首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The epidermal–melanin unit is composed of one melanocyte and approximately 36 neighboring keratinocytes, working in synchrony to produce and distribute melanin. Melanin is synthesized in melanosomes, transferred to the dendrite tips, and translocated into keratinocytes, forming caps over the keratinocyte nuclei. The molecular and cellular mechanisms involved in melanosome transfer and the keratinocyte–melanocyte interactions required for this process are not yet completely understood. Suggested mechanisms of melanosome transfer include melanosome release and endocytosis, direct inoculation (‘injection’), keratinocyte–melanocyte membrane fusion, and phagocytosis. Studies of the keratinocyte receptor protease‐activated receptor‐2 (PAR‐2) support the phagocytosis theory. PAR‐2 controls melanosome ingestion and phagocytosis by keratinocytes and exerts a regulatory role in skin pigmentation. Modulation of PAR‐2 activity can enhance or decrease melanosome transfer and affects pigmentation only when there is keratinocyte–melanocyte contact. Moreover, PAR‐2 is induced by UV irradiation and inhibition of PAR‐2 activation results in the prevention of UVB‐induced tanning. The role of PAR‐2 in mediating UV‐induced responses remains to be elucidated.  相似文献   

2.
Keratinocyte-melanocyte interactions during melanosome transfer   总被引:9,自引:0,他引:9  
The epidermal-melanin unit is composed of one melanocyte and approximately 36 neighboring keratinocytes, working in synchrony to produce and distribute melanin. Melanin is synthesized in melanosomes, transferred to the dendrite tips, and translocated into keratinocytes, forming caps over the keratinocyte nuclei. The molecular and cellular mechanisms involved in melanosome transfer and the keratinocyte-melanocyte interactions required for this process are not yet completely understood. Suggested mechanisms of melanosome transfer include melanosome release and endocytosis, direct inoculation ('injection'), keratinocyte-melanocyte membrane fusion, and phagocytosis. Studies of the keratinocyte receptor protease-activated receptor-2 (PAR-2) support the phagocytosis theory. PAR-2 controls melanosome ingestion and phagocytosis by keratinocytes and exerts a regulatory role in skin pigmentation. Modulation of PAR-2 activity can enhance or decrease melanosome transfer and affects pigmentation only when there is keratinocyte-melanocyte contact. Moreover, PAR-2 is induced by UV irradiation and inhibition of PAR-2 activation results in the prevention of UVB-induced tanning. The role of PAR-2 in mediating UV-induced responses remains to be elucidated.  相似文献   

3.
Melanosomes synthesized within melanocytes are transferred to keratinocytes through dendrites, resulting in a constant supply of melanin to the epidermis, and this process determines skin pigmentation. During screening for inhibitors of melanosome transfer, we found a novel reagent, centaureidin, that induces significant morphological changes in normal human epidermal melanocytes and inhibits melanocyte dendrite elongation, resulting in a reduction of melanosome transfer in an in vitro melanocyte-keratinocyte co-culture system. Since members of the Rho family of small GTP-binding proteins act as master regulators of dendrite formation, and activated Rho promotes dendrite retraction, we studied the effects of centaureidin on the small GTPases. In in vitro binding assay, centaureidin activated Rho and furthermore, a Rho inhibitor (C. botulinum C3 exoenzyme), a Rho kinase inhibitor (Y27632) and a small GTPase inhibitor (Toxin B) blocked dendrite retraction induced by centaureidin. These results suggest centaureidin could act via the Rho signaling pathway, and it may directly or indirectly activate Rho. Thus, centaureidin appears to inhibit dendrite outgrowth from melanocytes by activating Rho, resulting in the inhibition of melanosome transfer from melanocytes to keratinocytes.  相似文献   

4.
In human epidermis one dendritic melanocyte interacts with about 36 keratinocytes and supplies them with melanin. In contrast to the vivo situation melanocytes in culture are far less dendritic. In the present study different culture systems were tested in order to observe the mechanism of melanocyte dendrite formation. In particular, we focused on the role of keratinocytes in this process. Time lapse studies revealed that only differentiated keratinocytes enhance melanocyte dendricity. Differentiated keratinocytes form connected cell sheets, which attach to part of the melanocyte plasma membrane. By contraction and retraction of keratinocyte units, new dendrites were drawn out from the melanocytes. Melanocytes remain passive during this process, which is indicated by the observation that sometimes extended dendrites could not withstand the tension and shear.  相似文献   

