首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
This study analysed seasonal dynamics of macrophyte abundance in two perennial lowland regulated streams (Stream 1 and 2) in the Danube basin (Slovakia). Assessments of macrophyte abundance and environmental characteristics were accomplished 7 times during the vegetation period in 2005 within a 100 m long section. Statistically significant differences in total abundance of macrophytes as well as an abundance of macrophyte groups (hydrophytes, amphiphytes, helophytes) and Potamogeton nodosus were detected among months within the vegetation period. Abundance fluctuations for individual macrophyte groups and species were moderate in Stream 1 and much stronger in Stream 2. Only amphiphytes showed bimodal temporal distribution in Stream 1, but the abundance of this group was low, reflecting more or less random occurrence of species in vegetation period. Multiple linear regression revealed that water depths and air temperature are the most significant environmental variables affecting the seasonal pattern of total as well as dominating group abundance in Stream 1 and 2, respectively. In all cases, abundances are significantly influenced by the abundance of the respective group in the preceding month. Culmination time differed between streams for all macrophyte groups except helophytes. Total abundance culminated 0.57 month later in the Stream 1 compared to Stream 2.  相似文献   

2.
3.
4.
Studies on large-scale geographic patterns of aquatic plant diversity can promote research on the generality of macroecological patterns in different ecosystems. Here, we compiled a checklist of 889 aquatic angiosperms in China, including 738 helophytes (emergent and marshy plants) and 151 hydrophytes (submerged, free-floating, and floating-leaved plants). We explore the geographic patterns and environmental correlates of aquatic plant diversity based on six metrics including species richness (SR), weighted endemism (WE), phylogenetic diversity (PD), phylogenetic endemism (PE), the standardized effect size of phylogenetic diversity (PDses), and the standardized effect size of mean phylogenetic distance (MPDses). Our results show that the diversity of aquatic plants in China is extremely uneven, with high diversity in southeastern China and low diversity in northwestern China, and the geographic patterns of taxonomic and PD are generally consistent. The pattern of helophytes differs from that of hydrophytes. Notably, the wavy-shaped pattern of aquatic plant diversity (especially SR and PD for hydrophytes) across the latitude observed in this study is not consistent with those previously observed for aquatic plants in other continents. Climatic variables and water environmental variables are the main drivers of aquatic plant diversity in China; however, the effects of individual variables differ between helophytes and hydrophytes. Water environmental variables have a greater impact on PDses and MPDses of hydrophytes than those of helophytes. Overall, our work provides insight into understanding the large-scale patterns of aquatic plant diversity and is a critical addition to previous studies on the macroecological pattern of terrestrial organisms.  相似文献   

5.
In the present article, the results of the first-stage of monitoring, following restoration works on a small Mediterranean wetland (Lake Stagnone, Capraia Island, Tuscan Archipelago), are reported. The recent spread of Typha and Phragmites in the lake changed diversity and composition of the plant communities. Nine years after their first monitoring (2009), a rarefaction of hydrophytes and small helophytes of conservation interest was detected. In 2010, the restoration started with the aim to remove (or at least reduce) the populations of the large, expansive helophytes. In 2012, the first post-actions monitoring were carried out using the same methods as previously, analysing the plant presence/absence and their cover value recorded in the same 15 plots selected in 2000 and 2009. The rise and fall of the populations of the various flora and vegetation types during this invasion process and the following restoration were statistically analysed. One year following the restoration, some recovery (replacement) had occurred of autochthonous hydrophytes and small helophytes. Many of these species are of conservation interest. Some aquatic plants, present on the site until the more or less recent past, were once more recorded. Given the rapid recovery of populations of many autochthonous species, the results are reasonably encouraging, rendering planned reintroductions unnecessary at the moment. On the other hand, because of the short time elapsed since restoration, the current community structure cannot in any way be considered an “equilibrium” one. Continued and regular monitoring is required to allow the reestablishment of the large expansive helophytes populations.  相似文献   

