首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Goldfish retinal ganglion cells (RGCs) can regrow their axons after optic nerve injury. However, the reason why goldfish RGCs can regenerate after nerve injury is largely unknown at the molecular level. To investigate regenerative properties of goldfish RGCs, we divided the RGC regeneration process into two components: (1) RGC survival, and (2) axonal elongation processes. To characterize the RGC survival signaling pathway after optic nerve injury, we investigated cell survival/death signals such as Bcl-2 family members in the goldfish retina. Amounts of phospho-Akt (p-Akt) and phospho-Bad (p-Bad) in the goldfish retina rapidly increased four- to five-fold at the protein level by 3-5 days after nerve injury. Subsequently, Bcl-2 levels increased 1.7-fold, accompanied by a slight reduction in caspase-3 activity 10-20 days after injury. Furthermore, level of insulin-like growth factor-I (IGF-I), which activates the phosphatidyl inositol-3-kinase (PI3K)/Akt system, increased 2-3 days earlier than that of p-Akt in the goldfish retina. The cellular localization of these molecular changes was limited to RGCs. IGF-I treatment significantly induced phosphorylation of Akt, and strikingly induced neurite outgrowth in the goldfish retina in vitro. On the contrary, addition of the PI3K inhibitor wortmannin, and IGF-I antibody inhibited Akt phosphorylation and neurite outgrowth in an explant culture. Thus, we demonstrated, for the first time, the signal cascade for early upregulation of IGF-I, leading to RGC survival and axonal regeneration in adult goldfish retinas through PI3K/Akt system after optic nerve injury. The present data strongly indicate that IGF-I is one of the most important molecules for controlling regeneration of RGCs after optic nerve injury.  相似文献   

2.
Retinal ganglion cells (RGCs) are central nervous system (CNS) neurons that transmit visual information from the retina to the brain. Apoptotic RGC degeneration causes visual impairment that can be modeled by optic nerve crush. Neuronal apoptosis is also a salient feature of CNS trauma, ischemia (stroke), and diseases of the CNS such as Alzheimer's, Parkinson's, multiple sclerosis, and amyotrophic lateral sclerosis. Optic nerve crush induces the apoptotic cell death of ~ 70% of RGCs within the first 14 days after injury. This model is particularly attractive for studying adult neuron apoptosis because the time-course of RGC death is well established and axon regeneration within the myelinated optic nerve can be concurrently evaluated. Here, we performed a large scale iTRAQ proteomic study to identify and quantify proteins of the rat retina at 1, 3, 4, 7, 14, and 21 days after optic nerve crush. In total, 337 proteins were identified, and 110 were differentially regulated after injury. Of these, 58 proteins were upregulated (>1.3 ×), 46 were downregulated (<0.7 ×), and 6 showed both positive and negative regulation over 21 days, relative to normal retinas. Among the differentially expressed proteins, Thymosin-β4 showed an early upregulation at 3 days, the time-point that immediately precedes the induction of RGC apoptosis after injury. We examined the effect of exogenous Thymosin-β4 administration on RGC death after optic nerve injury. Intraocular injections of Thymosin-β4 significantly increased RGC survival by ~ 3-fold compared to controls and enhanced axon regeneration after crush, demonstrating therapeutic potential for CNS insults. Overall, our study identified numerous proteins that are differentially regulated at key time-points after optic nerve crush, and how the temporal profiles of their expression parallel RGC death. This data will aid in the future development of novel therapeutics to promote neuronal survival and regeneration in the adult CNS.  相似文献   

3.
Retinal ganglion cells (RGCs) are neurons that relay visual signals from the retina to the brain. The RGC cell bodies reside in the retina and their fibers form the optic nerve. Full transection (axotomy) of the optic nerve is an extra-retinal injury model of RGC degeneration. Optic nerve transection permits time-kinetic studies of neurodegenerative mechanisms in neurons and resident glia of the retina, the early events of which are reported here. One day after injury, and before atrophy of RGC cell bodies was apparent, glia had increased levels of phospho-Akt, phospho-S6, and phospho-ERK1/2; however, these signals were not detected in injured RGCs. Three days after injury there were increased levels of phospho-Rb and cyclin A proteins detected in RGCs, whereas these signals were not detected in glia. DNA hyperploidy was also detected in RGCs, indicative of cell cycle re-entry by these post-mitotic neurons. These events culminated in RGC death, which is delayed by pharmacological inhibition of the MAPK/ERK pathway. Our data show that a remote injury to RGC axons rapidly conveys a signal that activates retinal glia, followed by RGC cell cycle re-entry, DNA hyperploidy, and neuronal death that is delayed by preventing glial MAPK/ERK activation. These results demonstrate that complex and variable neuro-glia interactions regulate healthy and injured states in the adult mammalian retina.  相似文献   

