首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fitness related traits often show spatial variation across populations of widely distributed species. Comparisons of genetic variation among populations in putatively neutral DNA markers and in phenotypic traits susceptible to selection (QST FST analysis) can be used to determine to what degree differentiation among populations can be attributed to selection or genetic drift. Traditionally, QST FST analyses require a large number of populations to achieve sufficient statistical power; however, new methods have been developed that allow QST FST comparisons to be conducted on as few as two populations if their pedigrees are informative. This study compared genetic and morphological divergence in three strains of brook trout Salvelinus fontinalis that were historically or currently used for stocking in the Lake Superior Basin. Herein we examined if morphological divergence among populations showed temporal variation, and if divergence could be attributed to selection or was indistinguishable from genetic drift. Multivariate QST FST analysis showed evidence for divergent selection between populations. Univariate analyses suggests that the pattern observed in the multivariate analyses was largely driven by divergent selection for length and weight, and moreover by divergence between the Assinica strain and each of the Iron River and Siskiwit strains rather than divergent selection between each population pair. While it could not be determined if divergence was due to natural selection or inadvertent artificial selection in hatcheries, selected differences were consistent with patterns of domestication commonly found in salmonids.  相似文献   

2.
When variation in life-history characters is caused by many genes of small effect, then quantitative-genetic parameters may quantify constraints on rate and direction of microevolutionary change. I estimated heritabilities and genetic correlations for 16 life-history and morphological characters in two populations of Impatiens capensis, a partially self-pollinating herbaceous annual. The Madison population had little or no additive genetic variance for any of these characters, while the Milwaukee population had significant narrowsense heritabilities and genetic correlations for several traits, including adult size, which is highly correlated with fitness. All genetic correlations among fitness components were positive, hence there is no evidence for antagonistic pleiotropy among these traits. Dissimilarity of heritabilities in the two populations supports theoretical predictions that long-term changes in genetic variance-covariance patterns may occur when population sizes are small and selection is strong, as may occur in many plant species.  相似文献   

3.
Abstract Patterns of genetic variation and covariation strongly affect the rate and direction of evolutionary change by limiting the amount and form of genetic variation available to natural selection. We studied evolution of morphological variance-covariance structure among seven populations of house finches (Carpodacus mexicanus) with a known phylogenetic history. We examined the relationship between within- and among-population covariance structure and, in particular, tested the concordance between hierarchical changes in morphological variance-covariance structure and phylogenetic history of this species. We found that among-population morphological divergence in either males or females did not follow the within-population covariance patterns. Hierarchical patterns of similarity in morphological covariance matrices were not congruent with a priori defined historical pattern of population divergence. Both of these results point to the lack of proportionality in morphological covariance structure of finch populations, suggesting that random drift alone is unlikely to account for observed divergence. Furthermore, drift alone cannot explain the sex differences in within- and among-population covariance patterns or sex-specific patterns of evolution of covariance structure. Our results suggest that extensive among-population variation in sexual dimorphism in morphological covariance structure was produced by population differences in local selection pressures acting on each sex.  相似文献   

4.
Do genetic correlations among phenotypic characters reflect developmental organization or functional coadaptation of the characters? We test these hypotheses for the wing melanin pattern of Pieris occidentalis butterflies, by comparing estimated genetic correlations among wing melanin characters with a priori predictions of the developmental organization and the functional (thermoregulatory) organization of melanin pattern. There were significant broad-sense heritabilities and significant genetic correlations for most melanin characters. Matrix correlation tests revealed significant agreement between the observed genetic correlations and both developmental and functional predictions in most cases; this occurred even when the overlap between developmental and functional predictions was eliminated. These results suggest that both developmental organization and functional coadaptation among melanin characters influence the genetic correlation structure of melanin pattern in this species. These results have two important implications for the evolution of melanin pattern in P. occidentalis and other butterflies: 1) most phenotypic variation in pattern may reflect variation among, rather than within, sets of developmentally homologous wing melanin characters; and 2) in a changing selective environment, genetic correlations may retard the disruption of functionally coupled melanin characters, thus affecting the evolutionary response to selection.  相似文献   

