首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipolytic products of triglyceride-rich lipoproteins, i.e., free fatty acids, may cause activation and dysfunction of the vascular endothelium. Mechanisms of these effects may include lipid peroxidation. One of the major and biologically active products of peroxidation of n-6 fatty acids, such as linoleic acid or arachidonic acid, is the aldehyde 4-hydroxynonenal (HNE). To study the hypothesis that HNE may be a critical factor in endothelial cell dysfunction caused by free fatty acids, human umbilical endothelial cells (HUVEC) were treated with up to160 microM of linoleic or arachidonic acid. HNE formation was detected by immunocytochemistry in cells treated for 24 h with either fatty acid, but more markedly with arachidonic acid. To study the cellulareffects of HNE, HUVEC were treated with different concentrations of this aldehyde, and several markers of endothelial cell dysfunction were determined. Exposure to HNE for 6 and 9 h resulted in increased cellular oxidative stress. However, short time treatment with HNE did not cause activation of nuclear factor-kappaB (NF-kappaB). In addition, HUVEC exposure to HNE caused a dose-dependent decrease in production of both interleukin-8 (IL-8) and intercellular adhesion molecule-1 (ICAM-1). On the other hand, HNE exerted prominent cytotoxic effects in cultured HUVEC, manifested by morphological changes, diminished cellular viability, and impaired endothelial barrier function. Furthermore, HNE treatment induced apoptosis of HUVEC. These data provide evidence that HNE does not contribute to NF-kappaB-related mechanisms of the inflammatory response in HUVEC, but rather to endothelial dysfunction, cytotoxicity, and apoptotic cell death.  相似文献   

2.
The effect of 4-hydroxynonenal (HNE), a lipid peroxidation product, on junctional communication (JC) among cultured vascular endothelial cells was assessed by both study of the transfer of microinjected 6-carboxyfluorescein between neighboring cells and measurement by a "cut-loading and dye transfer" technique. Both methods indicated that at concentrations higher than 10(-9) M and testing times between 6 and 8 h HNE reduces endothelial cell junctional communication. At 10(-8) M, a gradual development of HNE effect appears during 6-8 h of exposure but is followed by a slow recovery completed at 20 h. The reduction in junctional communication is not produced by the inhibition of protein synthesis, as tested by radiolabeled leucine incorporation. The HNE effect might be relevant to pathological processes in which lipid peroxidation is associated with uncontrolled cell proliferation, as in atherogenesis and promotion of carcinogenesis by chronic inflammation.  相似文献   

3.
The data presented in this review clearly show that many different cytokines regulate the synthesis of PGI2 in vascular EC (Tables 1 & 2). Since these agents are synthesized, stored, and/or released from platelets, leukocytes and cells present in the vascular wall (Fig.), they are to be found at sites of vascular injury and may, through their effect on the synthesis of PGI2 and other prostanoids, regulate thrombogenesis and atherogenesis. Despite the mass of detailed data, the picture is still fragmentary. Very little, for instance, is known about the 'orchestral effects' of different combinations of cytokines. In addition, it seems that the regulation of PGI2 synthesis by cytokines varies with the species and with the type of vasculature from which the cells originated. However, discrepancies may also be due to the use of different culture conditions. Moreover, we must remember that the present data are almost exclusively from in vitro studies, and the representativeness of these results in in vivo situations remains to be clarified.  相似文献   

4.
Studying the production of IL-6 (interleukin-6) by monocytes, endothelial cells and smooth muscle cells we observed that cytokine inducers like IL-1, TNF alpha (tumor necrosis factor alpha), LPS (lipopolysaccharide), SAC (Staphylococcus Aureus Cowan 1) and PMA could be divided roughly into two categories. Bacterial products such as LPS or SAC have a potent IL-6 inducing effect on monocytes and minor or no effect on endothelial- and smooth muscle cells. The other category comprising IL-1, TNF alpha and PMA induces IL-6 production in endothelial- and smooth muscle cells. Only IL-1 induces IL-6 production in monocytes as well as in endothelial cells and smooth muscle cells. In addition to IL-6, also IL-1 and TNF alpha are produced by monocytes however with different kinetics. None of the stimuli had any inhibitory effect on IL-6 production with the exception of PMA. Whereas PMA induced IL-6 production in endothelial cells and it potentiated the induction of IL-6 by IL-1 in these cells, it inhibited LPS-stimulated IL-6 production in monocytes. In line with the effects of PMA, staurosporin induced IL-6 production in monocytes and it inhibited IL-1 driven IL-6 production by endothelial cells.  相似文献   

