首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Iron regulatory proteins (IRPs) control iron metabolism by specifically interacting with iron-responsive elements (IREs) on mRNAs. Nitric oxide (NO) converts IRP-1 from a [4Fe-4S] aconitase to a trans-regulatory protein through Fe-S cluster disassembly. Here, we have focused on the fate of IRE binding IRP1 from murine macrophages when NO flux stops. We show that virtually all IRP-1 molecules from NO-producing cells dissociated from IRE and recovered aconitase activity after re-assembling a [4Fe-4S] cluster in vitro. The reverse change in IRP-1 activities also occurred in intact cells no longer exposed to NO and did not require de novo protein synthesis. Likewise, inhibition of mitochondrial aconitase via NO-induced Fe-S cluster disassembly was also reversed independently of protein translation after NO removal. Our results provide the first evidence of Fe-S cluster repair of NO-modified aconitases in mammalian cells. Moreover, we show that reverse change in IRP-1 activities and repair of mitochondrial aconitase activity depended on energized mitochondria. Finally, we demonstrate that IRP-1 activation by NO was accompanied by both a drastic decrease in ferritin levels and an increase in transferrin receptor mRNA levels. However, although ferritin expression was recovered upon IRP-1-IRE dissociation, expression of transferrin receptor mRNA continued to rise for several hours after stopping NO flux.  相似文献   

5.
6.
7.
Human iron regulatory protein-1 (IRP-1) is a bifunctional protein that regulates iron metabolism by binding to mRNAs encoding proteins involved in iron uptake, storage, and utilization. Intracellular iron accumulation regulates IRP-1 function by promoting the assembly of an iron-sulfur cluster, conferring aconitase activity to IRP-1, and hindering RNA binding. Using protein footprinting, we have studied the structure of the two functional forms of IRP-1 and have mapped the surface of the iron-responsive element (IRE) binding site. Binding of the ferritin IRE or of the minimal regulatory region of transferrin receptor mRNA induced strong protections against proteolysis in the region spanning amino acids 80 to 187, which are located in the putative cleft thought to be involved in RNA binding. In addition, IRE-induced protections were also found in the C-terminal domain at Arg-721 and Arg-728. These data implicate a bipartite IRE binding site located in the putative cleft of IRP-1. The aconitase form of IRP-1 adopts a more compact structure because strong reductions of cleavage were detected in two defined areas encompassing residues 149 to 187 and 721 to 735. Thus both ligands of apo-IRP-1, the IRE and the 4Fe-4S cluster, induce distinct but overlapping alterations in protease accessibility. These data provide evidences for structural changes in IRP-1 upon cluster formation that affect the accessibility of residues constituting the RNA binding site.  相似文献   

8.
Iron regulatory protein-1 (IRP-1) controls the expression of several mRNAs by binding to iron-responsive elements (IREs) in their untranslated regions. In iron-replete cells, a 4Fe-4S cluster converts IRP-1 to cytoplasmic aconitase. IRE binding activity is restored by cluster loss in response to iron starvation, NO, or extracellular H2O2. Here, we study the effects of intracellular quinone-induced oxidative stress on IRP-1. Treatment of murine B6 fibroblasts with menadione sodium bisulfite (MSB), a redox cycling drug, causes a modest activation of IRP-1 to bind to IREs within 15-30 min. However, IRE binding drops to basal levels within 60 min. Surprisingly, a remarkable loss of both IRE binding and aconitase activities of IRP-1 follows treatment with MSB for 1-2 h. These effects do not result from alterations in IRP-1 half-life, can be antagonized by the antioxidant N-acetylcysteine, and regulate IRE-containing mRNAs; the capacity of iron-starved MSB-treated cells to increase transferrin receptor mRNA levels is inhibited, and MSB increases the translation of a human growth hormone indicator mRNA bearing an IRE in its 5'-untranslated region. Nonetheless, MSB inhibits ferritin synthesis. Thus, menadione-induced oxidative stress leads to post-translational inactivation of both genetic and enzymatic functions of IRP-1 by a mechanism that lies beyond the "classical" Fe-S cluster switch and exerts multiple effects on cellular iron metabolism.  相似文献   

9.
10.
Iron regulatory protein-1 (IRP-1) is known as a cytosolic aconitase and a central regulator of iron (Fe) homeostasis. IRP-1 regulates the expression of Fe metabolism-related proteins by interacting with the Fe-responsive element (IRE) in the untranslated regions of mRNAs of these proteins. However, it is less known whether IRP-1 modulates various non-Fe metals. In the present study, we showed that treatment of homogenously purified IRP-1 with non-Fe metals decreased the affinity to IRE in RNA band shift assays and increased aconitase activity. Non-Fe metals also inhibited (55)Fe incorporation into the fourth labile position of the Fe-S cluster of IRP-1. In PLC hepatoma cells, metal loading inactivated binding activity and activated enzyme activity. It also suppressed transferrin receptor mRNA expression in the cells. These results suggest that various non-Fe metals modulate IRP-1 by conversion of the 3Fe-4S apo-form to a [1 non-Fe metal + 3Fe]-4Fe holo-form.  相似文献   