5.
Reconstructed pigmented epidermis was established by co‐seeding autologous melanocytes and keratinocytes onto a dermal substrate and culturing for up to 6 weeks at the air–liquid interface. Inspection of the tissue architecture revealed that melanocytes are regularly interspersed only in the basal layer and transfer melanosomes to the keratinocytes. We report for the first time, the in vitro formation of supranuclear melanin caps above the keratinocyte nuclei. The formation and abundance of these melanin caps could be enhanced by pigment modifiers such as ultraviolet light and 3‐isobutyl‐1‐methyl‐xanthine (IBMX). In untreated cultures, the capping was observed in the spinous layers after 6 weeks of culture, whereas after irradiation or supplementation of the culture medium with IBMX, the capping occurred already in the basal layer 2 weeks after initiation of the stimulus. In this study, we show that IBMX and ultraviolet irradiation stimulate pigmentation via different mechanisms. After supplementation of the culture medium with IBMX the increase in pigmentation was entirely due to the increase in melanocyte activity as observed by increased dendrite formation, melanin production and transport to the keratinocytes and was not due to an increase in melanocyte proliferation. In contrast, after UV irradiation, the increase in pigmentation was also accompanied with an increase in melanocyte proliferation as well as an increase in melanocyte activity. In conclusion, we describe the establishment of pigmented reconstructed epidermis with autologous keratinocytes and melanocytes that can be kept in culture for a period of at least 6 weeks. The complete program of melanogenesis occurs: melanosome synthesis, melanosome transport to keratinocytes, supranuclear capping of keratinocyte nuclei and tanning of the epidermis. This enables sustained application of pigment stimulators over a prolonged period of time and also repeated application of pigment stimulators to be studied.  相似文献   

6.
Reconstructed pigmented epidermis was established by co-seeding autologous melanocytes and keratinocytes onto a dermal substrate and culturing for up to 6 weeks at the air-liquid interface. Inspection of the tissue architecture revealed that melanocytes are regularly interspersed only in the basal layer and transfer melanosomes to the keratinocytes. We report for the first time, the in vitro formation of supranuclear melanin caps above the keratinocyte nuclei. The formation and abundance of these melanin caps could be enhanced by pigment modifiers such as ultraviolet light and 3-isobutyl-1-methyl-xanthine (IBMX). In untreated cultures, the capping was observed in the spinous layers after 6 weeks of culture, whereas after irradiation or supplementation of the culture medium with IBMX, the capping occurred already in the basal layer 2 weeks after initiation of the stimulus. In this study, we show that IBMX and ultraviolet irradiation stimulate pigmentation via different mechanisms. After supplementation of the culture medium with IBMX the increase in pigmentation was entirely due to the increase in melanocyte activity as observed by increased dendrite formation, melanin production and transport to the keratinocytes and was not due to an increase in melanocyte proliferation. In contrast, after UV irradiation, the increase in pigmentation was also accompanied with an increase in melanocyte proliferation as well as an increase in melanocyte activity. In conclusion, we describe the establishment of pigmented reconstructed epidermis with autologous keratinocytes and melanocytes that can be kept in culture for a period of at least 6 weeks. The complete program of melanogenesis occurs: melanosome synthesis, melanosome transport to keratinocytes, supranuclear capping of keratinocyte nuclei and tanning of the epidermis. This enables sustained application of pigment stimulators over a prolonged period of time and also repeated application of pigment stimulators to be studied.  相似文献   

7.
The quest for the mechanism of melanin transfer   总被引:4,自引:1,他引:3  
Skin pigmentation is accomplished by production of melanin in specialized membrane-bound organelles termed melanosomes and by transfer of these organelles from melanocytes to surrounding keratinocytes. The mechanism by which these cells transfer melanin is yet unknown. A central role has been established for the protease-activated receptor-2 of the keratinocyte which effectuates melanin transfer via phagocytosis. What exactly is being phagocytosed - naked melanin, melanosomes or melanocytic cell parts - remains to be defined. Analogy of melanocytes to neuronal cells and cells of the haemopoietic lineage suggests exocytosis of melanosomes and subsequent phagocytosis of naked melanin. Otherwise, microscopy studies demonstrate cytophagocytosis of melanocytic dendrites. Other plausible mechanisms are transfer via melanosome-containing vesicles shed by the melanocyte or transfer via fusion of keratinocyte and melanocyte plasma membranes with formation of tunnelling nanotubes. Molecules involved in transfer are being identified. Transfer is influenced by the interactions of lectins and glycoproteins and, probably, by the action of E-cadherin, SNAREs, Rab and Rho GTPases. Further clues as to what mechanism and molecular machinery will arise with the identification of the function of specific genes which are mutated in diseases that affect transfer.  相似文献   

