern collared lizards (Crotaphytus collaris collaris) collected from four distinct geographical regions gave results highly consistent with predicted patterns of association based on regional differences in various historical and ecological factors that affect the amount of drift and gene flow. The model provides a prerequisite for and an alternative to regional FST analyses, which often simply assume regional equilibrium, thus potentially leading to erroneous and misleading inferences regarding regional population structure.  相似文献   

15.
To shed light on the potential effects of xeric/arid versus mesic environments on plant population genetic structure and patterns of gene flow, we have compared allozyme and cpDNA haplotype variation in populations of two closely related, highly outcrossed, and largely wind-dispersed winter annuals of Senecio (Asteraceae). The species form a distinctive zone of parapatric distribution in the Near East by differing in their ecogeographical regimes. Senecio vernalis mainly thrives in the mesic Mediterranean life zone of Israel, whereas S. glaucus inhabits either xeric maritime or arid (semi-) desert sites. Significant differences in allozymic population subdivision among S. vernalisn = 0.04; Nmn = 5.85) and S. glaucusn = 0.12; Nmn = 1.85) largely resulted from topogeographical substructuring present within the latter species. Because of the similarity of within-region estimates of population structure for S. glaucus with those measured among populations of S. vernalis, it appears unlikely that ecological “aridity” factors per se are important in influencing levels of population differentiation in these species. Based on hierarchical F-statistics and tests of isolation by distance, we further conclude that geographical topologies influence the level and mode of nuclear gene flow (via pollen and/or seed) among and within subsets of S. glaucus populations, although without providing a complete barrier to interregional dispersal (dNmreg = 2.16) and without promoting allopatric differentiation via drift. The allozymic data further suggested that S. vernalis and S. glaucus form a zone of secondary contact in the Near East, accompanied by an almost complete interspecific barrier to nuclear gene flow (dnNmsp = 0.253). However, to account for the considerable sharing of cpDNA haplotypes, both at the intra- and interspecific level, it is necessary to invoke either (1) selection acting against alien nuclear but not cytoplasmic DNA; or (2) the sporadic immigration of cpDNA via seed with large homogenizing effects on cytoplasmic population structure over time.  相似文献   

16.
The spatial population structure of the pond-living water beetle Dineutus assimilis (Coleoptera: Gyrinidae) was investigated through a field study of population dynamics and dispersal, with a concurrent assessment of the spatial distribution of mitochondrial DNA (mtDNA) restriction-fragment-length polymorphism (RFLP). A comprehensive 2-yr survey within a 60-km2 study area revealed pronounced fluctuations in local abundances, including extinctions and colonizations. The recapture of marked individuals showed that dispersal among ponds is frequent in both males and females and connects populations on a large geographic scale (maximum observed flight distance: 20 km). The population structure of D. assimilis is thus characterized by both pronounced genetic drift and frequent gene flow. Together, these two forces generate a pattern of very local and transient genetic differentiation. Mitochondrial DNA samples collected within a few kilometers indicate highly significant spatial structure, if newly founded demes or those that experienced recent bottlenecks are included. These results based on four demes within the study area were placed into a regional context by further samples collected at distances of 100 km and 200 km. Fst estimates computed on increasing spatial scales were variable but showed no increasing trend. Thus, gene flow exerts a strong homogenizing force over a wide geographic range but is counteracted locally by genetic drift. These findings highlight the need to supplement estimates of Fst with additional data to arrive at valid interpretations of the genetic information. More generally, this study raises questions about how to capture the relevant features of dynamic, subdivided populations to understand their evolutionary dynamics.  相似文献   

