首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phospholipase C-gamma 1 (PLC gamma 1) plays an important role in the signal transduction pathway by producing second messengers. However, the activation mechanism of PLC gamma 1 and the role of the phosphatidylinositol pathway for interleukin 2 (IL-2) production in T lymphocytes remain to be determined. To analyze the functional role of this pathway in T cells, we expressed an epidermal growth factor receptor (EGF) or platelet-derived growth factor (PDGF) receptor (EGF-R or PDGF-R), both of which are known to directly activate PLC gamma 1 in fibroblasts, into a murine T-cell hybridoma. Both receptors were expressed on the cell surface and caused tyrosine phosphorylation of multiple substrates, including the receptor itself, upon ligand binding. While EGF stimulation did not either cause phosphorylation of PLC gamma 1 or induce Ca2+ mobilization in the EGF-R transfectant in this system, PDGF treatment induced tyrosine phosphorylation of PLC gamma 1 and Ca2+ mobilization in the PDGF-R transfectant. Stimulation through PDGF-R enhanced IL-2 production upon antigen stimulation of the transfectants, although PDGF treatment alone did not induce IL-2 production. These results suggest that activation of the phosphatidylinositol pathway affects the downstream pathway to IL-2 production but is not sufficient to produce IL-2 and that cooperation with signals from tyrosine kinase cascades is required for IL-2 production.  相似文献   

2.
Cross-linking the antigen receptor on B cells results in a rapid increase in protein tyrosine kinase activity as detected by increased phosphorylation on tyrosine residues of multiple proteins. Although the identity of most of this substrates remains unknown, some have been proposed. One possible substrate of the antigen receptor-associated kinase is phospholipase C (PLC). Since multiple isoforms of PLC have been identified, we have studied which isoforms are targets of the antigen receptor. PLC-gamma 1 and PLC-gamma 2 but not PLC-beta 1 or PLC-delta 1 were detected in human B cells. Immunoprecipitation with antibodies against PLC-gamma 1 or PLC-gamma 2 and subsequent Western blotting with anti-phosphotyrosine antibodies revealed that both PLC-gamma 1 and PLC-gamma 2 are tyrosine phosphorylated in stimulated but not in resting B cells. This was confirmed by experiments whereby B cell lysates were immunoprecipitated with anti-phosphotyrosine antibody and subsequently blotted with antibodies against PLC-gamma 1 or PLC-gamma 2. Further, the specific protein tyrosine kinase inhibitors, tyrphostins, which block phospholipase-C activation and proliferation of B cells also inhibited tyrosine phosphorylation on both PLC-gamma 1 and PLC-gamma 2. We conclude that both isoforms PLC-gamma 1 and PLC-gamma 2 are targets of the antigen receptor-associated protein tyrosine kinase.  相似文献   

3.
Upon binding to its cell surface receptor, platelet-derived growth factor (PDGF) causes the tyrosine phosphorylation of phospholipase C-gamma 1 (PLC-gamma 1) and stimulates the production of diacylglycerol and inositol 1,4,5-triphosphate. We showed that following stimulation by PDGF, rat-2 cells overexpressing PLC-gamma 1 display an increase in the levels of both tyrosine-phosphorylated PLC-gamma 1 and inositol phosphates compared with the parental rat-2 cells. This increased responsiveness to PDGF is a direct effect of PLC-gamma 1 overexpression, as a cell line expressing similar levels of an enzymatically inactive point mutant of PLC-gamma 1, PLC-gamma 1 335Q, did not show elevated inositol phosphate production in response to PDGF. Hematopoietic cells express PLC-gamma 2, a PLC isoform that is closely related to PLC-gamma 1. When rat-2 cells overexpressing PLC-gamma 2 were treated with PDGF, an increase in both the tyrosine phosphorylation and the in vivo activity of PLC-gamma 2 was observed. Aluminum fluoride (AIF4-), a universal activator of PLC linked to G-proteins, did not produce an increase in the levels of inositol phosphates in either of the overexpressing cell lines compared with parental rat-2 cells, demonstrating that PLC-gamma isoforms respond specifically to a receptor with tyrosine kinase activity.  相似文献   