8.
The influence of UV irradiation on pigmentation is well established, but the molecular and cellular mechanisms controlling dendrite formation remain incompletely understood. MicroRNAs (miRNAs) are a class of small RNAs that participate in various cellular processes by suppressing the expression of target mRNAs. In this study, we investigated the expression of miRNAs in response to UVB irradiation using a microarray screen and then identified potential mRNA targets for differentially expressed miRNAs among the genes governing dendrite formation. We subsequently determined the ability of miRNA 340 (miR-340) to suppress the expression of RhoA, which is a predicted miR-340 target gene that regulates dendrite formation. The overexpression of miR-340 promoted dendrite formation and melanosome transport, and the downregulation of miR-340 inhibited UVB-induced dendrite formation and melanosome transport. Moreover, a luciferase reporter assay demonstrated direct targeting of RhoA by miR-340 in the immortalized human melanocyte cell line Pig1. In conclusion, this study has established an miRNA associated with UVB irradiation. The significant downregulation of RhoA protein and mRNA expression after UVB irradiation and the modulation of miR-340 expression suggest a key role for miR-340 in regulating UVB-induced dendrite formation and melanosome transport.  相似文献   

9.
In mammals, pigments are made by melanocytes within a specialized organelle, the melanosome. Mature, pigment-laden melanosomes are then transferred to keratinocytes to drive the visible pigmentation of the animal’s hair and skin. The dilute suppressor (dsu) locus encodes an extragenic suppressor of the pigmentation defect exhibited by mice lacking myosin Va (i.e. dilute mice). We recently showed that melanoregulin, the product of the dsu locus, functions as a negative regulator of a shedding mechanism that drives the intercellular transfer of melanosomes from the melanocyte to the keratinocyte. Here we address melanoregulin’s localization within the melanocyte, as well as the molecular basis for its localization. First, we confirm and extend recently published results using exogenous, GFP-tagged melanoregulin by showing that endogenous melanoregulin also targets extensively to melanosomes. Second, using site-directed mutagenesis, metabolic labeling with H3-palmitate, and an inhibitor of palmitoylation in vivo, we show that the targeting of melanoregulin to the limiting membranes of melanosomes in melanocytes and lysosomes in CV1 cells depends critically on the palmitoylation of one or more of six closely-spaced cysteine residues located near melanoregulin’s N-terminus. Finally, using Fluorescence Recovery after Photobleaching (FRAP), we show that melanoregulin-GFP exhibits little if any tendency to cycle in and out of the melanosome membrane. We conclude that multiple palmitoylation serves to stably anchor melanoregulin in the melanosome membrane.  相似文献   

10.
Human skin hyperpigmentation disorders occur when the synthesis and/or distribution of melanin increases. The distribution of melanin in the skin is achieved by melanosome transport and transfer. The transport of melanosomes, the organelles where melanin is made, in a melanocyte precedes the transfer of the melanosomes to a keratinocyte. Therefore, hyperpigmentation can be regulated by decreasing melanosome transport. In this study, we found that an extract of Saururus chinensis Baill (ESCB) and one of its components, manassantin B, inhibited melanosome transport in Melan‐a melanocytes and normal human melanocytes (NHMs). Manassantin B disturbed melanosome transport by disrupting the interaction between melanophilin and myosin Va. Manassantin B is neither a direct nor an indirect inhibitor of tyrosinase. The total melanin content was not reduced when melanosome transport was inhibited in a Melan‐a melanocyte monoculture by manassantin B. Manassantin B decreased melanin content only when Melan‐a melanocytes were co‐cultured with SP‐1 keratinocytes or stimulated by α‐MSH. Therefore, we propose that specific inhibitors of melanosome transport, such as manassantin B, are potential candidate or lead compounds for the development of agents to treat undesirable hyperpigmentation of the skin.  相似文献   

