首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several genes critical to the enzymatic regulation of melanin production in mammals have recently been cloned and mapped to the albino, brown and slaty loci in mice. All three genes encode proteins with similar structures and features, but with distinct catalytic capacities; the functions of two of those gene products have previously been identified. The albino locus encodes tyrosinase, an enzyme with three distinct melanogenic functions, while the slaty locus encodes tyrosinase-related protein 2 (TRP2), an enzyme with a single specific, but distinct, function as DOPAchrome tautomerase. Although the brown locus, encoding TRP1, was actually the first member of the tyrosinase gene family to be cloned, its catalytic function (which results in the production of black rather than brown melanin) has been in general dispute. In this study we have used two different techniques (expression of TRP1 in transfected fibroblasts and immunoaffinity purification of TRP1 from melanocytes) to examine the enzymatic function(s) of TRP1. The data demonstrate that the specific melanogenic function of TRP1 is the oxidation of 5,6-dihydroxyindole-2-carboxylic acid (DHICA) to a carboxylated indole-quinone at a down-stream point in the melanin biosynthetic pathway. This enzyme activity appears to be essential to the further metabolism of DHICA to a high molecular weight pigmented biopolymer.  相似文献   

2.
Most of our knowledge of the mammalian tyrosinase related protein (TRP) activities is derived from studies using murine melanoma models, such as B16 or Cloudman S-91 melanocytes. Owing to the high degree of homology between the murine and human enzymes, it has been assumed that their kinetic behavior could be similar. However, the protein sequences at the metal binding sites of the murine and human enzymes show some differences of possible functional relevance. These differences are more significant in the metal-A site than in the metal-B site. By using three human melanoma cell lines (HBL, SCL, and BEU), we have studied the catalytic abilities of the human melanogenic enzymes in comparison to those obtained for the counterpart murine enzymes isolated from B16 melanoma. We have found that TRP2 extracted from all cell lines show dopachrome tautomerase activity, although the activity levels in human malignant melanocytes are much lower than in mouse cells. Reconstitution experiments of the human enzyme indicate that TRP2 has Zn at its metal binding-sites. Although mouse tyrosinase does not show DHICA oxidase activity, and this step of the melanogenesis pathway is specifically catalyzed by mouse TRP1, the human enzyme seems to recognize carboxylated indoles. Thus, human tyrosinase could display some residual DHICA oxidase activity, and the function of human TRP1 could differ from that of the murine protein. Attempts to clarify the nature of the metal cofactor in TRP1 were unsuccessful. The enzyme contains mostly Fe and Cu, but the reconstitution of the enzymatic activity from the apoprotein with these ions was not possible.  相似文献   

3.
The expression of various melanogenic proteins, including tyrosinase, the tyrosinase-related proteins 1 (TRP1) and 2 (TRP2/DOPAchrome tautomerase), and the silver protein in human melanocytes was studied in six different human melanoma cell lines and compared to a mouse derived melanoma cell line. Analysis of the expression of tyrosinase, TRP1, TRP2, and the silver protein using flow cytometry revealed that in general there was a positive correlation between melanin formation and the expression of those melanogenic enzymes. Although several of the melanoma cell lines possessed significant activities of TRP2, the levels of DOPAchrome tautomerase in extracts of human cells were relatively low compared to those in murine melanocytes. Melanins derived from melanotic murine JB/MS cells, from melanotic human Ihara cells and HM-IY cells, from sepia melanin, and from C57BL/6 mouse hair were chemically analyzed. JB/MS cells, as well as Ihara cells and HM-TY cells, possessed significant amounts of 5,6-dihydroxyindole-2-carboxylic acid (DHICA) derived melanins, this being dependent on the activity of TRP2. Kinetic HPLC assays showed that 5,6-dihydroxyindole (DHI) produced during melanogenesis was metabolized quickly to melanin in pigmented KHm-1/4 cells, whereas DHI was stable in amelanotic human SK-MEL-24 cells. A melanogenic inhibitor that has been purified from SK-MEL-24 cells that suppressed oxidation of DHI in the presence or absence of tyrosinase, but had no effect on DHICA oxidation. The sum of these results suggest that the expression of melanogenic enzymes as well as the activity of a melanogenic inhibitor are critical to the production of melanin synthesis in humans.  相似文献   