4.
5.
Retinal ganglion cell (RGC) loss after optic nerve damage is a hallmark of certain human ophthalmic diseases including ischemic optic neuropathy (ION) and glaucoma. In a rat model of optic nerve transection, in which 80% of RGCs are eliminated within 14 days, caspase-2 was found to be expressed and cleaved (activated) predominantly in RGC. Inhibition of caspase-2 expression by a chemically modified synthetic short interfering ribonucleic acid (siRNA) delivered by intravitreal administration significantly enhanced RGC survival over a period of at least 30 days. This exogenously delivered siRNA could be found in RGC and other types of retinal cells, persisted inside the retina for at least 1 month and mediated sequence-specific RNA interference without inducing an interferon response. Our results indicate that RGC apoptosis induced by optic nerve injury involves activation of caspase-2, and that synthetic siRNAs designed to inhibit expression of caspase-2 represent potential neuroprotective agents for intervention in human diseases involving RGC loss.  相似文献   

6.

Background

We have used optic nerve injury as a model to study early signaling events in neuronal tissue following axonal injury. Optic nerve injury results in the selective death of retinal ganglion cells (RGCs). The time course of cell death takes place over a period of days with the earliest detection of RGC death at about 48 hr post injury. We hypothesized that in the period immediately following axonal injury, there are changes in the soma that signal surrounding glia and neurons and that start programmed cell death. In the current study, we investigated early changes in cellular signaling and gene expression that occur within the first 6 hrs post optic nerve injury.

Results

We found evidence of cell to cell signaling within 30 min of axonal injury. We detected differences in phosphoproteins and gene expression within the 6 hrs time period. Activation of TNFα and glutamate receptors, two pathways that can initiate cell death, begins in RGCs within 6 hrs following axonal injury. Differential gene expression at 6 hrs post injury included genes involved in cytokine, neurotrophic factor signaling (Socs3) and apoptosis (Bax).

Conclusion

We interpret our studies to indicate that both neurons and glia in the retina have been signaled within 30 min after optic nerve injury. The signals are probably initiated by the RGC soma. In addition, signals activating cellular death pathways occur within 6 hrs of injury, which likely lead to RGC degeneration.  相似文献   

7.

Aims

Activation of retinal microglial cells (RMCs) is known to contribute to retinal ganglion cell (RGC) death after optic nerve injury. The purpose of this study was to investigate the effects of intravenous injection of α-crystallin on RGC survival and RMC activation in a rat model of optic nerve crush.

Main methods

RGCs were retrogradely labeled with fluorogold. Rats were intravenously injected with normal saline or α-crystallin (0.05 g/kg, 0.5 g/kg, and 5 g/kg) at 2, 4, 6, 8, 10, and 12 days after the optic nerve crush. Activated RMCs were characterized using immunofluorescence labeling with CD11b, and TNF-α and iNOS expression was detected using immunoblot analyses. We analyzed the morphology and numbers of RGC and RMC 2 and 4 weeks after injury using fluorescence and confocal microscopy.

Key findings

The number of RGCs decreased after optic nerve injury, accompanied by significantly increased numbers of activated RMCs. Intravenous injection of α-crystallin decreased the number of RMCs, and enhanced the number of RGCs compared to saline injection. α-Crystallin administration inhibited TNF-α and iNOS protein expression induced by optic nerve injury.