6.
Abstract. In a rural landscape, scale vegetation patterns of woody species are controlled by both abiotic and land use factors. The woody species composition in 126 sample plots was analysed and land use factors and some abiotic parameters were quantified using land register data. The relative importance of land use and abiotic factors was differentiated using a partial Canonical Correspondence Analysis (CCA); the influence of land use in neighbouring areas was explored by changing the scale of land use sampling. The woody species composition appears to be controlled equally by land use and abiotic factors. The fraction of floristic variation in tree species composition explained by land use variables was 33.2 % in 1980 and 30.8 % in 1992, while abiotic variables accounted for 31.2 %. Part of the 17 % of the floristic variance explained is related to the surrounding land use. Thus, when the land use of the sampled plots and the surrounding land use are considered simultaneously, up to 36.9 % of the species variation may be explained. Partial CCA enabled us to quantify the respective proportion of floristic variance which could be explained by land use (36.9 %), abiotic variables alone (20.2 %), shared variance (12.0 %) and unexplained variance (31.2 %). Our results indicated that a delayed effect of variation in land use on plant populations may exist. This delay may result either from population characteristics or from inadequate land use assessment. This study indicates the need for simultaneously examining land use and abiotic patterns in ecological studies, as many Mediterranean-type ecosystems have been shaped by these patterns.  相似文献   

7.
Abstract. The objective of this study was to quantitatively describe vegetation-environment relationships at a regional scale within the Province of New Brunswick, Canada, using vegetation and environment data from 3947 provincial forestry sample plots. The major plant community types in the province were identified using cluster analysis. Relationships of these communities to climate, topography and soil variables were analyzed by Canonical Correspondence Analysis (CCA), using both a reduced data set consisting of cluster likelihood scores × sample plots and an unreduced species × sample plots data matrix. The vegetation types and major axes of environmental variation were mapped to examine the geographic distributions of these factors within the province. Eight communities were identified and described in terms of enhanced/reduced species (significantly higher or lower frequencies of occurrence in a specific community type relative to all plots) and common species (species in the community type with the highest frequencies of occurrence). The canonical axes explained 25 % of the variation in the vegetation cluster data. Vegetation composition was related to three major environmental gradients representing climate and elevation, soil moisture, and soil fertility. The geographic distributions of vegetation communities exhibited predictable but weak correspondence to the geographic distributions of individual environmental factors. Our findings emphasize the overriding importance of climate and topography and the secondary importance of soil factors in controlling vegetation pattern at the regional scale.  相似文献   

8.
All vascular plants, classified by life and growth form into six groups, four groups of hydrophytes (lemnids, nymphaeids, elodeids and isoetids), helophytes, and terrestrial species of pond margins, were inventoried in 64 SE Norwegian agricultural landscape ponds and their adjacent margins. The study sites varied considerably with respect to species richness; 0–4 for each hydrophyte group, 0–9 for helophytes, and 13–77 for terrestrial species. A total of 56 explanatory variables were recorded for each pond and adjacent margin to explain the observed richness variability.  相似文献   

9.
Determining the relative importance of environmental forces on population dynamics is a fundamental question for ecologists. Growing concern over the ecological effects of climate change emphasizes the importance of defining whether broad-scale environmental forces uniformly act upon local populations (hierarchy theory) or cross-scale interactions influence local responses (multiscale theory). This study analyses 13 years of data on species abundances at six sites within a large harbour to determine the effect of the El Niño Southern Oscillation (ENSO). Environmental variables both directly and indirectly related to ENSO were observed to be important predictors of the temporal dynamics of abundance in many species, but the observed effects were not consistent across sites or species. While nearly all species were affected by large temporal and spatial scale variability, smaller temporal scale, location-specific environmental variables (such as wind-generated wave exposure and turbidity) were also generally important, increasing the variability explained by our models by up to 25%. As with many other broad-scale variables, generality of response to ENSO is affected by interactions across time and space with smaller scale heterogeneity. This study therefore suggests that the degree of interaction between broad-scale climatic factors, such as ENSO, with smaller scale variability, will determine the consistency of responses over large spatial scales, and control our ability to predict effects of climate change on coastal and estuarine communities.  相似文献   

