首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dvl(Dishevelled)是Wnt信号通路传递的核心分子,无论内源的还是过表达的Dvl在细胞体内都能因自聚而形成puncta.研究已报道,Dvl主要通过其DIX结构域上的三个作用区域来介导自聚:SiteⅠ、SiteⅡ和SiteⅢ,其中SiteⅠ和SiteⅡ还参与了Dvl-DIX与Ccd1-DIX的异聚.为了进一步得到Dvl2-DIX上SiteⅠ和SiteⅡ的直接三维结构,本研究设计了一系列的SiteⅢ突变体.通过体内和体外实验进一步证实了这些突变氨基酸确实参与了Dvl2-DIX的自聚,然后对这些SiteⅢ突变体蛋白成功地进行了纯化和结晶,最终得到3.1Å的Dvl2-DIX(G65A)晶体数据.分析表明该晶体存在片层位移现象,需对数据进行一定修正后才能进行后续的结构分析.体外实验又证实了这些突变氨基酸不影响Dvl2-DIX与Ccd1-DIX的异聚,为了进一步研究Dvl2-DIX与Ccd1-DIX相互作用,我们对这些SiteⅢ突变体蛋白与Ccd1-DIX进行共结晶.最终获得Dvl2-DIX(G65A)与Ccd1-DIX复合物的初晶,利于进一步的晶体优化及数据收集.  相似文献   

2.
3.
4.
Wnt glycoproteins play essential roles in the development of metazoan organisms. Many Wnt proteins, such as Wnt1, activate the well-conserved canonical Wnt signaling pathway, which results in accumulation of beta-catenin in the cytosol and nucleus. Other Wnts, such as Wnt5a, activate signaling mechanisms which do not involve beta-catenin and are less well characterized. Dishevelled (Dvl) is a key component of Wnt/beta-catenin signaling and becomes phosphorylated upon activation of this pathway. In addition to Wnt1, we show that several Wnt proteins, including Wnt5a, trigger phosphorylation of mammalian Dvl proteins and that this occurs within 20 to 30 min. Unlike the effects of Wnt1, phosphorylation of Dvl in response to Wnt5a is not concomitant with beta-catenin stabilization, indicating that Dvl phosphorylation is not sufficient to activate canonical Wnt/beta-catenin signaling. Moreover, neither Dickkopf1, which inhibits Wnt/beta-catenin signaling by binding the Wnt coreceptors LRP5 and -6, nor dominant-negative LRP5/6 constructs could block Wnt-mediated Dvl phosphorylation. We conclude that Wnt-induced phosphorylation of Dvl is independent of LRP5/6 receptors and that canonical Wnts can elicit both LRP-dependent (to beta-catenin) and LRP-independent (to Dvl) signals. Our data also present Dvl phosphorylation as a general biochemical assay for Wnt protein function, including those Wnts that do not activate the Wnt/beta-catenin pathway.  相似文献   

5.
Dishevelled (Dvl) proteins are intracellular effectors of Wnt signaling that have essential roles in both canonical and noncanonical Wnt pathways. It has long been known that Wnts stimulate Dvl phosphorylation, but relatively little is known about its functional significance. We have previously reported that both Wnt3a and Wnt5a induce Dvl2 phosphorylation that is associated with an electrophoretic mobility shift and loss of recognition by monoclonal antibody 10B5. In the present study, we mapped the 10B5 epitope to a 16-amino acid segment of human Dvl2 (residues 594–609) that contains four Ser/Thr residues. Alanine substitution of these residues (P4m) eliminated the mobility shift induced by either Wnt3a or Wnt5a. The Dvl2 P4m mutant showed a modest increase in canonical Wnt/β-catenin signaling activity relative to wild type. Consistent with this finding, Dvl2 4Pm preferentially localized to cytoplasmic puncta. In contrast to wild-type Dvl2, however, the P4m mutant was unable to rescue Wnt3a-dependent neurite outgrowth in TC-32 cells following suppression of endogenous Dvl2/3. Earlier work has implicated casein kinase 1δ/ϵ as responsible for the Dvl mobility shift, and a CK1δ in vitro kinase assay confirmed that Ser594, Thr595, and Ser597 of Dvl2 are CK1 targets. Alanine substitution of these three residues was sufficient to abrogate the Wnt-dependent mobility shift. Thus, we have identified a cluster of Ser/Thr residues in the C-terminal domain of Dvl2 that are Wnt-induced phosphorylation (WIP) sites. Our results indicate that phosphorylation at the WIP sites reduces Dvl accumulation in puncta and attenuates β-catenin signaling, whereas it enables noncanonical signaling that is required for neurite outgrowth.  相似文献   