4.
Autophosphorylated growth factor receptors provide binding sites for the src homology 2 domains of intracellular signaling molecules. In response to epidermal growth factor (EGF), the activated EGF receptor binds to a complex containing the signaling protein GRB2 and the Ras guanine nucleotide-releasing factor Sos, leading to activation of the Ras signaling pathway. We have investigated whether the platelet-derived growth factor (PDGF) receptor binds GRB2-Sos. In contrast with the EGF receptor, the GRB2 does not bind to the PDGF receptor directly. Instead, PDGF stimulation induces the formation of a complex containing GRB2; 70-, 80-, and 110-kDa tyrosine-phosphorylated proteins; and the PDGF receptor. Moreover, GRB2 binds directly to the 70-kDa protein but not to the PDGF receptor. Using a panel of PDGF beta-receptor mutants with altered tyrosine phosphorylation sites, we identified Tyr-1009 in the PDGF receptor as required for GRB2 binding. Binding is inhibited by a phosphopeptide containing a YXNX motif. The protein tyrosine phosphatase Syp/PTP1D/SHPTP2/PTP2C is approximately 70 kDa, binds to the PDGF receptor via Tyr-1009, and contains several YXNX sequences. We found that the 70-kDa protein that binds to the PDGF receptor and to GRB2 comigrates with Syp and is recognized by anti-Syp antibodies. Furthermore, both GRB2 and Sos coimmunoprecipitate with Syp from lysates of PDGF-stimulated cells, and GRB2 binds directly to tyrosine-phosphorylated Syp in vitro. These results indicate that GRB2 interacts with different growth factor receptors by different mechanisms and the cytoplasmic phosphotyrosine phosphatase Syp acts as an adapter between the PDGF receptor and the GRB2-Sos complex.  相似文献   

5.
The beta receptor for platelet-derived growth factor (beta PDGFR) is activated by binding of PDGF and undergoes phosphorylation at multiple tyrosine residues. The tyrosine-phosphorylated receptor associates with numerous SH2-domain-containing proteins which include phospholipase C-gamma 1 (PLC gamma), the GTPase-activating protein of Ras (GAP), the p85 subunit of phosphatidylinositol 3 kinase (PI3K), the phosphotyrosine phosphatase Syp, and several other proteins. Our previous studies indicated that PI3K and PLC gamma were required for relay of the mitogenic signal of beta PDGFR, whereas GAP and Syp did not appear to be required for this response. In this study, we further investigated the role of GAP and Syp in mitogenic signaling by beta PDGFR. Focusing on the PLC gamma-dependent branch of beta PDGFR signaling, we constructed a series of mutant beta PDGFRs that contained the binding sites for pairs of the receptor-associated proteins: PLC gamma and PI3K, PLC gamma and GAP, or PLC gamma and Syp. Characterization of these mutants showed that while all receptors were catalytically active and bound similar amounts of PLC gamma, they differed dramatically in their ability to initiate DNA synthesis. This signaling deficiency related to an inability to efficiently tyrosine phosphorylate and activate PLC gamma. Surprisingly, the crippled receptor was the one that recruited PLC gamma and GAP. Thus, GAP functions to suppress signal relay by the beta PDGFR, and it does so by silencing PLC gamma. These findings demonstrate that the biological response to PDGF depends not only on the ability of the beta PDGFR to recruit signal relay enzymes but also on the blend of these receptor-associated proteins.  相似文献   