5.
Chaotic genetic patchiness denotes unexpected patterns of genetic differentiation that are observed at a fine scale and are not stable in time. These patterns have been described in marine species with free‐living larvae, but are unexpected because they occur at a scale below the dispersal range of pelagic larvae. At the scale where most larvae are immigrants, theory predicts spatially homogeneous, temporally stable genetic variation. Empirical studies have suggested that genetic drift interacts with complex dispersal patterns to create chaotic genetic patchiness. Here we use a coancestry model and individual‐based simulations to test this idea. We found that chaotic genetic patterns (qualified by global FST and spatio‐temporal variation in FST's between pairs of samples) arise from the combined effects of (1) genetic drift created by the small local effective population sizes of the sessile phase and variance in contribution among breeding groups and (2) collective dispersal of related individuals in the larval phase. Simulations show that patchiness levels qualitatively comparable to empirical results can be produced by a combination of strong variance in reproductive success and mild collective dispersal. These results call for empirical studies of the effective number of breeders producing larval cohorts, and population genetics at the larval stage.  相似文献   

6.
Theory predicts strong stabilizing selection on warning patterns within species and convergent evolution among species in Müllerian mimicry systems yet Heliconius butterflies exhibit extreme wing pattern diversity. One potential explanation for the evolution of this diversity is that genetic drift occasionally allows novel warning patterns to reach the frequency threshold at which they gain protection. This idea is controversial, however, because Heliconius butterflies are unlikely to experience pronounced population subdivision and local genetic drift. To examine the fine-scale population genetic structure of Heliconius butterflies we genotyped 316 individuals from eight Costa Rican Heliconius species with 1428 AFLP markers. Six species exhibited evidence of population subdivision and/or isolation by distance indicating genetic differentiation among populations. Across species, variation in the extent of local genetic drift correlated with the roles different species have played in generating pattern diversity: species that originally generated the diversity of warning patterns exhibited striking population subdivision while species that later radiated onto these patterns had intermediate levels of genetic diversity and less genetic differentiation among populations. These data reveal that Heliconius butterflies possess the coarse population genetic structure necessary for local populations to experience pronounced genetic drift which, in turn, could explain the origin of mimetic diversity.  相似文献   

7.
Studying patterns of intra-specific genetic variation among populations allows for a better understanding of population structure and local adaptation. However, those patterns may differ according to the genetic markers applied, as neutral genetic markers reflect demographic processes and random genetic drift, whereas adaptive markers also carry the footprint of selection. In combination, neutral and adaptive genetic markers permit to assess the relative roles of drift and selection in shaping population structure. Among the best understood adaptive genetic loci are the genes of the major histocompatibility complex (MHC). We here study variation and differentiation at neutral SNP markers and MHC class II genes in red grouse (Lagopus lagopus scotica) from Ireland and Scotland. Irish red grouse populations are fragmented and drastically declining, but red grouse are abundant in Scotland. We find evidence for positive selection acting on the MHC genes and variation in MHC gene copy numbers among Irish individuals. Furthermore, there was significant population differentiation among red grouse from Ireland and Scotland at the neutral SNP markers (FST = 0.084) and the MHC-BLB genes (FST: BLB1 = 0.116, BLB2 = 0.090, BLB3 = 0.104). Differentiation at the MHC-BLB1 was significantly higher than at the neutral SNP markers, suggesting that selection plays an important role in shaping MHC variation, in addition to genetic drift. We speculate that the observed differentiation pattern might be due to local adaptation to different parasite regimes. These findings have strong conservation implications and we advise against the introduction of Scottish red grouse to supplement Irish populations.  相似文献   