4.
5.
Tyrosinase related protein‐1 (TRP‐1) is a melanocyte‐specific gene product involved in eumelanin synthesis. Mutation in the Tyrp1 gene is associated with brown pelage in mouse and oculocutaneous albinism Type 3 in humans (OCA3). It has been demonstrated that TRP‐1 expresses DHICA oxidase activity in the murine system. However, its actual function in the human system is still unclear. The study was designed to determine the effects of mutation at two Typr1 alleles, namely the Tyrp1b (brown) and Tyrp1b‐cj (cordovan) compared with wild type Tyrp1B (black) on melanocyte function and melanin biosynthesis. The most significant finding was that both of the Tyrp1 mutations (i.e. brown expressing a point mutation and cordovan expressing decreased amount of TRP‐1 protein) resulted in attenuation of cell proliferation rates. Neither necrosis nor apoptosis was responsible for the observed decrease in cell proliferation rates of the brown and cordovan melanocytes. Ultrastructural evaluation by electron microscopic analysis revealed that both mutations in Tyrp1 affected melanosome maturation without affecting its structure. These observations demonstrate that mutation in Tyrp1 compromised tyrosinase activity within the organelle. DOPA histochemistry revealed differences in melanosomal stages between black and brown melanocytes but not between black and cordovan melanocytes. There were no significant differences in tyrosine hydroxylase activities of tyrosinase and TRP‐1 in wild type black, brown and cordovan melanocyte cell lysates. We conclude that mutations in Tyrp1 compromise cell proliferation and melanosomal maturation in mouse melanocyte cultures.  相似文献   

6.
We have recently identified a tachykinin-related peptide (AmTRP) from the mushroom bodies (MBs) of the brain of the honeybee Apis mellifera L. by using direct matrix-assisted laser desorption/ionization with time-of-flight mass spectometry and have isolated its cDNA. Here, we have examined prepro-AmTRP gene expression in the honeybee brain by using in situ hybridization. The prepro-AmTRP gene is expressed predominantly in the MBs and in some neurons located in the optic and antennal lobes. cDNA microarray studies have revealed that AmTRP expression is enriched in the MBs compared with other brain regions. There is no difference in AmTRP-expressing cells among worker, queen, and drone brains, suggesting that the cell types that express the prepro-AmTRP gene do not change according to division of labor, sex, or caste. The unique expression pattern of the prepro-AmTRP gene suggests that AmTRPs function as neuromodulators in the MBs of the honeybee brain.This work was supported by a Grant-in-Aid from the Bio-oriented Technology Research Advancement Institution (BRAIN)  相似文献   

7.
8.
9.
10.
11.
12.
Summary The trifunctional TRP1 gene from Neurospora crassa (N-TRP1) was subcloned into the yeast-Escherichia coli shuttle vector YEp13 and expressed in Saccharomyces cerevisiae. The three activities of the N-TRP1 gene product were detected in yeast mutants that lacked either N-(5-phosphoribosyl) anthranilate (PRA) isomerase or both the glutamine amidotransferase function of anthranilate synthase and indole-3-glycerol phosphate (InGP) synthase. The protein was detected on immunoblots only as the full length 83 kda product indicating that the trifunctional gene product was expressed in yeast primarily in a fully active, undegraded form. By placing the subcloned N-TRP1 gene under the control of the inducible PHO5 promoter from yeast, the expression of all three activities was increased to more than ten fold that of wild-type yeast and the overproduced protein could be visualized by SDS-polyacrylamide gel electrophoresis of crude extract and Coomassie Blue staining. Using the expression system described the effect of selective deletion of regions of the coding sequence of the N-TRP1 gene on expression of the three activities was tested. Expression of either the F- or C-domains, catalyzing respectively the PRA isomerase or InGP synthase activities, did not depend on the presence of the other domain in the active polypeptide. Furthermore, normal dimer formation occurred with a protein active for InGP synthase in a deletion derivative lacking most of the PRA isomerase domain, ruling out the hypothesis that interaction between the active site regions for PRA isomerase and InGP synthase accounted for dimer formation in the trifunctional product.Abbreviations PRA N-(5'-phosphoribosyl)anthranilate - InGP indole-3-glycerol phosphate - SDS sodium dodecyl sulfate  相似文献   

13.
The albino (tyrosinase, Tyrc), brown (tyrosinase‐related protein 1, Tyrp1b) and slaty (tyrosinase‐related protein 2, tyrp2slt) loci are all involved in the regulation of melanogenesis. Phenotypes of inbred mice mutant at two or more of these loci are not always explicable by simple summation of the established or suspected catalytic functions of the gene products. These phenotypes suggest that relationships among the proteins extend beyond the obvious fact that they catalyze different steps in the same melanogenic pathway, and that they may also interact intimately in such a way that a mutation in one impacts the function of the other(s). Previous studies have attributed catalytic activities to each member of this trio; however, it has been difficult to study the proteins individually, either in vivo or in tissues or cells. Therefore, we undertook to transfect the genes, in revealing combinations, into COS‐7 cells (which have no melanogenic apparatus of their own) to clarify the interacting functions of their encoded proteins. Specifically, we attempted to evaluate the effects of Tyrp1 and Tyrp2 proteins on tyrosinase protein. We report evidence that Tyrp1 stabilizes tyrosinase, confirming previous observations, and, in addition, demonstrate that Tyrp1 decreases tyrosinase activity. By contrast, Tyrp2 increases tyrosinase activity by stabilizing the protein. We conclude that both Tyrp1 and Tyrp2, in addition to other catalytic functions they may possess, act together to modulate tyrosinase activity.  相似文献   