6.
The cellular actions of nerve growth factor (NGF) involve changes in protein phosphorylation, initiated by the binding and subsequent activation of its tyrosine kinase receptor, the trk protooncogene (pp140c-trk). Upon exposure to NGF, a 38-kDa tyrosine-phosphorylated protein (pp38) is identified in both PC-12 pheochromocytoma cells and NIH3T3 cells transfected with the full-length human pp140c-trk cDNA (3T3-c-trk) that is specifically coimmunoprecipitated with pp140c-trk or phosphatidylinositol-phospholipase C (PLC)-gamma 1. In both PC-12 and 3T3-c-trk cells, NGF rapidly stimulates the association of pp140c-trk and pp38 with a fusion protein containing the src homology (SH) domains of PLC gamma 1. This phosphorylation and subsequent association are specific for NGF, since epidermal growth factor, platelet-derived growth factor, and insulin do not stimulate the tyrosine phosphorylation of these proteins or their association with the PLC gamma 1 SH domains, although the receptors for these growth factors do undergo tyrosine phosphorylation and association with the PLC-gamma 1 fusion protein under these conditions. Furthermore, the NGF-dependent pp38-SH binding is specific for the SH2 domains of PLC-gamma 1, since the phosphoprotein does not bind to fusion proteins containing SH domains of ras GTPase-activating protein or the p85 subunit of phosphatidylinositol 3 kinase. Both amino- and carboxyl-terminal SH2 domains of PLC-gamma 1 are necessary for the association of pp38 with PLC-gamma 1, although each SH2 domain is sufficient for the association of pp140c-trk with PLC-gamma 1. In both PC-12 and 3T3-c-trk cells, the phosphorylation and association of pp38 with PLC gamma 1 is rapid, occurring maximally at 1 min and declining thereafter. Moreover, this effect of NGF is dose-dependent over a physiological concentration of the growth factor. The specificity and rapidity of pp38 phosphorylation and its association with PLC-gamma 1 suggest that it may be an important component in signal transduction for NGF.  相似文献   

7.
We demonstrated previously tyrosine phosphorylation-dependent modulation of phospholipase C-gamma 1 (PLC-gamma 1) catalytic activity (Nishibe, S., Wahl, M. I., Hernandez-Sotomayor, S. M. T., Tonks, N. K., Rhee, S. G., and Carpenter, G. (1990) Science 250, 1253-1256). The increase in PLC-gamma 1 catalytic activity in A-431 cells occurs rapidly, with maximal activation 5 min after epidermal growth factor (EGF) stimulation. Certain other growth factors (fibroblast growth factor, platelet-derived growth factor) also stimulate PLC-gamma 1 catalytic activity, whereas insulin does not. A similar increase in PLC-gamma 1 specific activity (2-3-fold) was observed in both soluble (cytosol) and particulate (membrane) preparations from EGF-treated cells. Tyrosine-phosphorylated PLC-gamma 1 was detected in both cytosol and membrane fractions in lysates from EGF-treated A-431 cells, but the proportion of tyrosine-phosphorylated PLC-gamma 1 was higher in the cytosol (approximately 50%) than in the membrane (approximately 20%). Because a micellar concentration of the non-ionic detergent Triton X-100 allows detection of the tyrosine phosphorylation-dependent increase in PLC-gamma 1 catalytic activity in this assay, we evaluated the kinetic properties of PLC-gamma 1, immunoprecipitated from cytosol of control or EGF-treated cells, using substrate, phosphatidylinositol 4,5-bisphosphate (PtdIns 4,5-P2), solubilized in Triton X-100 at various molar ratios. The behavior of the control enzyme differed from the EGF-activated enzyme with respect to both Ks and Km. The control enzyme has a 7.5-fold higher Ks value than the activated enzyme (1.5 mM as compared with 0.22 mM). Activation by EGF is also a positive allosteric modifier of PLC-gamma 1-catalyzed PtdIns 4,5-P2 hydrolysis, i.e. the activated enzyme displayed apparent Michalis-Menton kinetics, with a Km of 0.6 mol fraction PtdIns 4,5-P2, whereas the control enzyme displayed sigmoidal kinetics with respect to PtdIns 4,5-P2 hydrolysis. At low substrate mol fractions (e.g. 0.07), the reaction velocity of the control enzyme was 4-fold lower than the activated enzyme. However, at a high substrate mol fraction (e.g. 0.33), the estimated maximal reaction velocities (Vmax) for both forms of PLC-gamma 1 were equivalent. PLC-gamma 1 activity from both control and EGF-treated cells was stimulated by increasing nanomolar Ca2+ concentrations. Although the catalytic activity of PLC-gamma 1 from EGF-treated cells was greater than control PLC-gamma 1 at every Ca2+ concentration tested, the relative stimulation of activity was markedly greater at Ca2+ concentrations above approximately 300 nM.  相似文献   