8.
Species are the units used to measure ecological diversity and alleles are the units of genetic diversity. Genetic variation within and among species has been documented most extensively using allozyme electrophoresis. This reveals wide differences in genetic variability within, and genetic distances among, species, demonstrating that species are not equivalent units of diversity. The extent to which the pattern observed for allozymes can be used to infer patterns of genetic variation in quantitative traits depends on the forces generating and maintaining variability. Allozyme variation is probably not strictly neutral but, nevertheless, heterozygosity is expected to be influenced by population size and genetic distance will be affected by time since divergence. The same is true for quantitative traits influenced by many genes and under weak stabilizing selection. However, the limited data available suggest that allozyme variability is a poor predictor of genetic variation in quantitative traits within populations. It is a better predictor of general phenotypic divergence and of postzygotic isolation between populations or species, but is only weakly correlated with prezygotic isolation. Studies of grasshopper and planthopper mating signal variation and assortative mating illustrate how these characters evolve independently of general genetic and morphological variation. The role of such traits in prezygotic isolation, and hence speciation, means that they will contribute significantly to the diversity of levels of genetic variation within and among species.  相似文献   

9.
The evolutionary mechanisms generating the tremendous biodiversity of islands have long fascinated evolutionary biologists. Genetic drift and divergent selection are predicted to be strong on islands and both could drive population divergence and speciation. Alternatively, strong genetic drift may preclude adaptation. We conducted a genomic analysis to test the roles of genetic drift and divergent selection in causing genetic differentiation among populations of the island fox (Urocyon littoralis). This species consists of six subspecies, each of which occupies a different California Channel Island. Analysis of 5293 SNP loci generated using Restriction‐site Associated DNA (RAD) sequencing found support for genetic drift as the dominant evolutionary mechanism driving population divergence among island fox populations. In particular, populations had exceptionally low genetic variation, small Ne (range = 2.1–89.7; median = 19.4), and significant genetic signatures of bottlenecks. Moreover, islands with the lowest genetic variation (and, by inference, the strongest historical genetic drift) were most genetically differentiated from mainland grey foxes, and vice versa, indicating genetic drift drives genome‐wide divergence. Nonetheless, outlier tests identified 3.6–6.6% of loci as high FST outliers, suggesting that despite strong genetic drift, divergent selection contributes to population divergence. Patterns of similarity among populations based on high FST outliers mirrored patterns based on morphology, providing additional evidence that outliers reflect adaptive divergence. Extremely low genetic variation and small Ne in some island fox populations, particularly on San Nicolas Island, suggest that they may be vulnerable to fixation of deleterious alleles, decreased fitness and reduced adaptive potential.  相似文献   

10.
East AsianDrosophila melanogaster are known for great variation in morphological and physiological characters among populations, variation that is believed to be maintained by genetic drift. To understand the genetic properties of AsianD. melanogaster populations, we initiated a population genetic study of chromosome inversion polymorphisms in hitherto unanalysed population samples from Southeast (SE) Asia. We generally found a high frequency of each of the four common cosmopolitan inversions in comparison to populations from Africa, Asia, and Australia. In contrast to the great phenotypic variation among Asian populations, however, we could not detect differences in inversion frequencies among populations. Furthermore, we observed neither correlations of inversion frequencies with population latitude and longitude, nor evidence for linkage disequilibrium between different inversion loci. We propose two explanations for the observed genetic homogeneity among these SE AsianD. melanogaster populations: (i) the observed pattern simply reflects the retention of ancestral polymorphisms originating from a panmictic population that was once present on a large single landmass (Sundaland), and/or is a consequence of high recent gene flow between populations; and (ii) it is caused by selective forces (e.g. balancing selection).  相似文献   