Significance

Our results suggest that α-crystallin promotes RGC survival and inhibits RMC activation. Intravenous injection of α-crystallin could be a possible strategy for the treatment of optic nerve injury.  相似文献   

8.
Molecular insights into the selective vulnerability of retinal ganglion cells (RGCs) in optic neuropathies and after ocular trauma can lead to the development of novel therapeutic strategies aimed at preserving RGCs. However, little is known about what molecular contexts determine RGC susceptibility. In this study, we show the molecular mechanisms underlying the regional differential vulnerability of RGCs after optic nerve injury. We identified RGCs in the mouse peripheral ventrotemporal (VT) retina as the earliest population of RGCs susceptible to optic nerve injury. Mechanistically, the serotonin transporter (SERT) is upregulated on VT axons after injury. Utilizing SERT-deficient mice, loss of SERT attenuated VT RGC death and led to robust retinal axon regeneration. Integrin β3, a factor mediating SERT-induced functions in other systems, is also upregulated in RGCs and axons after injury, and loss of integrin β3 led to VT RGC protection and axon regeneration. Finally, RNA sequencing analyses revealed that loss of SERT significantly altered molecular signatures in the VT retina after optic nerve injury, including expression of the transmembrane protein, Gpnmb. GPNMB is rapidly downregulated in wild-type, but not SERT- or integrin β3-deficient VT RGCs after injury, and maintaining expression of GPNMB in RGCs via AAV2 viruses even after injury promoted VT RGC survival and axon regeneration. Taken together, our findings demonstrate that the SERT-integrin β3-GPNMB molecular axis mediates selective RGC vulnerability and axon regeneration after optic nerve injury.  相似文献   

9.
Unlike in mammals, fish retinal ganglion cells (RGCs) have a capacity to repair their axons even after optic nerve transection. In our previous study, we isolated a tissue type transglutaminase (TG) from axotomized goldfish retina. The levels of retinal TG (TG(R)) mRNA increased in RGCs 1-6weeks after nerve injury to promote optic nerve regeneration both in vitro and in vivo. In the present study, we screened other types of TG using specific FITC-labeled substrate peptides to elucidate the implications for optic nerve regeneration. This screening showed that the activity of only cellular coagulation factor XIII (cFXIII) was increased in goldfish optic nerves just after nerve injury. We therefore cloned a full-length cDNA clone of FXIII A subunit (FXIII-A) and studied temporal changes of FXIII-A expression in goldfish optic nerve and retina during regeneration. FXIII-A mRNA was initially detected at the crush site of the optic nerve 1h after injury; it was further observed in the optic nerve and achieved sustained long-term expression (1-40days after nerve injury). The cells producing FXIII-A were astrocytes/microglial cells in the optic nerve. By contrast, the expression of FXIII-A mRNA and protein was upregulated in RGCs for a shorter time (3-10days after nerve injury). Overexpression of FXIII-A in RGCs achieved by lipofection induced significant neurite outgrowth from unprimed retina, but not from primed retina with pretreatment of nerve injury. Addition of extracts of optic nerves with injury induced significant neurite outgrowth from primed retina, but not from unprimed retina without pretreatment of nerve injury. The transient increase of cFXIII in RGCs promotes neurite sprouting from injured RGCs, whereas the sustained increase of cFXIII in optic nerves facilitates neurite elongation from regrowing axons.  相似文献   

10.
To investigate the short-and long-term effects of axotomy on the survival of central nervous system (CNS) neurons in adult rats, retinal ganglion cells (RGCs) were labelled retrogradely with the persistent market diI and their axons interrupted in the optic nerve (ON) by intracranial crush 8 or 10 mm from the eye or in intraorbital cut 0.5 or 3 mm from the eye. Labelled RGCs were counted in flat-mounted retinas at intervals from 2 weeks to 20 months after axotomy. Two major patterns of RGC loss were observed: (1) an inital abrupt loss that was confined to the first 2 weeks after injury and was more severe when the ON was cut close to the eye; (2) a slower, persistent decline in RGC densities with one-half survival times that ranged from approximately 1 month after intraorbital ON cut to 6 months after intracranial ON crush. A small population of RGCs (approximately 5%) survived for as long as 20 months after intraorbital axotomy. The initial loss of axotomized RGCs presumably results from time-limited perturbations related to the position of the ON injury. A. persistent lack of terminal connectivity between RGCs and their targets in the brain may contribute to the subsequent, more protracted RGC loss, but the differences between intraorbital cut and intracranial crush suggest that additional mechanisms are involved. It is unclear whether the various injury-related processes set in motion in both the ON and the retina exert random effects on all RGCs or act preferentially on subpopulations of these neurons. © 1993 John Wiley & Sons, Inc.  相似文献   