8.
9.
The two SH2 (Src homology domain 2) domains present in phospholipase C-gamma1 (PLC-gamma1) were assayed for their capacities to recognize the five autophosphorylation sites in the epidermal growth factor receptor. Plasmon resonance and immunological techniques were employed to measure interactions between SH2 fusion proteins and phosphotyrosine-containing peptides. The N-SH2 domain recognized peptides in the order of pY1173 > pY992 > pY1068 > pY1148 > pY1086, while the C-SH2 domain recognized peptides in the order of pY992 > pY1068 > pY1148 > pY1086 and pY1173. The major autophosphorylation site, pY1173, was recognized only by the N-SH2 domain. Contributions of the N-SH2 and C-SH2 domains to the association of the intact PLC-gamma1 molecule with the activated epidermal growth factor (EGF) receptor were assessed in vivo. Loss of function mutants of each SH2 domain were produced in a full-length epitope-tagged PLC-gamma1. After expression of the mutants, cells were treated with EGF and association of exogenous PLC-gamma1 with EGF receptors was measured. In this context the N-SH2 is the primary contributor to PLC-gamma1 association with the EGF receptor. The combined results suggest an association mechanism involving the N-SH2 domain and the pY1173 autophosphorylation site as a primary event and the C-SH2 domain and the pY992 autophosphorylation site as a secondary event.  相似文献   

10.
Platelet activation by collagen is mediated by the sequential tyrosine phosphorylation of the Fc receptor gamma-chain (FcR gamma-chain), which is part of the collagen receptor glycoprotein VI, the tyrosine kinase Syk and phospholipase C-gamma2 (PLC-gamma2). In this study tyrosine-phosphorylated proteins that associate with PLC-gamma2 after stimulation by a collagen-related peptide (CRP) were characterized using glutathione S-transferase fusion proteins of PLC-gamma2 Src homology (SH) domains and by immunoprecipitation of endogenous PLC-gamma2. The majority of the tyrosine-phosphorylated proteins that associate with PLC-gamma2 bind to its C-terminal SH2 domain. These were found to include PLC-gamma2, Syk, SH2-domain-containing leucocyte protein of 76 kDa (SLP-76), Lyn, linker for activation of T cells (LAT) and the FcR gamma-chain. Direct association was detected between PLC-gamma2 and SLP-76, and between PLC-gamma2 and LAT upon CRP stimulation of platelets by far-Western blotting. FcR gamma-chain and Lyn were found to co-immunoprecipitate with PLC-gamma2 as well as with unidentified 110-kDa and 75-kDa phosphoproteins. The absence of an in vivo association between Syk and PLC-gamma2 in platelets is in contrast with that for PLC-gamma1 and Syk in B cells. The in vivo function of PLC-gamma2 SH2 domains was examined through measurement of Ca2+ increases in mouse megakaryocytes that had been microinjected with recombinant proteins. This revealed that the C-terminal SH2 domain is involved in the regulation of PLC-gamma2. These data indicate that the C-terminal SH2 domain of PLC-gamma2 is important for PLC-gamma2 regulation through possible interactions with SLP-76, Syk, Lyn, LAT and the FcR gamma-chain.  相似文献   