5.
We characterized human umbilical vein (HUV) endothelial cells as to cell growth and prostacyclin production to get a better understanding of the properties of endothelial cells. Endothelial cell growth supplement (ECGS) and basic fibroblast growth factor (FGF) stimulated HUV endothelial cell growth. Heparin further enhanced the cell growth stimulated by ECGS, but not the cell growth stimulated by FGF or in the absence of these growth factors. In the presence of ECGS, the prostacyclin-producing capacity of the cells was inhibited by heparin. However, in the presence of FGF of in the absence of growth factors, heparin did not inhibit prostacyclin production. Therefore, it is likely that there is a specific correlation between heparin and growth factors for endothelial cells in the blood vessel to maintain nonthrombogenicity properly. Heparin-treated cultures may not be suitable for some examinations of prostacyclin production by vascular endothelial cells.  相似文献   

6.
4-Hydroxynonenal (4-HNE) has been suggested to be involved in stress-induced signaling for apoptosis. In present studies, we have examined the effects of 4-HNE on the intrinsic apoptotic pathway associated with p53 in human retinal pigment epithelial (RPE and ARPE-19) cells. Our results show that 4-HNE causes induction, phosphorylation, and nuclear accumulation of p53 which is accompanied with down regulation of MDM2, activation of the pro-apoptotic p53 target genes viz. p21 and Bax, JNK, caspase3, and onset of apoptosis in treated RPE cells. Reduced expression of p53 by an efficient silencing of the p53 gene resulted in a significant resistance of these cells to 4-HNE-induced cell death. The effects of 4-HNE on the expression and functions of p53 are blocked in GSTA4-4 over expressing cells indicating that 4-HNE-induced, p53-mediated signaling for apoptosis is regulated by GSTs. Our results also show that the induction of p53 in tissues of mGsta4 (−/−) mice correlate with elevated levels of 4-HNE due to its impaired metabolism. Together, these studies suggest that 4-HNE is involved in p53-mediated signaling in in vitro cell cultures as well as in vivo that can be regulated by GSTs.  相似文献   

7.
Cultured endothelial cells isolated from bovine carotid aorta produce prostacyclin (prostaglandin I2) and a small amount of prostaglandin E2. The effects of kallikrein (EC 3.4.21.8) on the release of prostacyclin from the cells were studied with the radioimmunoassay technique. Kallikrein stimulated the release of prostacyclin in a dose-dependent manner. The maximal stimulation reached up to 9.2-fold at 0.1 micrograms/ml of kallikrein. The effect was not associated with the activation of the fatty acid cyclooxygenase, but with the stimulation of arachidonic acid release. But kallikrein itself did not have phospholipase activity. On the other hand, at the same doses, kallikrein failed to induce platelet aggregation or enhance platelet aggregation induced by collagen. Our findings suggest that the vasodilator effect of kallikrein is mediated in part by prostacyclin production. Furthermore, we investigated the possibility that the stimulatory effect of kallikrein on prostacyclin production in endothelial cells is associated with kinin formation. Bradykinin and lysylbradykinin (kallidin) also stimulated the release of prostacyclin, but the effects were far less than that of kallikrein. And the stimulation due to the addition of both kallikrein and bradykinin on prostacyclin and arachidonic acid release was not competitive or additive, but synergistic. Moreover, even if fetal calf serum was incubated with kallikrein, bradykinin was not detected at all. When kallikrein was pre-incubated with aporotinin, which is an inactivator of kallikrein, the effect of kallikrein was completely abolished. These findings suggest that the stimulatory effect of kallikrein on the release of prostacyclin from vascular cells is possibly not due to kinin formation, but to other substance(s) produced by this serine proteinase.  相似文献   