11.
Physical contact between melanocytes and keratinocytes is a prerequisite for melanosome transfer to occur, but cellular signals induced during or after contact are not fully understood. Herein, it is shown that interactions between melanocyte and keratinocyte plasma membranes induced a transient intracellular calcium signal in keratinocytes that was required for pigment transfer. This intracellular calcium signal occurred due to release of calcium from intracellular stores. Pigment transfer observed in melanocyte–keratinocyte co‐cultures was inhibited when intracellular calcium in keratinocytes was chelated. We propose that a ‘ligand‐receptor’ type interaction exists between melanocytes and keratinocytes that triggers intracellular calcium signalling in keratinocytes and mediates melanin transfer.  相似文献   

12.
Dendrite formation and extension, which comprise a characteristic morphology of human normal melanocytes in the skin, represent one of the functional activities of melanocytes, the ability to transfer melanosomes into neighboring keratinocytes. However, the morphology of the melanocyte in vitro is usually quite different from that observed in vivo. it is probably due to the hyperproliferative condition of the melanocytes in culture. No studies have ever compared the effects of a single factor on both dendricity and proliferation at the same time. Therefore, we have compared the effects of six growth-promoting agents commonly used for melanocyte cultures on dendrite formation and proliferation. The addition of agents that increase the intracellular levels of cyclic adenosine monophosphate (cAMP)—dibutyryl cyclic adenosine monophosphate (db cAMP; 1 mM) or isobutylmethyl xanthine (IBMX; 0.1 mM)—had a strong effect on dendrite formation and a negative effect on proliferation. This was especially true with db cAMP. In the presence of 2% or 5% of heat-inactivated fetal bovine serum (FBS), dendrite formation was significantly increased as was proliferation. The number of dendrites was decreased in the culture with 12-o-tetradecanoylphorbol-13-acetate (TPA), but cell growth was slightly increased. With human recombinant basic fibroblast growth factor (bFGF) (0.5, 1.0 ng/ml) in the presence of bovine pituitary extract (BPE) (60 μg/ml), cell growth was increased. With 2 ng/ml of bFGF, however, a strong inhibitory effect on proliferation was observed. However, dendrite formation was constant at all concentrations of bFGF tested (0.5, 1.0 or 2.0 ng/ml) with BPE (30 or 60 μg/ml). In this study, we have demonstrated that dendrite formation was suppressed by the reagents that stimulate melanocyte proliferation, and vice versa, with the only exception being heat-inactivated FBS. Both dendrite formation and proliferation were induced by the heat-inactivated FBS. This approach is crucial to the development of an adequate culture system for proliferation and/or dendrite formation of normal human melanocytes. It is necessary to keep these aspects in mind as we further investigate the biology of melanocytes, especially the cell-to-cell interactions between melanocytes and keratinocytes, involved in melanogenesis and melanin pigmentation in vivo. This study also provides practical and important information for a future reconstitutive skin system composed of melanocytes, keratinocytes, and fibroblasts in a single culture medium.  相似文献   

13.
We propose that some of the critical molecules involved in the transfer of melanosomes from melanocytes to keratinocytes include plasma membrane lectins and their glycoconjugates. To investigate this mechanism, co-cultures of human melanocytes and keratinocytes derived from neonatal foreskins were established. The process of melanosome transfer was assessed by two experimental procedures. The first involved labeling melanocyte cultures with the fluorochrome CFDA. Labeled melanocytes were subsequently co-cultured with keratinocytes, and the transfer of fluorochrome assessed visually by confocal microscopy and quantitatively by flow cytometry. The second investigative approach involved co-culturing melanocytes with keratinocytes, and processing the co-cultures after 3 days for electron microscopy to quantitate the numbers of melanosomes in keratinocytes. Results from these experimental approaches indicate significant transfer of dye or melanosomes from melanocytes to keratinocytes that increased with time of co-culturing. Using these model systems, we subsequently tested a battery of lectins and neoglycoproteins for their effect in melanosome transfer. Addition of these selected molecules to co-cultures inhibited transfer of fluorochrome by approximately 15-44% as assessed by flow cytometry, and of melanosomes by 67-93% as assessed by electron microscopy. Therefore, our results suggest the roles of selected lectins and glycoproteins in melanosome transfer to keratinocytes in the skin.  相似文献   

