首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A systematic study of the H+ titration curve of purified ovomucoid was made at three temperatures (15, 25 and 35 degrees C) and three ionic strengths (0.05, 0.15 and 1.0). In all, 49 protons were dissociated reversibly in the pH range, 2.0-12.0. From the analysis of the results up to pH 12.0, the numbers of different dissociable groups per 28 300 g protein, together with their intrinsic pK values in parentheses were found tp be' 27 sode-chain carboxyl (pKint=4.0), four imidazole (pKint=6.5), one alpha-amino (pKint=7.5), 12 epsilon-amino (pKint=9.6), one guanidino (pKint=11.8) and one alpha-carboxyl group with abnormally low pK. The total number of basic nitrogens per mole of the protein was 22 so that four guanidino groups remained untitrated up to pH 12.0. Spectrophotometric titration showed that three out of five phenolic groups were titrated reversibly up to pH 11.9 with an intrinsic pK of 10.25; the remaining two groups became accessible only on protein denaturation. Viscosity results suggested absence of conformational change in the pH range 2.0-11.2. This explains the constancy of the pK values of carboxyl groups in the pH range 2.0-5.0. The empirical value of the electrostatic interaction factor, w, was 0.04, both in the carboxyl and phenolic regions.  相似文献   

2.
In order to probe the cause and nature of conformational changes induced by the chemical modification of amino groups in proteins, five acylated derivatives of ovalbumin namely 21% acetylated, 32% succinylated, 90% butyrated 92% succinylated, and 95% acetylated ovalbumins were prepared and their molecular and immunological properties were systematically investigated. As evidenced by the ultraviolet difference spectral, solvent perturbation, gel filtration, and viscosity data, acylation of the amino groups produced a definite conformational change in native ovalbumin whose extent was higher for higher degrees of chemical modification. The solvent pertubation data showed an exposure of 0.5 tryptophan and 3 tyrosine residues in native ovalbumin; the exposure increased to 1 tryptophan and about 5 tyrosine residues in the maximally modified proteins (i.e. 90% butyrated, 92% succinylated, and 95% acetylated ovalbumins). The Stokes radius (2.7 nm) and intrinsic viscosity (3.9 ml/g) of ovalbumin increased, respectively, to about 3.4 nm and 7.7 ml/g upon acylation of its 18 lysine residues; the intrinsic viscosity of 95% acetylated ovalbumin was 7.2 ml/g. The reduced viscosity of ovalbumin (4.2 ml/g) which remained unaltered on raising the pH to pH 11.2, increased to 7.9 ml/g on succinylation of 18 lysine residues. On raising the ionic strength from 0.15 to 1.0, the value decreased from 7.9 to 6.2 ml/g. These observations taken together with the fact that the intrinsic viscosities of 92% succinylated and 90% butyrated ovalbumins are identical, argue against the presently prevalent proposal that electrostatic effects alone are responsible for the disruption of native protein conformation during chemical modification. The immunological activity of ovalbumin towards rabbit anti-ovalbumin expectedly decreased with acylation of its amino groups but the three maximally modified ovalbumins retained 40% immunological activity. This taken along with the spectral and viscosity data showed substantial native structure (format) in the three maximally acylated derivatives. The rabbit antiserum against 95% acetylated ovalbumin did not cross-react with acetylated lysozyme and reacted poorly with the native and 92% succinylated ovalbumins suggesting that the antigenic make-up of the three maximally modified ovalbumins is different.  相似文献   

3.
The ionization of tyrosine residues in diazotized pepsin under various solvent conditions was studied. All tyrosyl residues of the protein titrated normally with a pK of 10.02 in 6 M guanidine hydrochloride solution. On the other hand, two stages in the phenolic group titration curve were observed for the inactivated protein in the absence of guanidine hydrochloride; only about 10 tyrosine residues ionized reversibly up to pH 11, above which titration was irreversible. The irreversible titration zone corresponds to the pH range 11--13 in which unfolding, leading to the random coil state, was shown to occur by circular dichroism and viscosity measurements. The number of tyrosine residues exposed in the native and alkali-denatured (pH 7.5) states of diazotized protein were also studied by solvent perturbation techniques; 10 and 12 groups are exposed in the native and denatured states, respectively.  相似文献   