8.
9.
Endothelin (ET) is a potent vasoconstrictor peptide, released from endothelial cells, which is associated with prostaglandin (PG) release. The mechanism by which ET causes the release of PG is not clearly understood. We used rat aortic endothelial cells to investigate the role of calcium (Ca2+) in ET-1-induced prostacyclin (PGI2) release. ET-1 (10(-9) M) produced a significant increase in PGI2 release. Pretreatment of rat aortic endothelial cells with different doses (10(-9) M and 10(-6) M) of diltiazem (voltage-sensitive L-type calcium channel blocker) produced significant inhibition of ET-1- and PDBu-induced PGI2 release. Inhibition was first noted at 10(-9) M and was complete at 10(-6) M. Conversely, pretreatment of rat aortic endothelial cells with different doses (10(-9) M and 10(-6) M) of calcium channel blockers (thapsigargin, an intracellular calcium channel blocker or conotoxin, a voltage-sensitive N-type calcium channel blocker) produced no changes on ET-1- or PDBu-induced PGI2 release. These results provide further support for the concept that PKC mediates ET-induced PGI2 release in rat aortic endothelial cells via an increase in intracellular calcium and this increase is due to the influx of extracellular calcium and not to the release of calcium from the sarcoplasmic reticulum.  相似文献   

10.
The production of prostacyclin (PGI2) by cultured porcine aortic endothelial cells, in response to serum and the calcium ionophore A23187, was inhibited by TMB-8, an antagonist of intracellular calcium mobilization. The calcium-channel blocker methoxyverapamil (D600) inhibited serum-induced PGI2 production in but had little effect on A23187-induced PGI2 production. Calmodulin activity was detected in endothelial-cell lysates and was inhibited by the calmodulin antagonist W7, which also inhibited PGI2 production in response to both agonists. Calcium and calmodulin appear to play an important role in mediating PGI2 production by the vascular endothelium.  相似文献   

11.
Bovine aortic endothelial cultures readily take up docosahexaenoic acid (DHA). Most of the DHA was incorporated into phospholipids, primarily in ethanolamine and choline phosphoglycerides, and plasmalogens accounted for 34% of the DHA contained in the ethanolamine fraction after a 24-h incubation. The retention of DHA in endothelial phospholipids was not greater than other polyunsaturated fatty acids and unlike arachidonic and eicosapentaenoic acids, DHA did not continue to accumulate in the ethanolamine phosphoglycerides after the initial incorporation. About 15% of the [14C(U)]DHA uptake was retroconverted to docosapentaenoic and eicosapentaenoic acids in 24 h. Some of the newly incorporated [14C(U)]DHA was released when the cells were incubated subsequently in a medium containing serum and albumin. The released radioactivity was in the form of free fatty acid and phospholipids and after 24 h, 11% was retroconverted to docosapentaenoic and eicosapentaenoic acids. Total DHA uptake was decreased only 10% by the presence of a 100 microM mixture of physiologic fatty acids, but as little as 10 microM docosatetraenoic acid reduced DHA incorporation into phospholipids by 25%. DHA was not converted to prostaglandins or lipoxygenase products by the endothelial cultures. When DHA was available, however, less arachidonic acid was incorporated into endothelial phospholipids, and less was converted to prostacyclin (PGI2). Enrichment of the endothelial cells with DHA also reduced their capacity to subsequently produce PGI2. These findings indicate that endothelial cells can play a role in DHA metabolism and like eicosapentaenoic acid, DHA can inhibit endothelial PGI2 production when it is available in elevated amounts.  相似文献   

12.
Prostacyclin (PGI2) production by thrombin- and bradykinin-stimulated bovine aortic endothelial cells (BAEC) and human umbilical vein endothelial cells (HUVEC) was related to the receptor-linked activation of inositide hydrolysis. Bradykinin caused a rapid and transient 3-fold increase in the formation of inositol polyphosphates in BAEC. The increase in InsP3 reflected changes mainly in the Ins(1,4,5)P3 isomer. Thrombin was less effective than bradykinin in increasing InsP3 levels and appeared to only minimally stimulate the production of PGI2 in BAEC. In HUVEC, thrombin caused a 5-fold elevation of Ins(1,4,5)P3, closely related to a rise in PGI2 production. However, bradykinin did not affect inositol phosphates and PGI2 production in HUVEC. Other inositol phosphates were also assessed to obtain information on putative metabolism of Ins(1,4,5)P3. The present study supports the notion that formation of Ins(1,4,5)P3 is linked to an increase in PGI2 production in endothelial cells and furthermore provides evidence for a large degree of heterogeneity in the responses of BAEC and HUVEC to thrombin and bradykinin.  相似文献   