17.
Serpentine soils are rich in heavy metals and have a distinctive flora. Silene dioica is a member of the Scandinavian serpentine plant community but is also widespread outside serpentine soils. To study the population genetic consequences of serpentine stress and the origin and evolution of serpentine populations we analyzed the isozyme genetic structure of S. dioica. Seventeen populations located in the mountains of Västerbotten and Jämtland, central Sweden, were investigated by starch gel enzyme electrophoresis. About one half of the populations grow in serpentine soils and the rest on adjacent non-serpentine sites. Analyses of allele frequencies show that both serpentine and non-serpentine populations in the northern part of the studied area (Västerbotten) are genetically similar. Evidently serpentine does not exert strong selection acting upon isozyme loci. In the south (Jämtland), however, the serpentine populations exhibit genetic differentiation. This allozyme divergence is probably not due to direct selection but rather represents the effects of isolation and genetic drift. The results suggest that S. dioica has colonized serpentine repeatedly and that the tolerant populations have a multiple origin.  相似文献   

18.
Gene flow and the genetic structure of host and parasite populations are critical to the coevolutionary process, including the conditions under which antagonistic coevolution favors sexual reproduction. Here we compare the genetic structures of different populations of a freshwater New Zealand snail (Potamopyrgus antipodarum) with its trematode parasite (Microphallus sp.) using allozyme frequency data. Allozyme variation among snail populations was found to be highly structured among lakes; but for the parasite there was little allozyme structure among lake populations, suggesting much higher levels of parasite gene flow. The overall pattern of variation was confirmed with principal component analysis, which also showed that the organization of genetic differentiation for the snail (but not the parasite) was strongly related to the geographic arrangement of lakes. Some snail populations from different sides of the Alps near mountain passes were more similar to each other than to other snail populations on the same side of the Alps. Furthermore, genetic distances among parasite populations were correlated with the genetic distances among host populations, and genetic distances among both host and parasite populations were correlated with “stepping-stone” distances among lakes. Hence, the host snail and its trematode parasite seem to be dispersing to adjacent lakes in a stepping-stone fashion, although parasite dispersal among lakes is clearly greater. High parasite gene flow should help to continuously reintroduce genetic diversity within local populations where strong selection might otherwise isolate “host races.” Parasite gene flow can thereby facilitate the coevolutionary (Red Queen) dynamics that confer an advantage to sexual reproduction by restoring lost genetic variation.  相似文献   

19.
The alpine snail Arianta arbustorum (Pulmonata, Helicidae) was sampled along an 8-km contour line in the Swiss Alps orthogonal to well-known altitudinal clines in life history and shell traits. The allele frequencies and the morphs of 16 populations were compared with habitats. Two hypotheses about the recolonization of the mountain slopes after the last glaciation were tested against the present population structure. The allele frequencies are best explained by the spatial structure whereas the morphs are better explained by the habitats. The genotypic distances point to a historical explanation by recolonization processes, the phenotypical dissimilarities to a selectionistic interpretation of the present distribution of the populations. The following conclusions are from the study of the spatial relationship and the gene flow paths for A. arbustorum at Mount Martegnas: (1) Streams are the main gene flow paths; gene flow is low, allowing differentiation of local populations. (2) Morphs and habitats are correlated, but the interpretation has to be made carefully. The spatial dependence of habitats has to be included into the analysis of selection. (3) The random assumption for gene flow of A. arbustorum is not a spatial isolation-by-distance model, but a functional isolation-by-distance model, assuming gene flow over the drainage system.  相似文献   

20.
We surveyed mtDNA restriction-site variation in song sparrows taken from across their continental range. Despite marked geographic variation in size and plumage color, mtDNA variation was not geographically structured. Subspecies were not identifiable by mtDNA analysis. We suggest that postglaciation dispersal scattered mtDNA haplotypes across the continent, explaining the lack of mtDNA geographic patterns. Evolution of size and plumage coloration has probably proceeded faster than mtDNA evolution, leading to the well-structured continental pattern of morphological variation. We suggest that the nonordered geographic distribution of haplotypes reflects the recency of population establishment following completion of range expansion. Dispersal distance was estimated from the mtDNA data at 6.1 km per generation, an order of magnitude greater than that (0.3 km) estimated from demographic data. Island samples were not especially different from continental ones. Rooting the haplotype cladogram with a putative primitive haplotype identified Newfoundland and the Queen Charlotte Islands as potential sites of recent refugia. We question whether study of geographic variation in song sparrows leads to insights concerning speciation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号