14.
Physical contact between melanocytes and keratinocytes is a prerequisite for melanosome transfer to occur, but cellular signals induced during or after contact are not fully understood. Herein, it is shown that interactions between melanocyte and keratinocyte plasma membranes induced a transient intracellular calcium signal in keratinocytes that was required for pigment transfer. This intracellular calcium signal occurred due to release of calcium from intracellular stores. Pigment transfer observed in melanocyte-keratinocyte co-cultures was inhibited when intracellular calcium in keratinocytes was chelated. We propose that a 'ligand-receptor' type interaction exists between melanocytes and keratinocytes that triggers intracellular calcium signalling in keratinocytes and mediates melanin transfer.  相似文献   

15.
To study pigmentation, we have reconstructed an epidermis ex vivo with keratinocytes and melanocytes. Keratinocytes and melanocytes were grown first in primary cocultures and separately in secondary cultures, then seeded on a dead deepidermized dermis (Pruniéras type) at a 1:20 melanocyte/keratinocyte ratio. Reconstructed epidermis were grown in a special medium enriched with calcium and fetal bovine serum lifted for 15 days at the air-liquid interface. Using histology, immunohistochemistry and electron microscopy we have shown an excellent level of differentiation of the reconstructed epidermis and a physiologic distribution of dendritic melanocytes in the basal layer capable of melanosome transfer to keratinocytes. UVB irradiation 0.15 J/cm2× 5 consecutive days increased melanocyte numbers and stimulated pigmentation as evidenced macroscopically and microscopically and at the biochemical level. Following UVB irradiation melanosome transfer was markedly increased and isolated or clumps of melanosomes were seen in the basal layers as well as in the stratum corneum. This model allows the study of the physiology of pigmentation ex vivo.  相似文献   

16.
Active roles of cell-cell interaction between melanocytes and neighboring keratinocytes for the regulation of melanocyte functions in the skin have been suggested. We examined substantial regulatory mechanisms of keratinocyte extracellular matrix (kECMs) for normal human melanocyte functions without direct cell-cell contact. We specially devised kECMs from proliferating or differentiating keratinocytes and further treated them with environmental stimulus ultraviolet B (UVB) for skin pigmentary system. Normal human melanocytes (NHM) were cultured on the various keratinocyte ECMs and initially the effects of the kECMs upon melanocyte morphology (dendrite formation and extension), growth, melanin production and expressions of pigmentation-associated protein (MEL-5) and proliferation-associated protein (proliferating cell nuclear antigen; PCNA/cyclin) were studied. Then we compared the effects of these cell-matrix interactions with those of direct melanocyte-keratinocyte, cell-cell contact in co-culture on melanocyte functions. Melanocytes cultured on any types of the kECMs that were tested significantly extended dendrites more than that on plastic cell culture dish without kECM (control). Melanocytes cultured on the kECM prepared from UVB irradiated differentiating keratinocytes resulted in 219% increase in the number of dendrites. The growth of melanocytes on kECMs was also stimulated up to 280% of control. The kECM produced by proliferating keratinocytes had a more significant effect on the growth than kECM from differentiating keratinocytes. This melanocyte growth stimulating effect was decreased with kECM from UVB treated differentiating keratinocytes. The melanin content per melanocyte was constant on any of the kECMs. Expression of pigmentation-associated protein detected by monoclonal antibody, MEL-5, was not changed on the kECM, while it was increased in melanocytes in co-culture with keratinocytes. Expression of PCNA/cyclin in melanocytes cultured on kECMs was generally downregulated on kECM and in co-culture compared to that in a control culture. We demonstrated that the kECMs play important roles in the melanocyte morphology and proliferation. These observations suggest that environmental (UVB) and physiological (Ca++) stimuli can regulate melanocyte functions through the keratinocyte extracellular matrix in vivo.  相似文献   

17.
Vacuolar protein sorting 9 (VPS9)-ankyrin-repeat protein (Varp) has recently been identified as an effector molecule for two small GTPases-Rab32 and Rab38-in the transport of a melanogenic enzyme tyrosinase-related protein 1 (Tyrp1) to melanosomes in melanocytes. Although Varp contains a Rab21-guanine nucleotide exchange factor (GEF) domain (i.e., VPS9 domain), since Rab21-GEF activity is not required for Tyrp1 transport, nothing is known about the physiological significance of the Rab21-GEF activity in melanocytes. Here we show by knockdown-rescue experiments that the Rab21-GEF activity of Varp, but not its Rab32/38 effector function, is required for forskolin-induced dendrite formation of cultured melanocytes. We found that Varp-deficient cells are unable to extend dendrites in response to forskolin stimulation and that reexpression of wild-type Varp or a Rab32/38-binding-deficient mutant Varp(Q509A/Y550A) in Varp-deficient cells completely restores their ability to form dendrites. By contrast, VPS9 mutants (D310A and Y350A) and a vesicle-associated membrane protein 7 (VAMP7)-binding-deficient mutant were unable to support forskolin-induced dendrite formation in Varp-deficient cells. These findings indicate that the Rab21-GEF activity and Rab32/38 binding activity of Varp are required for different melanocyte functions, that is, Rab21 activation by the VPS9 domain is required for dendrite formation, and the Rab32/38 effector function of the ankyrin repeat 1 domain is required for Tyrp1 transport to melanosomes, although VAMP7-binding ability is required for both functions.  相似文献   