13.
We investigated the effects of neuropeptide Y on the prostacyclin production of cultured porcine aortic endothelial cells by measuring the stable metabolite of prostacyclin, 6-keto-prostaglandin F1 alpha, by radioimmunoassay. Neuropeptide Y induced dose- and time-dependent stimulation of prostacyclin production by cultured porcine aortic endothelial cells. The lowest stimulatory concentration of neuropeptide Y was 10(-8) M and maximal response, a 2.8 fold rise, was obtained with 10(-6) M. The stimulation lasted at least 24 h. The effect was associated with the stimulation of arachidonic acid release. Our data suggest that neuropeptide Y may inhibit the development of atherosclerosis by stimulating prostacyclin synthesis.  相似文献   

14.
Human umbilical vein endothelial cells incorporate eicosapentaenoic acid (EPA) when this fatty acid is present in the culture medium. From 30 to 70% of the uptake remains as EPA, and much of the remainder is elongated to docosapentaenoic acid. All of the cellular glycerophospholipids become enriched with EPA and docosapentaenoic acid, with the largest increase in EPA occurring in the choline glycerophospholipids. When this fraction is enriched with EPA, it exhibits a large decrease in arachidonic acid content. Cultures exposed to tracer amounts of [1-14C]linolenic acid in 5% fetal bovine serum convert as much as 17% of the radioactivity to EPA. The conversion is reduced, however, in the presence of either 20% fetal bovine serum or 50 microM linolenic acid. Like arachidonic acid, some newly incorporated EPA was released from the endothelial cells when the cultures were exposed to thrombin. However, as compared with arachidonic acid, only very small amounts of EPA were converted to prostaglandins. Cultures enriched with EPA exhibited a 50 to 90% reduction in capacity to release prostacyclin (PGI2) when subsequently stimulated with thrombin, calcium ionophore A23187, or arachidonic acid. The degree of inhibition was dependent on the time of exposure to EPA and the EPA concentration, and it was not prevented by adding a reversible cyclooxygenase inhibitor, ibuprofen, during EPA supplementation. EPA appears to decrease the capacity of the endothelial cells to produce PGI2 in two ways: by reducing the arachidonic acid content of the cell phospholipid precursor pools and by acting as an inhibitor of prostaglandin production. These findings suggest that regimens designed to reduce platelet aggregation and thrombosis by EPA enrichment may also reduce the capacity of the endothelium to produce PGI2.  相似文献   

15.
The vascular endothelium is a well-recognized target of damage for factors leading to increased cardiovascular risk. Among the agents playing an important role in cardiovascular homeostasis, nitric oxide and prostacyclin represent key markers of endothelial integrity. In the present work, we report for the first time the reduced expression of both endothelial nitric oxide synthase and cyclooxygenase-2 (COX-2) proteins, as well as decreased prostacyclin production, in unstimulated human endothelial cells from insulin-dependent diabetic mothers when compared to cells from non-diabetic, control subjects. According to a major role of COX-2 as a source of prostacyclin production even in unstimulated endothelial cells, prostacyclin production was concentration-dependently inhibited by the selective COX-2 inhibitor SC236. Overall, our results suggest a possible link between reduced endothelial COX-2 and NO-synthase expression and the increased risk of cardiovascular diseases affecting diabetic patients, and point to the use of endothelial cells from diabetic patients as a tool for investigating early dysfunction in pathological endothelium.  相似文献   

16.
Shyu KG  Tsai SC  Wang BW  Liu YC  Lee CC 《Life sciences》2004,76(7):813-826
Saikosaponin C is one of the saikosaponins that are consisted in a Chinese herb, Radix Bupleuri. Recently, saikosaponins have been reported to have properties of cell growth inhibition, inducing cancer cells differentiation and apoptosis. However, saikosaponin C had no correlation with cell growth inhibition. In this study, we investigated the role of saikosaponin C on the growth of endothelial cells and angiogenesis. We found that saikosaponin C yielded a potent effect on inducing human umbilical vein endothelial cells (HUVECs) viability and growth. In addition to inducing endothelial cells growth, saikosaponin C also induced endothelial cells migration and capillary tube formation. The gene expression or activation of matrix metalloproteinase-2 (MMP-2), vascular endothelial growth factor (VEGF) and the p42/p44 mitogen-activated protein kinase (MAPK, ERK) that correlated with endothelial cells growth, migration and angiogenesis were also induced by saikosaponin C. From these results, we suggest that saikosaponin C may have the potential for therapeutic angiogenesis but is not suitable for cancer therapy.  相似文献   