6.
Wnt signaling controls a variety of developmental and homeostatic events. As a key component of Wnt signaling, Dishevelled (Dvl/Dsh) protein relays Wnt signals from receptors to downstream effectors. In the canonical Wnt pathway that depends on the nuclear translocation of β-catenin, Dvl is recruited by the receptor Frizzled and prevents the constitutive destruction of cytosolic β-catenin. In the non-canonical Wnt pathways such as Wnt-Frizzled/PCP (planar cell polarity) signaling, Dvl signals via the Daam1-RhoA axis and the Rac1 axis. In addition, Dvl plays important roles in Wnt-GSK3β-microtubule signaling, Wnt-calcium signaling, Wnt-RYK signaling, Wnt-atypical PKC signaling, etc. Dvl also functions to mediate receptor endocytosis. To fulfill its multifaceted functions, it is not surprising that Dvl associates with various kinds of proteins. Its activity is also modulated dynamically by phosphorylation, ubiquitination and degradation. In this review, we summarize the current understanding of Dvl functions in Wnt signal transduction and its biological functions in mouse development, and also discuss the molecular mechanisms of its actions.  相似文献   

7.
The Daam family of proteins consists of Daam1 and Daam2. Although Daam1 participates in noncanonical Wnt signaling during gastrulation, Daam2 function remains completely uncharacterized. Here we describe the role of Daam2 in canonical Wnt signal transduction during spinal cord development. Loss-of-function studies revealed that Daam2 is required for dorsal progenitor identities and canonical Wnt signaling. These phenotypes are rescued by β-catenin, demonstrating that Daam2 functions in dorsal patterning through the canonical Wnt pathway. Complementary gain-of-function studies demonstrate that Daam2 amplifies Wnt signaling by potentiating ligand activation. Biochemical examination found that Daam2 association with Dvl3 is required for Wnt activity and dorsal patterning. Moreover, Daam2 stabilizes Dvl3/Axin2 binding, resulting in enhanced intracellular assembly of Dvl3/Axin2 complexes. These studies demonstrate that Daam2 modulates the formation of Wnt receptor complexes, revealing new insight into the functional diversity of Daam proteins and how canonical Wnt signaling contributes to pattern formation in the developing spinal cord.  相似文献   

8.
9.
10.
11.
12.
Wnt signaling pathways are involved in embryonic development and adult tissue maintenance and have been implicated in tumorigenesis. Dishevelled (Dvl/Dsh) protein is one of key components in Wnt signaling and plays essential roles in regulating these pathways through protein-protein interactions. Identifying and characterizing Dvl-binding proteins are key steps toward understanding biological functions. Given that the tripeptide VWV (Val-Trp-Val) binds to the PDZ domain of Dvl, we searched publically available databases to identify proteins containing the VWV motif at the C terminus that could be novel Dvl-binding partners. On the basis of the cellular localization and expression patterns of the candidates, we selected for further study the TMEM88 (target protein transmembrane 88), a two-transmembrane-type protein. The interaction between the PDZ domain of Dvl and the C-terminal tail of TMEM88 was confirmed by using NMR and fluorescence spectroscopy. Furthermore, in HEK293 cells, TMEM88 attenuated the Wnt/β-catenin signaling induced by Wnt-1 ligand in a dose-dependent manner, and TMEM88 knockdown by RNAi increased Wnt activity. In Xenopus, TMEM88 protein is sublocalized at the cell membrane and inhibits Wnt signaling induced by Xdsh but not β-catenin. In addition, TMEM88 protein inhibits the formation of a secondary axis normally induced by Xdsh. The findings suggest that TMEM88 plays a role in regulating Wnt signaling. Indeed, analysis of microarray data revealed that the expression of the Tmem88 gene was strongly correlated with that of Wnt signaling-related genes in embryonic mouse intestines. Together, we propose that TMEM88 associates with Dvl proteins and regulates Wnt signaling in a context-dependent manner.  相似文献   