4.
Reversible unfolding of ovomucoid by guanidine hydrochloride, as followed by viscosity and difference-spectral measurements at 25°C, pH6, occurred in two distinct steps involving at least three major conformational states, namely the native, intermediate and completely denatured states, occurring respectively in 60mm-sodium phosphate buffer, 3.5m-guanidine hydrochloride and 6m-guanidine hydrochloride. The overall native conformation of ovomucoid, as indicated by its intrinsic viscosity (5.24ml/g) and gel-filtration behaviour, differs significantly from that of a typical globular protein. Exposures of tyrosine residues in native ovomucoid measured by difference spectroscopy following perturbation with glycerol, ethylene glycol and dimethyl sulphoxide were, respectively, 0.42, 0.56 and 0.57. Of the exposed phenolic groups only one titrated normally (pKint., 9.91, electrostatic-interaction factor, w, 0.04). Results on difference spectra, solvent perturbation, phenolic titration and intrinsic viscosity (7.4ml/g) taken together showed that, although ovomucoid in 3.5m-guanidine hydrochloride was significantly unfolded, it retained a degree of native structure, removable with 6m-guanidine hydrochloride. In the latter, all the six tyrosine residues were available for titration, and the intrinsic viscosity of ovomucoid increased to 9.4ml/g. Furthermore, the characteristic fine structures in circular-dichrosim spectra of ovomucoid, associated with the elements of native structure, were abolished in 6m-guanidine hydrochloride, suggesting that the completely denatured state is structureless and presumably behaves as a cross-linked random coil. The latter state has been shown by analysis of the results on guanidine hydrochloride-dependence of the transition, intermediatedenatured, to be less stable than the intermediate state under native conditions by about 46kJ/mol at 25°C. Attempts have been made to interpret the above results in the light of available information on the amino acid sequence of ovomucoid.  相似文献   

5.
Hydrogen ion titration of an affinity-purified mannose/glucose-specific lectin from Cajanus cajan pulse was carried out at 30°C and ionic strength of 0.15 by a discontinuous method. The titration was reversible in the pH range 2–12.0. The numbers of different ionizable groups per 39,000 g of the lectin were 43 carboxyl groups (pKint = 3.93), 10 imidazole groups, 21 -amino groups, 12.8 phenoxyl groups (pKint = 10.0), and 5 guanidyl groups. Only seven tyrosine residues of the lectin were dissociated under native conditions. The remaining six tyrosines became available for titration upon denaturation of the lectin in 9 M urea.  相似文献   

6.
D A Ellis  V Coffman  J B Ifft 《Biochemistry》1975,14(6):1205-1210
The buoyant density titration curves of native and carbamylated bovine serum mercaptalbumin were measured throughout the pH range 5.3-12.7. Large increments in the buoyant density were observed above pH 10, with inflection pH values of 11.2 and 11.4 for native and carbamylated bovine serum mercaptalbumin, respectively. For the modified protein in which 25 out of 58 lysine residues were carbamylated, the buoyant densities were 0.048 g/ml higher at neutral pH and 0.024 g/ml higher at the extrapolated pH 13. The carbamyl groups apparently produce a larger residual density at pH 13 than they did in the case of ovalbumin. Homopolymer buoyant density titration data were demonstrated to be of value in calculating the contributions of titratable residues to the buoyant density of both proteins. The buoyant density increment at high pH was due largely to the deprotonation of the lysines as indicated by the diminished change in buoyant density between pH 10 and 12.7 for the modified protein. These density changes were attributable primarily to a gain of cesium ions. The limited modification of the lysine residues under mild reaction conditions and the rather high intrinsic dissociation constant of tyrosine residues in mercaptalbumin may indicate a preferential modification of easily accessible lysine residues. Phenolic deprotonation is facilitated by the neutralization of normally charged lysine residues and demonstrates ionic interactions between internal lysines and certain carboxyl and tyrosine residues thereby stabilizing the native state of the protein.  相似文献   

7.
R W Shaw  C R Hartzell 《Biochemistry》1976,15(9):1909-1914
Continuous hydrogen ion titration curves of deionized solutions of horse heart ferricytochrome c have been obtained at 25 degrees C. at a constant ionic strength of 0.10 from pH 3.0 to 11.0. Titration of the oxidized protein in KCl required 28.4 equiv over that pH range, and a small hysteresis between the forward and reverse limbs was displayed. The Linderstrom-Lang approximation, which takes into account electrostatic interactions between charged groups on the protein surface, was used in a computer simulation program to analyze the forward and reverse limbs of the titration curve separately. The results indicated 1 alpha-, 12 beta- and gamma-, and 1 heme propionic carboxylic, 1 imidazole, 1 phenolic, and 18 epsilon-amino residues appear to titrate normally. Variations in the electrostatic interaction factor omega suggest conformational changes in the protein at the extremes of pH, although the relationship of the variations in omega to the magnitude of the conformational changes does not appear to be strictly quantitative for cytochrome c. These results show the acid-base behavior of cytochrome c to be complex in nature, and suggest that the Lindenstrom-Lang model may not be adequate for cytochrome c.  相似文献   