11.
We have recently shown that phospholipase C-gamma (PLC-gamma) is activated by tau, a neuronal cell-specific microtubule-associated protein, in the presence of arachidonic acid. We now report that non-neuronal tissues also contain a protein that can activate PLC-gamma in the presence of arachidonic acid. Purification of this activator from bovine lung cytosol yielded several proteins with apparent molecular sizes of 70-130 kDa. They were identified as fragments derived from an unusually large protein (approximately 700 kDa) named AHNAK, which comprises about 30 repeated motifs each 128 amino acids in length. Two AHNAK fragments containing one and four of the repeated motifs, respectively, were expressed as glutathione S-transferase fusion proteins. Both recombinant proteins activated PLC-gamma1 at nanomolar concentrations in the presence of arachidonic acid, suggesting that an intact AHNAK molecule contains multiple sites for PLC-gamma activation. The role of arachidonic acid was to promote a physical interaction between AHNAK and PLC-gamma1, and the activation by AHNAK and arachidonic acid was mainly attributable to reduction in the enzyme's apparent Km toward the substrate phosphatidylinositol 4,5-bisphosphate. Our results suggest that arachidonic acid liberated by phospholipase A2 can act as an additional trigger for PLC-gamma activation, constituting an alternative mechanism that is independent of tyrosine phosphorylation.  相似文献   

12.
Insulin drives the formation of a complex between tyrosine-phosphorylated IRS-1 and SH2-containing proteins. The SH2-containing protein Grb2 also possesses adjacent SH3 domains, which bind the Ras guanine nucleotide exchange factor Sos. In this report, we examined the involvement of another SH3 binding protein, dynamin, in insulin signal transduction. SH3 domains of Grb2 as GST fusion proteins bound dynamin from lysates of CHO cells expressing wild-type insulin receptor (IR) (CHO-IR cells) in a cell-free system (in vitro). Immunoprecipitation studies using specific antibodies against Grb2 revealed that Grb2 was co-immunoprecipitated with dynamin from unstimulated CHO-IR cells. After insulin treatment of CHO-IR cells, anti-dynamin antibodies co-immunoprecipitated the IR beta-subunit and IRS-1, as tyrosine-phosphorylated proteins and PI 3-kinase activity. However, purified rat brain dynamin did not bind directly to either the IR, IRS-1 or the p85 subunit of PI 3-kinase in vitro. Together, these results suggest that in CHO-IR cells, insulin stimulates the binding of dynamin to tyrosine-phosphorylated IRS-1 via Grb2 and that IRS-1 also associates with PI 3-kinase in response to insulin. This complex formation was reconstituted in vitro using recombinant baculovirus-expressed IRS-1, GST-Grb2 fusion proteins and dynamin peptides containing proline-rich sequences. Furthermore, dynamin GTPase activity was found to be stimulated when an IRS-1-derived phosphopeptide, containing the Grb2 binding site, was added to the dynamin-Grb2 complex in vitro.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
In order to examine physiological function of the SH2/SH3 region of phospholipase C-gamma (Z region), we independently expressed cDNA fragments corresponding to the SH2/SH3 region of PLC-gamma 1 and PLC-gamma 2 in Escherichia coli. Although these recombinant proteins were recovered in particulate fractions by centrifugation of cell extracts, they were successfully solubilized by guanidium hydrochloride and then purified to homogeneity by heparin column chromatography. The molecular mass of the proteins was 45 kDa (derived from PLC-gamma 1 and designated as rP45Z) and 38 kDa (derived from PLC-gamma 2 and designated as rP38Z), which was consistent with that as expected from inserted cDNA. We determined the effect of purified rP45Z or rP38Z on PIP2-hydrolyzing activity of either PLC-gamma 1 or PLC-gamma 2 and found that these proteins strongly suppressed the rate of PLC-dependent PIP2-hydrolysis. Furthermore, both rP45Z and rP38Z were phosphorylated at tyrosine residue by epidermal growth factor receptors and their inhibitory effect on PIP2-hydrolysis was significantly decreased by this phosphorylation. These results indicate that the Z region might be involved in autoregulation of PLC-gamma as intrinsic negative regulator.  相似文献   