10.
We investigated butterfly responses to plot-level characteristics (plant species richness, vegetation height, and range in NDVI [normalized difference vegetation index]) and spatial heterogeneity in topography and landscape patterns (composition and configuration) at multiple spatial scales. Stratified random sampling was used to collect data on butterfly species richness from seventy-six 20 × 50 m plots. The plant species richness and average vegetation height data were collected from 76 modified-Whittaker plots overlaid on 76 butterfly plots. Spatial heterogeneity around sample plots was quantified by measuring topographic variables and landscape metrics at eight spatial extents (radii of 300, 600 to 2,400 m). The number of butterfly species recorded was strongly positively correlated with plant species richness, proportion of shrubland and mean patch size of shrubland. Patterns in butterfly species richness were negatively correlated with other variables including mean patch size, average vegetation height, elevation, and range in NDVI. The best predictive model selected using Akaike’s Information Criterion corrected for small sample size (AICc), explained 62% of the variation in butterfly species richness at the 2,100 m spatial extent. Average vegetation height and mean patch size were among the best predictors of butterfly species richness. The models that included plot-level information and topographic variables explained relatively less variation in butterfly species richness, and were improved significantly after including landscape metrics. Our results suggest that spatial heterogeneity greatly influences patterns in butterfly species richness, and that it should be explicitly considered in conservation and management actions.  相似文献   

11.
Abernethy  V.J.  Willby  N.J. 《Plant Ecology》1999,140(2):177-190
This study used germination methods to examine the density, species composition and functional composition of propagule banks in a series of riverine wetland aquatic habitats subject to varying degrees of hydrological and management-related disturbance. Under permanent inundation (the conditions prevailing at most sites during the growing season) propagule germination and species richness was low, with floodplain perennials and helophytes particularly affected. Densities of floodplain annuals were largely maintained through continued germination of a few flooding tolerant species. On damp mud (conditions associated with hydrological instability) total seedling number and species richness increased significantly, but species richness of germinating hydrophytes declined. Mean seedling density at 0–0.1m depth was 15450 ± 4400 m–2, reaching a maximum (162 050 m–2) in temporary backwaters. Annual (e.g., Lindernia dubia, Cyperus fuscus) and facultative ruderal species (e.g., Lythrum salicaria and Alisma plantago-aquatica) predominated. Vertical zonation of the propagule bank was weakly developed. The numbers of individuals and species germinating varied significantly between sites. The seasonal, most intensely disturbed sites (temporary backwaters) supported a numerically large, species-rich propagule bank based on floodplain annuals, while the permanent, less disturbed sites (ditches and an oxbow pond) had a small, species-poor propagule bank composed of hydrophytes and helophytes supplemented by allochthonous seed inputs. Sites intermediate on the gradient had a propagule bank dominated by facultative amphibious, ruderal hydrophytes. The composition of the seed bank and the established vegetation was most similar at the heavily disturbed sites where the seed bank was maintained by vigorously fruiting annuals and supplemented by inputs from temporary habitats upstream. At permanent sites much of the propagule bank composition could be accounted for by inputs of floodborne seed from the immediately adjacent floodplain. The established vegetation at such sites appeared to be maintained mainly by vegetative propagation with recruitment from the propagule bank likely only after severe disturbance. The potential contribution of functionally diverse propagule banks to sucessional processes within fluvially dynamic floodplain aquatic habitats is emphasised.  相似文献   