11.
Zhu WL  Shi HS  Wang SJ  Wu P  Ding ZB  Lu L 《Journal of neurochemistry》2011,118(6):1075-1086
The reactive oxygen species (ROS) superoxide has been recognized as a critical signal triggering retinal ganglion cell (RGC) death after axonal injury. Although the downstream targets of superoxide are unknown, chemical reduction of oxidized sulfhydryls has been shown to be neuroprotective for injured RGCs. On the basis of this, we developed novel phosphine-borane complex compounds that are cell permeable and highly stable. Here, we report that our lead compound, bis (3-propionic acid methyl ester) phenylphosphine borane complex 1 (PB1) promotes RGC survival in rat models of optic nerve axotomy and in experimental glaucoma. PB1-mediated RGC neuroprotection did not correlate with inhibition of stress-activated protein kinase signaling, including apoptosis stimulating kinase 1 (ASK1), c-jun NH2-terminal kinase (JNK) or p38. Instead, PB1 led to a striking increase in retinal BDNF levels and downstream activation of the extracellular signal-regulated kinases 1/2 (ERK1/2) pathway. Pharmacological inhibition of ERK1/2 entirely blocked RGC neuroprotection induced by PB1. We conclude that PB1 protects damaged RGCs through activation of pro-survival signals. These data support a potential cross-talk between redox homeostasis and neurotrophin-related pathways leading to RGC survival after axonal injury.  相似文献   

12.
13.
It has been shown that peroxisome proliferators-activated receptor gamma (PPARγ) is beneficial for central nervous system injury. However its role on optic nerve injury remains unknown. In the present study, we examined the change of PPARγ expression in rat retina following optic nerve injury and investigated the effect of pioglitazone (Pio), a PPARγ agonist, on retinal ganglion cells (RGCs) neuroprotection using a rat optic nerve crush (ONC) model. Our results showed that PPARγ mRNA and protein levels were increased after ONC, and most of PPARγ-immunoreactive cells colocalized with Müller cells. Pio treatment significantly enhanced the number of surviving RGCs and inhibited RGCs apoptosis induced by ONC. However, when PPARγ antagonist GW9662 was used, these neuroprotective effects were abolished. In addition, pio attenuated Müller cell activation after ONC. These results indicate that PPARγ appears to protect RGCs from ONC possibly via the reduction of Müller glial activation. It provides evidence that activation of PPARγ may be a potential alternative treatment for RGCs neuroprotection.  相似文献   

14.
Calretinin is a calcium-binding protein which participates in a variety of functions including calcium buffering and neuronal protection. It also serves as a developmental marker of retinal ganglion cells (RGCs). In order to study the role of calretinin in the development and regeneration of RGCs, we have studied its pattern of expression in the retina at different developmental stages, as well as during optic nerve regeneration by means of immunohistochemistry. During development, calretinin is found for the first time in RGCs when they connect with the optic tectum. Optic nerves from adult zebrafish were crushed and after different survival times, calretinin expression in the retina, optic nerve tract and optic tectum was studied. From the day of crushing to 10 days later, calretinin expression was found to be downregulated within RGCs and their axons, as was also observed during the early developmental stages of RGCs, when they are not committed to a definite cell phenotype. Moreover, 13 days after lesion, when the regenerating axons arrived at the optic tectum, a recovery of calretinin immunoreactivity within the RGCs was observed. These results indicate that calretinin may play an important role during optic nerve regeneration, Thus, the down-regulation of Calretinin during the growth of the RGC axons towards the target during development as well as during their regeneration after injury, indicates that an increase the availability of cytosolic calcium is integral to axon outgrowth thus recapitulating the pattern observed during development.  相似文献   