14.
A cDNA clone encoding a novel, widely expressed protein (called growth factor receptor-bound protein 2 or GRB2) containing one src homology 2 (SH2) domain and two SH3 domains was isolated. Immunoblotting experiments indicate that GRB2 associates with tyrosine-phosphorylated epidermal growth factor receptors (EGFRs) and platelet-derived growth factor receptors (PDGFRs) via its SH2 domain. Interestingly, GRB2 exhibits striking structural and functional homology to the C. elegans protein sem-5. It has been shown that sem-5 and two other genes called let-23 (EGFR like) and let-60 (ras like) lie along the same signal transduction pathway controlling C. elegans vulval induction. To examine whether GRB2 is also a component of ras signaling in mammalian cells, microinjection studies were performed. While injection of GRB2 or H-ras proteins alone into quiescent rat fibroblasts did not have mitogenic effect, microinjection of GRB2 together with H-ras protein stimulated DNA synthesis. These results suggest that GRB2/sem-5 plays a crucial role in a highly conserved mechanism for growth factor control of ras signaling.  相似文献   

15.
We have previously shown that chronic ethanol consumption inhibits liver regeneration by impairing EGF receptor (EGFR)-operated phospholipase C-gamma1 (PLC-gamma1) activation and resultant intracellular Ca2+ signalling. Activation of PLC-gamma1 by EGFR requires the EGFR to bind to PLC-gamma1 after its translocation from cytosol to cytoskeleton. In order to understand the mechanism by which ethanol impairs PLC-gamma1 activation, we examined the effect of alcohol on interactions between EGFR and PLC-gamma1. In cultured hepatocytes from control rats, EGF rapidly induced tyrosine phosphorylation of both the EGFR and of PLC-gamma1. EGF also stimulated PLC-gamma1 translocation from cytosol to a cytoskeletal compartment where PLC-gamma1 interacted with EGFR. In hepatocytes from rats fed ethanol for 16 weeks, the above reactions were substantially inhibited. Tyrphostin AG1478, an EGFR-specific tyrosine kinase inhibitor, mimicked the effects of chronic ethanol on EGFR phosphorylation, PLC-gamma1 translocation and interactions between EGFR and PLC-gamma1 in the cytoskeleton. Further, tyrphostin AG1478 also inhibited EGF-induced DNA synthesis. These results indicate that ethanol impairs EGFR-operated [Ca2+]i signaling by disrupting the interactions between EGFR and PLC-gamma1.  相似文献   

16.
We produced an IgM mAb termed 4.9 against an EBV-containing lymphoblastoid cell line, termed 3B6. This mAb reacted with both various B and T cell lines such as HSB2 cells, with an NK-like cell line YT-C3 cells, and with human fibroblast MCR-5 cells. It also reacted with normal resting peripheral B lymphocytes, monocytes, and anti-CD2- or anti-CD3-activated T lymphocytes. The 4.9 mAb immunoprecipitated two bands estimated to be of Mr 68 and 75 kDa from iodinated 3B6 cells. The 4.9 mAb inhibited the proliferation of peripheral T lymphocytes induced either by anti-CD3 mAb or anti-CD2 mAb. The 4.9 mAb inhibited also the proliferation of murine thymocytes both in the presence of PHA and IL-1 and the proliferation of human fibroblasts in the presence of IL-1. Radiolabeled IL-1 binding on 3B6 cells revealed two types of IL-1 binding sites with high and low affinity for IL-1 (300 sites/cell with a Kd of 6 x 10(-11)M and 6000 sites/cell with a Kd of 3 x 10(-9)M). On both 3B6 and YT-C3 cells, mAb 4.9 inhibited specifically the binding of 125I-labeled rIL-1, alpha or beta, whereas the irrelevant IgM mAb did not. Conversely, rIL-1, alpha or beta, could inhibit specifically the binding of radioiodinated 4.9 mAb to 3B6 or YT-C3 cells, whereas rIL-2, rIFN, or the irrelevant IgM mAb were ineffective. 125I-4.9 mAb bound 3B6 cells with an association constant (Ka) of 2 x 10(8)/M and demonstrated 6000 binding sites/cell. We thus conclude that mAb 4.9 recognizes a protein complex (68 to 75 kDa) closely associated with the IL-1R.  相似文献   