11.
Abstract.— Theory predicts that in small isolated populations random genetic drift can lead to phenotypic divergence; however this prediction has rarely been tested quantitatively in natural populations. Here we utilize natural repeated island colonization events by members of the avian species complex, Zosterops lateralis , to assess whether or not genetic drift alone is an adequate explanation for the observed patterns of microevolutionary divergence in morphology. Morphological and molecular genetic characteristics of island and mainland populations are compared to test three predictions of drift theory: (1) that the pattern of morphological change is idiosyncratic to each island; (2) that there is concordance between morphological and neutral genetic shifts across island populations; and (3) for populations whose time of colonization is known, that the rate of morphological change is sufficiently slow to be accounted for solely by genetic drift. Our results are not consistent with these predictions. First, the direction of size shifts was consistently towards larger size, suggesting the action of a nonrandom process. Second, patterns of morphological divergence among recently colonized populations showed little concordance with divergence in neutral genetic characters. Third, rate tests of morphological change showed that effective population sizes were not small enough for random processes alone to account for the magnitude of microevolutionary change. Altogether, these three lines of evidence suggest that drift alone is not an adequate explanation of morphological differentiation in recently colonized island Zosterops and therefore we suggest that the observed microevolutionary changes are largely a result of directional natural selection.  相似文献   

12.
Detection of footprints of historical natural selection on quantitative traits in cross‐sectional data sets is challenging, especially when the number of populations to be compared is small and the populations are subject to strong random genetic drift. We extend a recent Bayesian multivariate approach to differentiate between selective and neutral causes of population differentiation by the inclusion of habitat information. The extended framework allows one to test for signals of selection in two ways: by comparing the patterns of population differentiation in quantitative traits and in neutral loci, and by comparing the similarity of habitats and phenotypes. We illustrate the framework using data on variation of eight morphological and behavioral traits among four populations of nine‐spined sticklebacks (Pungitius pungitius). In spite of the strong signal of genetic drift in the study system (average FST = 0.35 in neutral markers), strong footprints of adaptive population differentiation were uncovered both in morphological and behavioral traits. The results give quantitative support for earlier qualitative assessments, which have attributed the observed differentiation to adaptive divergence in response to differing ecological conditions in pond and marine habitats.  相似文献   

13.
Patterns of interspecific differentiation in saki monkeys (Pithecia) are quantitatively described and possible evolutionary processes producing them are examined. The comparison of species correlation matrices to expected patterns of morphological integration reveal significant and similar patterns of development-based cranial integration among species. Aspects of the facial region are more heavily influenced by general size variation than features of the neural region. The comparison of pooled within- and between-groups V/CV matrices suggests that genetic drift might be a sufficient explanation for saki cranial evolution. Differential natural selection gradients are also reconstructed because selection may also have caused population differentiation through evolutionary time. These gradients illustrate the inherent multivariate nature of selection, being a consequence of the interaction between existing morphological integration (correlation) among traits and the action of natural selection. Yet, our attempt to interpret selection gradients in terms of their functional significance did not result in any clear association between selection and function. Perhaps this is also an indication that morphological evolution in sakis was mostly neutral.  相似文献   

14.
Anolis lizards of the Greater Antilles represent one of the classic examples of vertebrate adaptive radiation. The same morphological types ('ecomorphs') have evolved repeatedly in response to similar ecological pressures on different islands. We tested whether patterns of within species diversification were congruent with between species patterns and the processes leading to the adaptive radiation of Greater Antillean anoles by measuring variation in performance-related morphological characters in the brown anole, Anolis sagrei . We measured morphological and genetic variation in two different habitat types on each of five islands in the Bahamas. We estimated population structure and rates of gene flow within and among islands using eight microsatellite markers. Intraspecific variation in performance-related morphological characters was similar to the pattern of interspecific variation that characterizes the adaptive radiation of this group in the Greater Antilles. For example, limb length was correlated with perch diameter within A. sagrei as has also been shown among species of anole. Morphological divergence in traits has occurred despite relatively high levels of gene flow both within and among islands. These results are discussed in the context of the divergence-with-gene-flow model of speciation. The results provide important intraspecific evidence that the diversification of anoles has been shaped by natural selection and show how ecologically-based selection pressures explain diversification at both the population and species levels.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 189–199.  相似文献   