15.
16.
To determine mechanisms of structural plasticity in adult CNS neurons, we investigated the expression of immediate early genes (IEGs) in the rat retina. Gene products of different IEG families (JUN and FOS proteins) and cAMP-responsive element binding protein (CREBP) were examined by immunohistochemistry under three different paradigms. Normal rats which were not axotomized were compared with axotomized animals, where retinal ganglion cells (RGCs) were axotomized by intraorbital optic nerve cut and retrogradely labeled with fluorogold (FG). Under these circumstances, RGCs show only transient sprouting, followed by continuous retrograde RGC degeneration. In the third group, after the optic nerve lesion, adult rats additionally received a sciatic nerve graft to the transected optic nerve stump. This allows some RGCs to regenerate an axon into the grafted nerve. In both groups, the time course of RGC survival and JUN, CREB, and FOS protein expression was monitored. In normal animals, JUN-Immunoreactivity (JUN-Ir) was not detectable in the retinal ganglion cell layer. JUN-Ir was induced in about 70% of all FG-positive RGCs 5 days after axotomy. The expression of JUN-Ir started to decline 8 days after axotomy. Only a few JUN-Ir-positive RGCs were found after 2 weeks. In transplanted animals, however, the numbers of JUN-Ir-positive RGCs were significantly higher 2 and 3 weeks after transplantation compared to animals that exclusively received axotomy. Furthermore, in grafted rats about 70% of the regenerating RGCs expressed JUN-Ir 2 weeks after grafting as compared to only 38% JUN-positive RGCs among the surviving but not regenerating RGCs. In normal animals CREBP-Ir was constitutively expressed in nearly all cells of the retinal ganglion cell layer. The decline in number of CREBP-Ir-positive cells paralleled the axotmy-induced RGC death. FOS-Ir-positive cells were not found in the ganglion cell layer at any time. These results demonstrate a selective and transient JUN expression of RGCs after axotomy which is sustained during axonal regeneration. This suggests that sciatic nerve grafts are able to regulate the expression of JUN proteins in axotomized RGCs of adult rats. 1994 John Wiley & Sons, Inc.  相似文献   

17.
Hu Y  Park KK  Yang L  Wei X  Yang Q  Cho KS  Thielen P  Lee AH  Cartoni R  Glimcher LH  Chen DF  He Z 《Neuron》2012,73(3):445-452
Loss of retinal ganglion cells (RGCs) accounts for visual function deficits after optic nerve injury, but how axonal insults lead to neuronal death remains elusive. By using an optic nerve crush model that results in the death of the majority of RGCs, we demonstrate that axotomy induces differential activation of distinct pathways of the unfolded protein response in axotomized RGCs. Optic nerve injury provokes a sustained CCAAT/enhancer binding homologous protein (CHOP) upregulation, and deletion of CHOP promotes RGC survival. In contrast, IRE/XBP-1 is only transiently activated, and forced XBP-1 activation dramatically protects RGCs from axon injury-induced death. Importantly, such differential activations of CHOP and XBP-1 and their distinct effects on neuronal cell death are also observed in RGCs with other types of axonal insults, such as vincristine treatment and intraocular pressure elevation, suggesting a new protective strategy for neurodegeneration associated with axonal damage.  相似文献   

18.
Growth/differentiation factor-15 (GDF-15) is a distant member of the transforming growth factor-β superfamily and is ubiquitously expressed in the central nervous system. It is prominently upregulated in cerebral cortical and ischemic lesion paradigms. GDF-15 robustly promotes the survival of lesioned nigrostriatal dopaminergic neurons in vivo; GDF-15-deficient mice exhibit progressive postnatal motor and sensory neuron losses implying essential functions of GDF-15 in neuronal survival. We show that GDF-15 mRNA and protein are, respectively, six-fold and three-fold upregulated in the murine retina at 1 day after optic nerve crush, slightly elevated mRNA levels being maintained until day 28. However, the magnitude and time course of retinal ganglion cell (RGC) death are indistinguishable in knockout and control mice. Selected mRNAs implicated in the regulation of the death vs. survival of RGCs, including ATF3, Bad, Bcl-2 and caspase-8, were similarly regulated in both knockout and control retinae. Immunohistochemistry for tyrosine hydroxylase and choline acetyltransferase revealed no differences in staining patterns in the two genotypes. mRNA and protein levels of galanin, a putative neuroprotective factor and positive regulator of neuron survival and axonal regeneration, were prominently upregulated after crush in knockout retinae at day 3, as compared with control retinae, suggesting that GDF-15 acts as a physiological regulator of galanin. GDF-15 is therefore prominently upregulated in the retina after optic nerve crush but does not directly interfere with the magnitude and temporal progression of RGC death.  相似文献   