17.
To explore the mechanism(s) by which phospholipase C (PLC)-gamma 2 participates in B cell Ag receptor (BCR) signaling, we have studied the function of PLC-gamma 2 mutants in B cells deficient in PLC-gamma 2. Mutation of the N-terminal Src homology 2 domain [SH2(N)] resulted in the complete loss of inositol 1,4, 5-trisphosphate generation upon BCR engagement. A possible explanation for the SH2(N) requirement was provided by findings that this mutation abrogates the association of PLC-gamma 2 with an adaptor protein BLNK. Moreover, expression of a membrane-associated form (CD16/PLC-gamma 2) with SH2(N) mutation required coligation of BCR and CD16 for inositol 1,4,5-trisphosphate generation. Together, our results suggest a central role for the SH2(N) domain in directing PLC-gamma 2 into the close proximity of BCR signaling complex by its association with BLNK, whereby PLC-gamma 2 becomes tyrosine phosphorylated and thereby activated.  相似文献   

18.
Binding of macrophage colony stimulating factor (M-CSF) to its receptor (Fms) induces dimerization and activation of the tyrosine kinase domain of the receptor, resulting in autophosphorylation of cytoplasmic tyrosine residues used as docking sites for SH2-containing signaling proteins that relay growth and development signals. To determine whether a distinct signaling pathway is responsible for the Fms differentiation signal versus the growth signal, we sought new molecules involved in Fms signaling by performing a two-hybrid screen in yeast using the autophosphorylated cytoplasmic domain of the wild-type Fms receptor as bait. Clones containing SH2 domains of phospholipase C-gamma2 (PLC-gamma2) were frequently isolated and shown to interact with phosphorylated Tyr721 of the Fms receptor, which is also the binding site of the p85 subunit of phosphatidylinositol 3-kinase (PI3-kinase). At variance with previous reports, M-CSF induced rapid and transient tyrosine phosphorylation of PLC-gamma2 in myeloid FDC-P1 cells and this activation required the activity of the PI3-kinase pathway. The Fms Y721F mutation strongly decreased this activation. Moreover, the Fms Y807F mutation decreased both binding and phosphorylation of PLC-gamma2 but not that of p85. Since the Fms Y807F mutation abrogates the differentiation signal when expressed in FDC-P1 cells and since this phenotype could be reproduced by a specific inhibitor of PLC-gamma, we propose that a balance between the activities of PLC-gamma2 and PI3-kinase in response to M-CSF is required for cell differentiation.  相似文献   

19.
The erbB-2 gene product, gp185erbB-2, unlike the structurally related epidermal growth factor (EGF) receptor (EGFR), exhibits constitutive kinase and transforming activity. We used a chimeric EGFR/erbB-2 expression vector to compare the mitogenic signaling pathway of the erbB-2 kinase with that of the EGFR, at similar levels of expression, in response to EGF stimulation. The EGFR/erbB-2 chimera was significantly more active in inducing DNA synthesis than the EGFR when either was expressed in NIH 3T3 cells. Analysis of biochemical pathways implicated in signal transduction by growth factor receptors indicated that both phospholipase C type gamma (PLC-gamma) and the p21ras GTPase-activating protein (GAP) are substrates for the erbB-2 kinase in NIH 3T3 fibroblasts. However, under conditions in which activation of the erbB-2 kinase induced DNA synthesis at least fivefold more efficiently than the EGFR, the levels of erbB-2- or EGFR-induced tyrosine phosphorylation of PLC-gamma and GAP were comparable. In addition, the stoichiometry of tyrosine phosphorylation of these putative substrates by erbB-2 appeared to be at least an order of magnitude lower than that induced by platelet-derived growth factor receptors at comparable levels of mitogenic potency. Thus, our results indicate that differences in tyrosine phosphorylation of PLC-gamma and GAP do not account for the differences in mitogenic activity of the erbB-2 kinase compared with either the EGFR or platelet-derived growth factor receptor in NIH 3T3 fibroblasts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号