11.
12.
Iron regulatory proteins (IRP-1 and IRP-2) control the synthesis of transferrin receptors (TfR) and ferritin by binding to iron-responsive elements, which are located in the 3'-untranslated region and the 5'-untranslated region of their respective mRNAs. Cellular iron levels affect binding of IRPs to iron-responsive elements and consequently expression of TfR and ferritin. Moreover, NO(*), a redox species of nitric oxide that interacts primarily with iron, can activate IRP-1 RNA binding activity resulting in an increase in TfR mRNA levels. Recently we found that treatment of RAW 264.7 cells (a murine macrophage cell line) with NO(+) (nitrosonium ion, which causes S-nitrosylation of thiol groups) resulted in a rapid decrease in RNA binding of IRP-2 followed by IRP-2 degradation, and these changes were associated with a decrease in TfR mRNA levels (Kim, S., and Ponka, P. (1999) J. Biol. Chem. 274, 33035-33042). In this study, we demonstrated that stimulation of RAW 264.7 cells with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma) increased IRP-1 binding activity, whereas RNA binding of IRP-2 decreased and was followed by a degradation of this protein. Moreover, the decrease of IRP-2 binding/protein levels was associated with a decrease in TfR mRNA levels in LPS/IFN-gamma-treated cells, and these changes were prevented by inhibitors of inducible nitric oxide synthase. Furthermore, LPS/IFN-gamma-stimulated RAW 264.7 cells showed increased rates of ferritin synthesis. These results suggest that NO(+)-mediated degradation of IRP-2 plays a major role in iron metabolism during inflammation.  相似文献   

13.
14.
Iron homeostasis in cells is regulated by iron regulatory proteins (IRPs) that exist in different organisms. IRPs are cytosolic proteins that bind to iron-responsive elements (IREs) of the 5′- or 3′-untranslated regions (UTR) of mRNAs that encode many proteins involved in iron metabolism. In this study, we have cloned and described a new regulatory protein belonging to the family of IRPs from the earthworm Eisenia andrei (EaIRP). The earthworm IRE site in 5′-UTR of ferritin mRNA most likely folds into a secondary structure that differs from the conventional IRE structures of ferritin due to the absence of a typically unpaired cytosine that participates in protein binding. Prepared recombinant EaIRP and proteins from mammalian liver extracts are able to bind both mammalian and Eisenia IRE structures of ferritin mRNA, although the affinity of the rEaIRP/Eisenia IRE structure is rather low. This result suggests the possible contribution of a conventional IRE structure. When IRP is supplemented with a Fe-S cluster, it can function as a cytosolic aconitase. Cellular cytosolic and mitochondrial fractions, as well as recombinant EaIRP, exhibit aconitase activity that can be abolished by the action of oxygen radicals. The highest expression of EaIRP was detected in parts of the digestive tract. We can assume that earthworms may possess an IRE/IRP regulatory network as a potential mechanism for maintaining cellular iron homeostasis, although the aconitase function of EaIRP is most likely more relevant.  相似文献   

15.
Ferritin is an intracellular iron storage protein and its translation is inhibited by binding of iron regulatory proteins (IRPs) to the iron-responsive element (IRE) located in the 5' untranslated region of its mRNA. In this paper, we have investigated the effect of hyperoxia and iron on the binding activity of IRP-1 and the ferritin synthesis in mouse peritoneal macrophages. The binding activity of IRP-1 was increased and the ferritin synthesis was suppressed when the macrophages were cultured under hyperoxia, and the reverse occurred under hypoxia. Iron diminished the IRP-1-binding activity and the enhanced synthesis of ferritin. However, this effect was arrested under hyperoxia. Consistently, hypoxia-induced loss of binding activity of IRP-1 and the enhanced synthesis of ferritin were blocked in the presence of an iron chelator deferoxamine. These alterations of the binding activity of IRP-1 in response to oxygen and iron were not reproduced in the cell-free extract. The data suggest that in the macrophages oxygen and iron inversely act on the binding activity of IRP-1 and the ferritin synthesis, and that intracellular mechanism(s) to sense iron and/or oxygen is required for these actions.  相似文献   

16.
17.
18.
Excess capacity of the iron regulatory protein system   总被引:4,自引:0,他引:4  
Iron regulatory proteins (IRP1 and IRP2) are master regulators of cellular iron metabolism. IRPs bind to iron-responsive elements (IREs) present in the untranslated regions of mRNAs encoding proteins of iron storage, uptake, transport, and export. Because simultaneous knockout of IRP1 and IRP2 is embryonically lethal, it has not been possible to use dual knockouts to explore the consequences of loss of both IRP1 and IRP2 in mammalian cells. In this report, we describe the use of small interfering RNA to assess the relative contributions of IRP1 and IRP2 in epithelial cells. Stable cell lines were created in which either IRP1, IRP2, or both were knocked down. Knockdown of IRP1 decreased IRE binding activity but did not affect ferritin H and transferrin receptor 1 (TfR1) expression, whereas knockdown of IRP2 marginally affected IRE binding activity but caused an increase in ferritin H and a decrease in TfR1. Knockdown of both IRPs resulted in a greater reduction of IRE binding activity and more severe perturbation of ferritin H and TfR1 expression compared with single IRP knockdown. Even though the knockdown of IRP-1, IRP-2, or both was efficient, resulting in nondetectable protein and under 5% of wild type levels of mRNA, all stable knockdowns retained an ability to modulate ferritin H and TfR1 appropriately in response to iron challenge. However, further knockdown of IRPs accomplished by transient transfection of small interfering RNA in stable knockdown cells completely abolished the response of ferritin H and TfR1 to iron challenge, demonstrating an extensive excess capacity of the IRP system.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号