14.
This study aims to elucidate the mechanism of sexual development of basidiomycetous mushrooms from mating to fruit body formation. Sequencing analysis showed the TRP1 gene of basidiomycete Schizophyllum commune encoded an enzyme with three catalytic regions of GAT (glutamine amidotransferase), IGPS (indole-3-glycerol phosphate synthase), and PRAI (5-phosphoribosyl anthranilate isomerase); among these three regions, the trp1 mutant (Trp?) had a missense mutation (L→F) of a 338th amino acid residue of the TRP1 protein within the IGPS region. To investigate the function of IGPS region related to sexual development, dikaryons with high, usual, and no expression of the IGPS region of TRP1 gene were made. The dikaryotic mycelia with high expression of the IGPS formed mature fruit bodies earlier than those with usual and no expression of the IGPS. These results showed that the IGPS region in TRP1 gene promoted sexual development of S. commune.  相似文献   

15.
16.
17.
We previously reported the inhibitory role of thioredoxin-related protein of 14 kDa (TRP14), a novel disulfide reductase, in nuclear factor-κB (NF-κB) activation, but its biological function has remained to be explored. Here, we evaluated the role of TRP14 in the differentiation and function of osteoclasts (OCs), for which NF-κB and cellular redox regulation have been known to be crucial, using RAW 264.7 macrophage cells expressing wild-type TRP14 or a catalytically inactive mutant, as well as its small interfering RNA. TRP14 depletion enhanced OC differentiation, actin ring formation, and bone resorption, as well as the accumulation of reactive oxygen species (ROS). TRP14 depletion promoted the activation of NF-κB, c-Jun NH2-terminal kinase, and p38, the expression of c-Fos, and the consequent induction of nuclear factor of activated T cell, cytoplasmic 1 (NFATc1), a key determinant of osteoclastogenesis. However, pretreatment with N-acetylcysteine or diphenylene iodonium significantly reduced the OC differentiation, as well as the ROS accumulation and NF-κB activation, that were enhanced by TRP14 depletion. Furthermore, receptor activator of NF-κB ligand (RANKL)-induced ROS accumulation, NF-κB activation, and OC differentiation were inhibited by the ectopic expression of wild-type TRP14 but not by its catalytically inactive mutant. These results suggest that TRP14 regulates OC differentiation and bone resorption through its catalytic activity and that enhancing TRP14 may present a new strategy for preventing bone resorption diseases.  相似文献   

18.
The purpose of this study was to investigate the mechanism of fatty acid-induced regulation of melanogenesis. An apparent regulatory effect on melanogenesis was observed when cultured B16F10 melanoma cells were incubated with fatty acids, i.e., linoleic acid (unsaturated, C18:2) decreased melanin synthesis while palmitic acid (saturated, C16:0) increased it. However, mRNA levels of the melanogenic enzymes, tyrosinase, tyrosinase-related protein 1 (TRP1), and tyrosinase-related protein 2 (TRP2), were not altered. Regarding protein levels of these enzymes, the amount of tyrosinase was decreased by linoleic acid and increased by palmitic acid, whereas the amounts of TRP1 and TRP2 did not change after incubation with fatty acids. Pulse-chase assay by [35S]methionine metabolic labeling revealed that neither linoleic acid nor palmitic acid altered the synthesis of tyrosinase. Further, it was shown that linoleic acid accelerated, while palmitic acid decelerated, the proteolytic degradation of tyrosinase. These results suggest that modification of proteolytic degradation of tyrosinase is involved in regulatory effects of fatty acids on melanogenesis in cultured melanoma cells.  相似文献   

19.
C Abbott  I J Jackson  B Carritt  S Povey 《Genomics》1991,11(2):471-473
The mouse brown locus encodes a tyrosinase-related protein, TRP-1. The human homolog of TRP-1 was recently cloned from a melanoma cDNA library and sequenced. We have made oligonucleotide primers corresponding to the human TRP1 3' untranslated region and used them to map the human TRP1 gene by species-specific PCR in human/rodent somatic cell hybrids. By this means, the human TRP1 gene has been mapped to the short arm of chromosome 9.  相似文献   

20.
Arrangement of genes TRP1 and TRP3 of Saccharomyces cerevisiae strains   总被引:10,自引:0,他引:10  
The tryptophan biosynthetic genes TRP1 and TRP3 and partly also TRP2 and TRP4 have been compared by the technique of Southern hybridization and enzyme measurements in twelve wild isolates of Saccharomyces cerevisiae from natural sources of different continents, in the commonly used laboratory strain S. cerevisiae X2180-1A and in a Kluyveromyces marxianus strain. We could classify these strains into four groups, which did not correlate with their geographical distribution. In no case are the TRP3 and TRP1 genes fused as has been found in other ascomycetes. Two strains were found which, in contrast to strain X2180-1A, show derepression of gene TRP1. Two examples are discussed to demonstrate the usefulness of Southern hybridizations for the identification of closely related strains.Non-standard abbreviations InGP Indole-3-glycerolphosphate - PRA N(5-phosphoribosyl)-anthranilate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号