8.
The epsilon-amino groups of ovalbumin were modified with succinic anhydride; as many as 16 lysine residues were succinylated (3-carboxypropionylated). The five succinylated derivatives thus prepared were homogeneous with respect to the extent of chemical modification as shown by electrophoretic and immunological data. Succinylation of the amino groups altered electrophoretic mobility and isoionic pH of ovalbumin in the expected direction. U.v.-absorption and fluorescence spectra suggested changes in the microenvironment of the chromophores in the modified proteins. The difference-spectral results showed greater exposure of tyrosine and tryptophan residues in the succinylated ovalbumin. Increase in susceptibility to tryptic digestion, Stokes radius and intrinsic viscosity of native ovalbumin, which was observed on successive increase in the chemical modification, demonstrated a conformational change that was proportional to the extent of modification. The loss of immunological reactivity caused by chemical modification also indicated a conformational change in succinylated ovalbumin. The fact that the intrinsic viscosity of maximally modified ovalbumin was less than one-third of that for the completely denatured protein in 6M-guanidinium chloride suggested that the modified protein contained significant residual native structure. The latter presumably accommodates some antigenic determinants accounting for 37% residual immunological activity observed with maximally succinylated ovalbumin.  相似文献   

9.
The pH dependence of the reversible guanidine hydrochloride denaturation of the major fraction of ovalbumin (ovalbumin A1) was studied by a viscometric method in the pH range 1-7, at 25 degrees C and at six different denaturant concentrations (1.5-2.6 M). At any denaturant concentrationa reduction in pH favoured the transition from the native to the denatured state. The latter was essentially 'structureless', as revealed by the fact that the reduced viscosity of the acid and guanidine hydrochloride denatured state of ovalbumin A1 (obtained at different denaturant concentrations in acidic solutions) was measured (at a protein concentration of 3.8 mg/ml) to be 29.2 ml/g which is identical to that found in 6 M guanidine hydrochloride wherein the protein behaves as a cross-linked random coil. A quantitative analysis of the results on the pH dependence of the equilibrium constant for the denaturation process showed that on denaturation the intrinsic pK of two carboxyl groups in ovalbumin A1 went up from 3.1 in the native state to 4.4 in the denatured state of the protein.  相似文献   

10.
Hydrogen ion titration of an affinity-purified mannose/glucose-specific lectin from Cajanus cajan pulse was carried out at 30°C and ionic strength of 0.15 by a discontinuous method. The titration was reversible in the pH range 2–12.0. The numbers of different ionizable groups per 39,000 g of the lectin were 43 carboxyl groups (pKint = 3.93), 10 imidazole groups, 21 ε-amino groups, 12.8 phenoxyl groups (pKint = 10.0), and 5 guanidyl groups. Only seven tyrosine residues of the lectin were dissociated under native conditions. The remaining six tyrosines became available for titration upon denaturation of the lectin in 9 M urea.  相似文献   

11.
12.
The model polynucleotide poly(dG-dC).poly(dG-dC) (polyGC) was titrated with a strong acid (HCl) in aqueous unbuffered solutions and in the quaternary w/o microemulsion CTAB/n-pentanol/n-hexane/water. The titrations, performed at several concentrations of NaCl in the range 0.005 to 0.600 M, were followed by recording the modifications of the electronic absorption and of the CD spectra (210< or = lambda < or =350 nm) upon addition of the acid. In solution, the polynucleotide undergoes two acid-induced transitions, neither of which corresponds to denaturation of the duplex to single coil. The first transition leads to the Hoogsteen type synG.C+ duplex, while the second leads to the C+.C duplex. The initial B-form of polyGC was recovered by back-titration with NaOH. The apparent pKa values were obtained for both steps of the titration, at all salt concentrations. A reasonably linear dependence of pKa1 and pKa2 from p[NaCl] was obtained, with both pKa values decreasing with increasing ionic strength. In microemulsion, at salt concentrations < or = 0.300 M, an acid-induced transition was observed, matching the first conformational transition recorded also in solution. However, further addition of acid led to denaturation of the protonated duplex. Renaturation of polyGC was obtained by back-titration with NaOH. At salt concentrations > 0.300 M, polyGC is present as a mixture of B-form and psi- aggregates, that slowly separate from the microemulsion. The acid titration induces at first a conformational transition similar to the one observed at low salt or in solution, then denaturation occurs, which is however preceded by the appearance of a transient conformation, that has been tentatively classified as a left-handed Z double helix.  相似文献   