18.
We propose that some of the critical molecules involved in the transfer of melanosomes from melanocytes to keratinocytes include plasma membrane lectins and their glycoconjugates. To investigate this mechanism, co‐cultures of human melanocytes and keratinocytes derived from neonatal foreskins were established. The process of melanosome transfer was assessed by two experimental procedures. The first involved labeling melanocyte cultures with the fluorochrome CFDA. Labeled melanocytes were subsequently co‐cultured with keratinocytes, and the transfer of fluorochrome assessed visually by confocal microscopy and quantitatively by flow cytometry. The second investigative approach involved co‐culturing melanocytes with keratinocytes, and processing the co‐cultures after 3 days for electron microscopy to quantitate the numbers of melanosomes in keratinocytes. Results from these experimental approaches indicate significant transfer of dye or melanosomes from melanocytes to keratinocytes that increased with time of co‐culturing. Using these model systems, we subsequently tested a battery of lectins and neoglycoproteins for their effect in melanosome transfer. Addition of these selected molecules to co‐cultures inhibited transfer of fluorochrome by approximately 15–44% as assessed by flow cytometry, and of melanosomes by 67–93% as assessed by electron microscopy. Therefore, our results suggest the roles of selected lectins and glycoproteins in melanosome transfer to keratinocytes in the skin.  相似文献   

19.
How are proliferation and differentiation of melanocytes regulated?   总被引:1,自引:0,他引:1  
Coat colors are determined by melanin (eumelanin and pheomelanin). Melanin is synthesized in melanocytes and accumulates in special organelles, melanosomes, which upon maturation are transferred to keratinocytes. Melanocytes differentiate from undifferentiated precursors, called melanoblasts, which are derived from neural crest cells. Melanoblast/melanocyte proliferation and differentiation are regulated by the tissue environment, especially by keratinocytes, which synthesize endothelins, steel factor, hepatocyte growth factor, leukemia inhibitory factor and granulocyte-macrophage colony-stimulating factor. Melanocyte differentiation is also stimulated by alpha-melanocyte stimulating hormone; in the mouse, however, this hormone is likely carried through the bloodstream and not produced locally in the skin. Melanoblast migration, proliferation and differentiation are also regulated by many coat color genes otherwise known for their ability to regulate melanosome formation and maturation, pigment type switching and melanosome distribution and transfer. Thus, melanocyte proliferation and differentiation are not only regulated by genes encoding typical growth factors and their receptors but also by genes classically known for their role in pigment formation.  相似文献   

20.
Rac and rho: the story behind melanocyte dendrite formation   总被引:3,自引:0,他引:3  
Melanocyte dendrites are hormonally responsive actin and microtubule containing structures whose primary purpose is to transport melanosomes to the dendrite tip. Melanocyte dendrites have been an area of intense interest for melanocyte biologists, but it was not until recently that we began to understand the mechanisms underlying their formation. In contrast with melanogenesis, for which numerous mutations in pigment producing genes and mouse models have been identified, a genetic defect resulting in impaired dendrite formation has not been found. Therefore, much of the insight into melanocyte dendrites has come from electron microscopy or in vitro culture systems of normal human and murine melanocytes as well as melanoma cell lines. The growth factors that regulate the formation of melanocyte dendrites have been thoroughly studied and it is clear that multiple signalling systems are able to stimulate, and in some cases inhibit, dendrite formation. Recent data points to the Rho family of small guanosine triphosphate (GTP)-binding proteins as master regulators of dendrite formation, particularly Rac and Rho. In this review I will summarize the progress scientists have made in understanding the structure, hormonal regulation and molecular mediators of melanocyte dendrite formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号