12.
Question: What is the relationship between plant diversity and species turnover in coastal dune vegetation plots? How is the long‐term change in species composition of vegetation plots related to shifts in functional traits, and what does it tell us about the dominant processes? Location: Coastal dunes, the Netherlands. Methods: Our data set comprised 52 years of vegetation data from 35 permanent plots in grassland/scrub/woodland vegetation. Vegetation dynamics were described in terms of changes in species composition and abundance, and shifts in 13 functional traits related to resources capture and forage quality, regeneration and dispersal. Results: Species turnover in the plots was high, because of local extinction and colonization. Species‐rich plots were more stable in terms of species abundance and composition compared with species‐poor plots. Over time, the plots converged with respect to their abiotic conditions, as reflected by Ellenberg indicator values – indicating that the prevailing process was succession. The high species turnover reflected high invasibility: accordingly, the relative importance of annuals increased. Most newcomer annuals, however, were competitive generalists of little conservation value. The functional trait analysis allowed us to unravel the complexity of effects of disturbances and succession, and yielded information on the processes driving the observed vegetation dynamics. Conclusions: In this study, small‐scale species turnover was negatively related to species diversity, indicating more stability in species‐rich communities. Regarding shifts in trait diversity, unifying filters appeared to be more dominant than diversifying filters. Counteracting this homogenization process poses a challenge for nature management.  相似文献   

13.
Aim Urbanization is a leading threat to global biodiversity, yet little is known about how the spatial arrangement and composition of biophysical elements – buildings and vegetation – within a metropolitan area influence habitat selection. Here, we ask: what is the relative importance of the structure and composition of these elements on bird species across multiple spatial scales? Location The temperate metropolitan area of Cincinnati, Ohio, USA. Methods We surveyed breeding birds on 71 plots along an urban gradient. We modelled relative density for 48 bird species in relation to local woody vegetation composition and structure and to tree cover, grass cover and building density within 50–1000 m of each plot. We used an information‐theoretic approach to compare models and variables. Results At the proximate scale, native tree and understory stem frequency were the most important vegetation variables explaining bird distributions. Species’ responses to landscape biophysical features and spatial scales varied. Most native species responded positively to vegetation measures and negatively to building density. Models combining both local vegetation and landscape information represented best or competitive models for the majority of species, while models containing only local vegetation characteristics were rarely competitive. Smaller spatial scales (≤ 500 m) were most important for 36 species, and eight species had best models at larger scales (> 500 m); however, several species had competitive models across multiple scales. Main conclusions Habitat selection by birds within the urban matrix is the result of a combination of factors operating at both proximate and broader spatial scales. Efforts to manage and design urban areas to benefit native birds require both fine‐scale (e.g., individual landowners and landscape design) and larger landscape actions (e.g., regional comprehensive planning).  相似文献   

14.
All vascular plants, classified by life and growth form into aquatic species (hydrophytes and helophytes) and terrestrial species of pond margins, were inventoried in 64 SE Norwegian agricultural landscape ponds and their adjacent margins for which also 56 explanatory variables were recorded. Gradients in species composition, found separately for aquatic and terrestrial species by parallel DCA and GNMDS ordinations, were interpreted by correlation and geostatistical analyses.  相似文献   

15.
While the area of plantation forests continues to increase worldwide, their contribution to the conservation of biodiversity is still controversial. There is a particular concern on the central role played by natural habitat remnants embedded within the plantation matrix in conserving species-rich insect communities. We surveyed butterflies in maritime pine plantation landscapes in south-western France in 83 plots belonging to seven habitat types (five successional stages of pine stands, native deciduous woodlands and herbaceous firebreaks). The effect of plot, habitat and landscape attributes on butterfly species richness, community composition and individual species were analysed with a General Linear Model (GLM), partial Canonical Correspondence Analysis (CCA) and the IndVal method. The most important factors determining butterfly diversity and community composition were the presence of semi-natural habitats (deciduous woodlands and firebreaks) at the landscape scale and the composition of understorey vegetation at the plot scale. Pure effects of plot variables explained the largest part of community variation (12.8%), but landscape factors explained an additional, independent part (6.7%). Firebreaks were characterized by a higher species richness and both firebreaks and deciduous woodlands harboured species not or rarely found in pine stands. Despite the forest-dominated landscape, typical forest butterflies were rare and mainly found in the deciduous woodlands. Threatened species, such as Coenonympha oedippus and Euphydryas aurinia, were found in pine stands and in firebreaks, but were more abundant in the latter. In the studied plantation forest, the conservation of butterflies depends mainly on the preservation of semi-natural habitats, an adequate understorey management and the maintenance of soil moisture levels.  相似文献   