13.
Physico chemical changes of ovalbumin illuminatied in the presence of methylene blue were examined. Solubility of ovalbumin was remarkably reduced, but its extents were varied with the value of pH, that of ionic strength and illumination time. Illumination brought about aggregation of protein molecules which was revealed on the ultra centrifugal patterns. Electrophoretical patterns showed that three peaks characteristic of native ovalbumin went into one peak after 24 hr and into two peaks after 48 hr. After an illumination for 6 hr, titration curves showed that bound protons decreased below pH 8.0 and increased over pH 8.0. The spectra of illuminated ovalbumin were displaced upward and the absorption maximum shifted toward the longer region of wave length.  相似文献   

14.
Conformation of the extracellular polysaccharide of Xanthomonas campestris.   总被引:2,自引:0,他引:2  
G Holzwarth 《Biochemistry》1976,15(19):4333-4339
The solution conformation of the extracellular polysaccharide of the bacterium Xanthomonas campestris is examined by optical rotation, viscometry, and potentiometric titration. Measurements of optical rotation vs. temperature for solutions of the polysaccharide at low ionic strength reveal a sharp transition to a denatured structure which is reversible if sufficient salt is present. The temperature Tm at the transition midpoint increases as log (Na+) or log (Ca2+). Viscosity-temperature profiles substantiate a structural change of the polysaccharide at Tm. The intrinsic viscosity of the native molecule at zero shear rate exceeds 5000 ml/g. This high figure is indicative of a stiff chain. The viscosity of the native molecule is relatively insensitive to salt, whereas the denatured molecule collapses if salt is present. Hydrogen-ion titration shows that the pKapp of the COO- groups of the polymer decreases from 3.2 in 0.01 M NaC1 to 2.6 in 0.2 M NaC1. All these data suggest that the native polysaccharide possesses ordered secondary structure stabilized by nonionic interactions outweighing the repulsion between adjacent COO- groups.  相似文献   

15.
The energetics of structural changes in the holo and apo forms of a-lactalbumin and the transition between their native and denatured states induced by binding Ca2+ and Na+ have been studied by differential scanning and isothermal titration microcalorimetry and circular dichroism spectroscopy under various solvent conditions. Removal of Ca2+ from the protein enhances its sensitivity to pH and ionic conditions due to noncompensated negative charge-charge interactions at the cation binding site, which significantly reduces its overall stability. At neutral pH and low ionic strength, the native structure of apo-alpha-lactalbumin is stable below 14 C and undergoes a conformational change to a native-like molten globule intermediate at temperatures above 25 degrees C. The denaturation of either holo- or apo-alpha-lactalbumin is a highly cooperative process that is characterized by an enthalpy of similar magnitude when calculated at the same temperature. Measured by direct calorimetric titration, the enthalpy of Ca2+-binding to apo-LA at pH 7.5 is -7.1 kJ mol(-1) at 5.0 degrees C. which is essentially invariant to protonation effects. This small enthalpy effect infers that stabilization of alpha-lactalbumin by Ca2+ is primarily an entropy driven process, presumably arising from electrostatic interactions and the hydration effect. In contrast to the binding of calcium, the interaction of sodium with apo-LA does not produce a noticeable heat effect and is characterized by its ionic nature rather than specific binding to the metal-binding site. Characterization of the conformational stability and ligand binding energetics of alpha-lactalbumin as a function of solvent conditions furnishes significant insight regarding the molecular flexibility and regulatory mechanism mediated by this protein.  相似文献   