15.
Quantitative genetic theory specifies evolutionary expectations for morphological diversification by genetic drift in a monophyletic clade. If genetic drift is responsible for the evolutionary morphological diversification of a clade, patterns of within- and between-taxon morphological variance/covariance should be proportional. We tested for proportionality of within- and between-species craniofacial morphological variation in 12 species of tamarins (genus Saguinus). We found that within- and between-taxon morphological variations across the entire genus were not proportional, and hence not likely to be due to genetic drift alone. The primary deviation from proportionality is that size and size-related shape in the cranium is more variable relative to other aspects of cranial morphology than expected under genetic drift, suggesting differential size selection between the two major clades, the small-bodied and large-bodied tamarins. Within each of these major clades, most of the interspecific variation is consistent with the pattern expected under genetic drift, although specific contrasts may indicate the involvement of differential selection. Morphological distances among taxa do not correspond very closely to the phylogeny derived from mtDNA. In particular, S. oedipus and S. geoffroyi are very distinct morphologically from the rest of the tamarins, although they are phylogenetically the sister clade to a clade containing S. midas and S. bicolor. Morphological similarity is not a good guide to phylogenetic affinity in the tamarins, especially with regard to deeper nodes in the phylogenetic tree.  相似文献   

16.
Within-locality correlations among eight morphological traits of the fundatrix and among 15 morphological traits of the alate fundatrigeniae of the aphid Pemphigus populicaulis Fitch were examined for among-locality variation. A jackknife procedure revealed highly significant differences among correlation matrices representing 34 local samples from eastern North America. Most bivariate correlations also differed significantly among samples. Although very low correlations cannot differ, for moderate or strong correlations the average magnitude of correlation is not a good predictor of the degree of interlocality difference. Nearly half of the variation among localities is in the level of “overall correlation,” which is positively correlated with intralocality size variation. Despite significant differences among localities, spatial autocorrelation tests failed to reveal any significant geographic pattern in correlations. Monte Carlo experiments suggest that if geographic patterns in the correlations were of the same magnitude as those for the means of these traits, some of these patterns would have been detected. Factor analyses of the pooled within-locality correlation matrices, after oblique rotation to simple structure, reveal appendage and body-size factors for both alates and stem mothers. In general, correlations between traits with high loadings on the same factor differ among localities, whereas substantial correlations that do not vary geographically are between traits that are not well resolved by the factor analyses. It is hypothesized that the apparently random geographic differences in correlation are caused by chance differences in the mode of response to short-term selection. Geographic patterns in trait means are established by selection, but, because local population sizes are finite, similar response to selection occurs by diverse physiological or developmental mechanisms in different populations, just as replicate lines in artificial selection experiments may achieve the same response by diverse mechanisms. These diverse mechanisms of response will have diverse effects on genetic variance and covariance, causing correlation patterns to vary geographically. Several forces will oppose continued divergence of these patterns.  相似文献   

17.
The rate of evolutionary morphological change in secondary sexual characters among species has traditionally been assumed to exceed that for non-sexual characters, giving rise to a larger degree of divergence. We used a large data set of independent evolutionary events of exaggerated secondary sexual feather characters across all birds to test whether that was the case. Comparative analyses revealed that secondary sexual tail feather characters diverged more than wing feathers in females, and we also found that secondary sexual head feather characters diverged more than tarsi in males, when only including intra-order comparisons in the analyses. These results are in the predicted direction, with secondary sexual characters diverging more than ordinary morphological traits, partially supporting the general impression that secondary sexual characters are more variable among species than ordinary morphological characters. However, the degree of divergence among secondary sexual characters was generally not much larger than that among ordinary characters. Some non-significant differences in divergence between secondary sexual characters and ordinary characters could be explained by the cost-reducing function of ordinary morphological traits. There was no evidence of significant differences in divergence between sexes for secondary sexual characters, maybe because of genetic correlations in morphology between the sexes. However, male tarsi diverged more than female tarsi, and sexual selection might play a role in this difference in divergence. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Although heritable genetic variation is critical to the evolutionary process, we know little about how it is maintained. Obviously, mutation-selection balance must play a role, but there is considerable doubt over whether it can account for heritabilities as high as 0.5, which are commonly found in natural populations. Most models of mutation-selection balance assume panmictic populations. In this paper we use Monte Carlo simulations to examine the effect of isolation by distance on the variation maintained by mutation in a polygenic trait subject to optimizing selection. We show that isolation by distance can substantially increase the total variation maintained in continuous populations over a wide range of dispersal patterns, but only if more than one genotype produces the optimal phenotype (genetic redundancy). Isolation by distance alone has only a slight effect on the variation maintained in the total population for neutral alleles. The combined effect of isolation by distance and genetic redundancy, however, allows the maintenance of substantial variation despite strong stabilizing selection. The mechanism is straightforward. Isolation by distance allows mutation and drift to operate independently in different parts of the population. Because of their independent evolutionary histories, different parts of the population independently draw from the available set of redundant genotypes. Because the genotypes are redundant, selection does not discriminate among them, and they will persist until eliminated by drift. The population as a whole maintains many distinct genotypes. We show that this process allows mutation to maintain high levels of variation, even under strong stabilizing selection, and that over a moderate range of dispersal patterns the amount of variation maintained in the entire population is independent of both the strength of selection and the variance of the dispersal distance. Furthermore, we show that individual heterozygosity is increased in locally mating populations when selection is strong. Finally, our simulations provide a rough picture of how selection and the dispersal pattern influence the spatial distribution of genetic and phenotypic variation.  相似文献   