16.
1. Bees are ecologically important pollinators that are threatened by disease, habitat degradation, and habitat loss. Bee species that share ecological traits (e.g. body size, diet breadth, and sociality) may often respond similarly to environmental disturbance; however, few studies have examined the extent to which closely related, ecologically similar species exhibit divergent responses to the same forms of disturbance. 2. In the present study, the responses of bumble bees (Apidae: genus Bombus) to urbanization are examined by combining field surveys with the quantification of local‐ and landscape‐level variables using Geographic Information Systems (GIS). During the spring and summer of 2012 and 2013, 57, bumble bees were surveyed in 1‐ha plots in San Diego County, California that spanned a gradient of urbanisation. Species‐level, occurrence (presence/absence) data and logistic regressions were then used to identify determinants of Bombus occurrence across this landscape. 3. Approximately 1000 Bombus individuals belonging to three species were observed: B. californicus Smith, B. melanopygus Cresson, and B. vosnesenskii Radoszkowski. The occurrence of all Bombus species was negatively related to impermeable surface cover within study plots, but species responded uniquely to other plot‐scale variables and exhibited distinctive patterns of scale‐dependency with respect to impermeable surface cover surrounding plots. 4. Urbanisation negatively affected all three focal bumble bee species in this study. Species‐specific responses to plot‐scale and landscape‐scale variables presumably reflect interspecific trait differences (e.g. body size, tongue length, and foraging behaviour). Unique responses to urbanisation caution against pooling species into functional groups based merely on taxonomic relationships or perceived ecological similarities.  相似文献   

17.
We studied riparian forests along mountain streams in four large watersheds of western Oregon and far northern California, USA, to better understand the multiscale controls on woody riparian vegetation in a geographically complex region. In each of the four-study watersheds, we sampled woody riparian vegetation in161-ha sampling reaches that straddled the stream channel. Within each hectare, we sampled riparian vegetation and local environmental factors in 40 m2 sampling plots arrayed along topographic transects. We also surveyed natural disturbance gaps in 6 ha in each watershed to explore the effects of fine scale disturbance on species distributions. We compared species composition across our study watersheds and used Nonmetric Multidimensional Scaling (NMS) and chi-squared analyses to compare the relative importance of landscape scale climate variables and local topographic and disturbance variables in explaining species distributions at sampling plot and hectare scales. We noted substantial turnover in the riparian flora across the region, with greatest numbers of unique species in watersheds at the ends of the regional gradient. In NMS ordinations at both scales, variation in woody riparian species composition showed strongest correlations with climatic variables and Rubus spectabilis cover, but the latter was only an important factor in the two northern watersheds. At the smaller scale, topographic variables were also important. Chi-squared analyses confirmed that more species showed landscape scale habitat preferences (watershed associations) than associations with topographic position (94.7% vs. 42.7% of species tested) or gap versus forest setting (94.7% vs. 24.6% of species tested). The woody riparian flora of western Oregon shows important biogeographic variation; species distributions showed strong associations with climatic variables, which were the primary correlates of compositional change between riparian sites at both scales analyzed. Additional local variation in composition was explained by measures of topography and disturbance.  相似文献   