16.
The ultrasonic velocity, density and viscosity of two egg proteins, ovalbumin and ovotransferrin in phosphate buffer have been studied at the physiological pH values. The thermodynamic functions for unfolding, ellipticity, surface amino acid residues and compressibility have been obtained for thermal and chemical denaturation in these food proteins. The computed values of Huggin's constant and shape factor, at a fixed ionic strength 0.16 M are found to be in agreement with the reported values for globular proteins. The slow increase in free-energy of unfolding with temperature at a fixed pH 7 suggests uncoiling and in turn, disappearance of biological activity. It has been observed that the effects of temperature and chemical denaturant on the native protein may give rise to different conformational states. In the presence of urea and sodium dodecyl sulphate (SDS), the proteins gave the excessively denatured states at 25 degrees C and pH 7, in comparison to the thermal denatured state. The positive values of partial adiabatic compressibility (see symbol in text) beta s over the temperature range 45-75 degrees C suggest the possibility of large internal flexibility in ovotransferrin than in ovalbumin.  相似文献   

17.
By batch microcalorimetry we titrated the apo-forms of bovine, goat, and human alpha-lactalbumin with Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, and Cd2+ ions at pH 7.5 and 25 degrees C. The titration curves enabled us to calculate the apparent enthalpy changes and binding constants and thus, also the free energy and the entropy changes of the binding. CD-spectra showed that all cations induce the same conformational change to the native form of the protein. The calorimetric and spectroscopic results, as well as sequence comparisons confirm the hypothesis that all these ions occupy the very same site on the molecule. The thermodynamic parameters, plotted vs the ionic radii, run parallel for the three proteins, which illustrates the earlier proposed "rigid site" model.  相似文献   

18.
Ionization properties of the tyrosyl groups of bovine plasma albumin in various conformational states—the native state (N), the two acid states (F and E), and the state (B) stable at slightly alkaline pH—were studied by means of a stopped-flow-pH-jump technique. The technique allows us to obtain the tyrosyl titration curve in a conformational state that is unstable in the pH region of the titration. The pH jumps from the N and B states to various alkaline pH's, where the tyrosines ionize to bring about a time-dependent increase in absorption at 296 nm, indicating that a number of the tyrosines buried initially become susceptible to ionization as a result of the alkaline transition occurring above pH 10.8. Extrapolation of the observed absorption change to zero time gives a spectrophotometric titration curve in the initial conformational state. Only 30–401% of the 19 tyrosines of the protein can ionize both in the N and the B state at pH 12. The pH jumps from the F and E states, on the other hand, give a decrease in absorption between pH 9 and 11.7, indicating that the tyrosyl groups initially exposed are remarked by refolding after the pH jumps, and the zero-time titration curves show that essentially all the tyrosyl groups ionize normally in these acid states. The results are discussed in relation to the known results of the tyrosyl exposure of the protein measured by other techniques, and the consistency among them demonstrates the effectiveness of the pH-jump titration method. Hydrogen bonding between the abnormal tyrosyl and carboxylate groups as a mechanism to stabilize native albumin is suggested from characteristics of the alkaline transition, which also involves the exposure of the tyrosyl groups, and from the tyrosyl titration curves in the native and acid states.  相似文献   

19.
Electrospray ionization mass spectrometry, isothermal titration calorimetry (ITC), fluorescence spectroscopy, and glutaraldehyde cross-linking SDS-PAGE have been used to study the unfolding of rabbit muscle creatine kinase (MM-CK) induced by acid. The mass spectrometric experiments show that MM-CK is unfolded gradually when titrated with acid. MM-CK is a dimer (the native state) at pH 7.0 and becomes an equilibrium mixture of the dimer and a partially folded monomer (the intermediate) between pH 6.7 and 5.0. The dimeric protein becomes an equilibrium mixture of the intermediate and an unfolded monomer (the unfolded state) between pH 5.0 and 3.0 and is almost fully unfolded at pH 3.0 reached. The results from a "phase diagram" method of fluorescence show that the conformational transition between the native state and the intermediate of MM-CK occurs in the pH range of 7.0-5.2, and the transition between the intermediate and the unfolded state of the protein occurs between pH 5.2 and 3.0. The intrinsic molar enthalpy changes for formation of the unfolded state of MM-CK induced by acid at 15.0, 25.0, 30.0, and 37.0 degrees C have been determined by ITC. A large positive molar heat capacity change of the unfolding, 8.78 kcal mol-1 K-1, at all temperatures examined indicates that hydrophobic interaction is the dominant driving force stabilizing the native structure of MM-CK. Combining the results from these four methods, we conclude that the acid-induced unfolding of MM-CK follows a "three-state" model and that the intermediate state of the protein is a partially folded monomer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号