19.
Retinal ganglion cells (RGCs) are CNS neurons that output visual information from the retina to the brain, via the optic nerve. The optic nerve can be accessed within the orbit of the eye and completely transected (axotomized), cutting the axons of the entire RGC population. Optic nerve transection is a reproducible model of apoptotic neuronal cell death in the adult CNS 1-4. This model is particularly attractive because the vitreous chamber of the eye acts as a capsule for drug delivery to the retina, permitting experimental manipulations via intraocular injections. The diffusion of chemicals through the vitreous fluid ensures that they act upon the entire RGC population. Moreover, RGCs can be selectively transfected by applying short interfering RNAs (siRNAs), plasmids, or viral vectors to the cut end of the optic nerve 5-7 or injecting vectors into their target, the superior colliculus 8. This allows researchers to study apoptotic mechanisms in the desired neuronal population without confounding effects on other bystander neurons or surrounding glia. An additional benefit is the ease and accuracy with which cell survival can be quantified after injury. The retina is a flat, layered tissue and RGCs are localized in the innermost layer, the ganglion cell layer. The survival of RGCs can be tracked over time by applying a fluorescent tracer (3% Fluorogold) to the cut end of the optic nerve at the time of axotomy, or by injecting the tracer into the superior colliculus (RGC target) one week prior to axotomy. The tracer is retrogradely transported, labeling the entire RGC population. Because the ganglion cell layer is a monolayer (one cell thick), RGC densities can be quantified in flat-mounted tissue, without the need for stereology. Optic nerve transection leads to the apoptotic death of 90% of injured RGCs within 14 days postaxotomy 9-11. RGC apoptosis has a characteristic time-course whereby cell death is delayed 3-4 days postaxotomy, after which the cells rapidly degenerate. This provides a time window for experimental manipulations directed against pathways involved in apoptosis.Download video file.(75M, mov)  相似文献   

20.
Low intensity repetitive Transcranial Magnetic Stimulation (LI-rTMS), a non-invasive form of brain stimulation, has been shown to induce structural and functional brain plasticity, including short distance axonal sprouting. However, the potential for LI-rTMS to promote axonal regeneration following neurotrauma has not been investigated. This study examined the effect of LI-rTMS on retinal ganglion cell (RGC) survival, axon regeneration and levels of BDNF in an optic nerve crush neurotrauma model. Adult C57Bl/6J mice received a unilateral intraorbital optic nerve crush. Mice received 10 minutes of sham (handling control without stimulation) (n=6) or LI-rTMS (n = 8) daily stimulation for 14 days to the operated eye. Immunohistochemistry was used to assess RGC survival (β-3 Tubulin) and axon regeneration across the injury (GAP43). Additionally, BDNF expression was quantified in a separate cohort by ELISA in the retina and optic nerve of injured (optic nerve crush) (sham n = 5, LI-rTMS n = 5) and non-injured mice (sham n = 5, LI-rTMS n = 5) that received daily stimulation as above for 7 days. Following 14 days of LI-rTMS there was no significant difference in mean RGC survival between sham and treated animals (p>0.05). Also, neither sham nor LI-rTMS animals showed GAP43 positive labelling in the optic nerve, indicating that regeneration did not occur. At 1 week, there was no significant difference in BDNF levels in the retina or optic nerves between sham and LI-rTMS in injured or non-injured mice (p>0.05). Although LI-rTMS has been shown to induce structural and molecular plasticity in the visual system and cerebellum, our results suggest LI-rTMS does not induce neuroprotection or regeneration following a complete optic nerve crush. These results help define the therapeutic capacity and limitations of LI-rTMS in the treatment of neurotrauma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号