18.
This study aimed to evaluate if anuran species distributions in riparian and non‐riparian areas are influenced by environmental factors (i.e. niche) and/or by spatial factors (i.e. dispersal). The environmental variables analysed were altitude, distance from the stream and leaf litter depth. Spatial factors were represented by the eigenvectors extracted from geographical coordinates by eigenfunction analysis. The study was conducted in 24 km2 of terra‐firme forest in Central Amazonia, Manaus – Amazonas, Brazil. Between November 2008 and May 2009, three samples were taken from 41 plots, 21 plots being placed at non‐riparian areas and another 20 placed in riparian areas. We submitted the assemblage dataset to a partial redundancy analysis to evaluate the contributions of environmental and spatial variables (selected with a forward selection procedure). In addition, we tested if communities differ from riparian and non‐riparian areas using a db‐MANOVA. Species richness and species composition differed between riparian and non‐riparian plots. Some species were restricted to riparian areas. Altitude was the only significant variable (P = 0.005) explaining 21% of the total variance. When analysing the data from all plots using the partial redundancy analysis, 27% of the variance was explained by spatial and environmental variables. The environmental variables explained exclusively 4% of the variance in assemblage composition, and 13% was explained by environmental variables that were also structured in space (i.e. the shared fraction), while 10% was explained exclusively by spatial variables. In conclusion, our results showed differences between the assemblages of riparian and non‐riparian areas which can be explained by the distribution of anuran species along environmental gradients altitude and distance to streams, with little evidence of dispersal limitation.  相似文献   

19.
ABSTRACT Capercaillie (Tetrao urogallus) is a large, endangered forest grouse species with narrow habitat preferences and large spatial requirements that make it susceptible to habitat changes at different spatial scales. Our aim was to evaluate the relative power of variables relating to forest versus landscape structure in predicting capercaillie occurrence at different spatial scales. We investigated capercaillie-habitat relationships at the scales of forest stand and forest-stand mosaic in 2 Swiss regions. We assessed forest structure from aerial photographs in 52 study plots each 5 km2. We classified plots into one of 3 categories denoting the observed local population trend (stable, declining, extinct), and we compared forest structure between categories. At the stand scale, we used presence-absence data for grid cells within the plots to build predictive habitat models based on logistic regression. At this scale, habitat models that included only variables relating to forest structure explained the occurrence of capercaillie only in part, whereas variables selected by the models differed between regions. Including variables relating to landscape features improved the models significantly. At the scale of stand mosaic, variables describing forest structure (e.g., mean canopy cover, proportion of open forest, and proportion of multistoried forest) differed between plot categories. We conclude that small-scale forest structure has limited power to predict capercaillie occurrence at the stand scale, but that it explains well at the scale of the stand mosaic. Including variables for landscape structure improves predictions at the forest-stand scale. Habitat models built with data from one region cannot be expected to predict the species occurrence in other regions well. Thus, multiscale approaches are necessary to better understand species-habitat relationships. Our results can help regional authorities and forest-management planners to identify areas where suitable habitat for capercaillie is not available in the required proportion and, thus, where management actions are needed to improve habitat suitability.  相似文献   

20.
Questions: Which environmental and management factors determine plant species composition in semi‐natural grasslands within a local study area? Are vegetation and explanatory factors scale‐dependent? Location: Semi‐natural grasslands in Lærdal, Sognog Fjordane County, western Norway. Methods: We recorded plant species composition and explanatory variables in six grassland sites using a hierarchically nested sampling design with three levels: plots randomly placed within blocks selected within sites. We evaluated vegetation‐environment relationships at all three levels by means of DCA ordination and split‐plot GLM analyses. Results: The most important complex gradient determining variation in grassland species composition showed a broad‐scale relationship with management. Soil moisture conditions were related to vegetation variation on block scale, whereas element concentrations in the soil were significantly related to variation in species composition on all spatial scales. Our results show that vegetation‐environment relationships are dependent on the scale of observation. We suggest that scale‐related (and therefore methodological) issues may explain the wide range of vegetation‐environment relationships reported in the literature, for semi‐natural grassland in particular but also for other ecosystems. Conclusions: Interpretation of the variation in species composition of semi‐natural grasslands requires consideration of the spatial scales on which important environmental variables vary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号