19.
Morphological divergence among species may be constrained by the pattern of genetic variances and covariances among traits within species. Assessing the existence of such a relationship in nature requires information on the stability of intraspecific correlation and covariance structure and the correspondence of this structure to the pattern of evolutionary divergence within a lineage. Here, we investigate these issues for nine morphological traits and 15 species of stalk-eyed flies in the genus Diasemopsis. Within-species matrices for these traits were generated from phenotypic data for all the Diasemopsis species and from genetic data for a single Diasemopsis species, D. dubia. The among-species pattern of divergence was assessed by calculating the evolutionary correlations for all pairwise combinations of the morphological traits along the phylogeny of these species. Comparisons of intraspecific matrices reveal significant similarity among all species in the phenotypic correlations matrices but not the covariance matrices. In addition, the differences in correlation structure that do exist among species are not related to their phylogenetic placement or change in the means of the traits. Comparisons of the phenotypic and phylogenetic matrices suggest a strong relationship between the pattern of evolutionary change among species and both the intraspecific correlation structure and the stability of this structure among species. The phenotypic and the phylogenetic matrices are significantly similar, and pairs of traits whose intraspecific correlations are more stable across taxa exhibit stronger coevolution on the phylogeny. These results suggest either the existence of strong constraints on the pattern of evolutionary change or a consistent pattern of correlated selection shaping both the phenotypic and phylogenetic matrices. The genetic correlation structure for D. dubia, however, does not correspond with patterns found in the phenotypic and phylogenetic data. Possible reasons for this disagreement are discussed.  相似文献   

20.
Patterns of phenotypic plasticity and genotypic variation in light response of growth and photosynthesis were examined in two species of rain forest shrub that differ in ecological distribution within the forest. We further examined correlations among photosynthetic and growth traits. We hypothesized that the pioneer species, Piper sancti-felicis, would display greater phenotypic plasticity than the shade-tolerant species, Piper arieianum. We further proposed that, in both species, genotypic effects would be more apparent in growth-related traits than photosynthetic traits due to more concentrated selection pressure on gas-exchange traits. P. sancti-felicis did not demonstrate greater phenotypic plasticity of light response. Although many of the traits measured had significant genotype effects, neither species showed any significant effects of genotype on light response of photosynthesis, suggesting little genetic variation for this trait within populations. A principal components analysis clearly illustrated both species and light effects, with the treatments dividing neatly along the axis of the first principal component and the species separating along the second principal component axis. Results indicated general similarities between the species in their trait correlation structure and level of integration among traits, but characteristic differences were observed in the patterns of change between low and high light. Both species had more correlations than expected within groups of growth-related or photosynthetic traits; strong correlations of traits between these two groups were underrepresented. The similar pattern of genetic variation and phenotypic integration observed in these two congeners may be due more to their close phylogenetic relation than to their ecological distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号