17.
The effects of highly purified Pseudomonas aeruginosa cytotoxin were investigated on cultured pulmonary artery endothelial cells. This toxin dose-dependently (7.5-60 micrograms/ml) and time-dependently (20-75 minutes) stimulated the release of radiolabeled arachidonic acid and metabolites and the synthesis of prostacyclin in the absence of overt cell damage (no enhanced lactate dehydrogenase [LDH] release). Preincubation of the toxin with neutralizing antibodies abolished the effect. The toxin response on endothelial cells required extracellular calcium but not magnesium and was accompanied by a calcium influx. Interference with intracellular calcium function by TMB 8 or with (calcium)-calmodulin function by trifluoperazine and W7 dose-dependently reduced the cytotoxin mediated synthesis of prostacyclin. Calcium channel blockers (nimodipine, diltiazem, verapamil, D 888), however, were ineffective in this system. Following addition of cytotoxin to endothelial cells, an increased passive permeability for small marker molecules (potassium, 45calcium, 3H-sucrose), but for large ones (3H-inulin, 3H-dextran, LDH) was noted, suggesting that cytotoxin creates discrete hydrophilic transmembrane lesions of about 0.5-1.5 nm in diameter. These data are compatible with the notion that Pseudomonas aeruginosa cytotoxin triggers the arachidonic acid pathway in cultured pulmonary artery endothelial cells by calcium influx and suggest that this calcium influx may proceed through toxin created transmembrane lesions.  相似文献   

18.
Guinea pig lymph node lymphocytes and human peripheral blood lymphocytes when stimulated by specific antigen or mitogen will release factors that affect in vitro macrophage migration. Migration inhibition factor production appears to be under the control of suppressor cells which are T lymphocytes. When suppressor cells are generated by stimulation with Con A for 4 days, migration stimulation factor (M.St.F.) activity is found. In other situations where M.St.F. is found this is thought to be due to increased suppressor cell activity. For example, young adults produce this lymphokine when stimulated with Con A, whereas aged individuals produce MIF. Concanavalin A appears to be the mitogen of choice for M.St.F. production, and phytohemagglutinin for MIF production. The release of this putative factor M.St.F. from suppressor T cells helps to explain some of the difficulties that have existed in studies of macrophage migration inhibition.  相似文献   

19.
We tested the hypothesis that vessel homeostasis is maintained through the cross talk of shear-induced production of prostacyclin and nitric oxide (NO). Confluent human umbilical vein endothelial cells (HUVEC) were exposed to fluid shear stress at 15 dyn/cm(2) using a cone-plate device, and the concentrations of 6-keto-PGF(1alpha) and NO metabolites (nitrate and nitrite) in the medium were measured with radioimmunoassay and the Greiss method, respectively. Compared with static control, shear stress increased cumulative prostacyclin production by twofold after 90 min of exposure. Inhibition of NO synthase enhanced flow-induced prostacyclin production by twofold without affecting the baseline production. Guanylyl cyclase inhibitor enhanced flow-induced prostacyclin production to the same degree. In contrast, a stable agonist of cGMP attenuated the rapid early phase of flow-dependent prostacyclin production. Shear-induced NO metabolite production was unaffected even after indomethacin inhibited prostacyclin production. We conclude that NO shows an inhibitory effect on prostacyclin production under shear stress and that vessel homeostasis may be maintained through an increase in prostacyclin production when NO synthesis is impaired in endothelial cells.  相似文献   

20.
The impact of the immune response in malignancy is poorly understood. While immune cells can destroy transformed cells, the targeting and accumulation of monocytes and macrophages at tumor sites may promote tumor metastases. The growth factor M-CSF is important in promoting monocyte survival. Since M-CSF(-/-) mice are protected against tumor metastases, we hypothesized that M-CSF induced monocytes to produce angiogenic factors that facilitate metastases. In this study we demonstrate that recombinant human M-CSF induces freshly isolated normal human monocytes to produce and release the growth factor vascular endothelial growth factor (VEGF) in a dose-dependent manner, which peaked at 5 days in culture. VEGF released by these monocytes is biologically active, as cell-free supernatants from these M-CSF-stimulated monocytes induced tube formation in HUVEC. Network formation by these HUVECs after treatment with supernatants from monocytes stimulated with M-CSF were inhibited by anti-VEGF, but not by the isogenic control, Abs. Collectively, these data support an important role for M-CSF and monocytes in VEGF production and angiogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号