13.
Axin and Dishevelled are two downstream components of the Wnt signaling pathway. Dishevelled is a positive regulator and is placed genetically between Frizzled and glycogen synthase kinase-3beta, whereas Axin is a negative regulator that acts downstream of glycogen synthase kinase-3beta. It is intriguing that they each can activate the c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) when expressed in the cell. We set out to address if Axin and Dishevelled are functionally cooperative, antagonistic, or entirely independent, in terms of the JNK activation event. We found that in contrast to Axin, Dvl2 activation of JNK does not require MEKK1, and complex formation between Dvl2 and Axin is independent of Axin-MEKK1 binding. Furthermore, Dvl2-DIX and Dvl2-DeltaDEP proteins deficient for JNK activation can attenuate Axin-activated JNK activity by disrupting Axin dimerization. However, Axin-DeltaMID, Axin-DeltaC, and Axin-CT proteins deficient for JNK activation cannot interfere with Dvl2-activated JNK activity. These results indicate that unlike the strict requirement of homodimerization for Axin function, Dvl2 can activate JNK either as a monomer or homodimer/heterodimer. We suggest that there may be a switch mechanism based on dimerization combinations, that commands cells to activate Wnt signaling or JNK activation, and to turn on specific activators of JNK in response to various environmental cues.  相似文献   

14.
The cytoplasmic protein Dishevelled (Dvl) and the associated membrane-bound receptor Frizzled (Fz) are essential in canonical and noncanonical Wnt signaling pathways. However, the molecular mechanisms underlying this signaling are not well understood. By using NMR spectroscopy, we determined that an internal sequence of Fz binds to the conventional peptide binding site in the PDZ domain of Dvl; this type of site typically binds to C-terminal binding motifs. The C-terminal region of the Dvl inhibitor Dapper (Dpr) and Frodo bound to the same site. In Xenopus, Dvl binding peptides of Fz and Dpr/Frodo inhibited canonical Wnt signaling and blocked Wnt-induced secondary axis formation in a dose-dependent manner, but did not block noncanonical Wnt signaling mediated by the DEP domain. Together, our results identify a missing molecular connection within the Wnt pathway. Differences in the binding affinity of the Dvl PDZ domain and its binding partners may be important in regulating signal transduction by Dvl.  相似文献   

15.
16.
Dapper 1 antagonizes Wnt signaling by promoting dishevelled degradation   总被引:1,自引:0,他引:1  
Wnt signaling plays pivotal roles in the regulation of embryogenesis and cancer development. Xenopus Dapper (Dpr) was identified as an interacting protein for Dishevelled (Dvl), a Wnt signaling mediator, and modulates Wnt signaling. However, it is largely unclear how Dpr regulates Wnt signaling. Here, we present evidence that human Dpr1, the ortholog of Xenopus Dpr, inhibits Wnt signaling. We have identified the regions responsible for the Dpr-Dvl interaction in both proteins and found that the interaction interface is formed between the DEP (Dishevelled, Egl-10, and pleckstrin) domain of Dvl and the central and the C-terminal regions of Dpr1. The inhibitory function of human Dpr1 requires both its N and C terminus. Overexpression of the C-terminal region corresponding to the last 225 amino acids of Dpr1, in contrast to wild-type Dpr1, enhances Wnt signaling, suggesting a dominant negative function of this region. Furthermore, we have shown that Dpr1 induces Dvl degradation via a lysosome inhibitor-sensitive and proteasome inhibitor-insensitive mechanism. Knockdown of Dpr1 by RNA interference up-regulates endogenous Dvl2 protein. Taken together, our data indicate that the inhibitory activity of Dpr on Wnt signaling is conserved from Xenopus to human and that Dpr1 antagonizes Wnt signaling by inducing Dvl degradation.  相似文献   

17.
The effect of a noncanonical Wnt, Wnt11, on canonical Wnt signaling stimulated by Wnt1 and activated forms of LRP5 (low density lipoprotein receptor-related protein-5), Dishevelled1 (Dvl1), and beta-catenin was examined in NIH3T3 cells and P19 embryonic carcinoma cells. Wnt11 repressed Wnt1-mediated activation of LEF-1 reporter activity in both cell lines. However, Wnt11 was unable to inhibit canonical signaling activated by LRP5, Dvl1, or beta-catenin in NIH3T3 cells, although it could in P19 cells. In addition, Wnt11-mediated inhibition of canonical signaling in NIH3T3 cells is ligand-specific; Wnt11 could effectively repress canonical signaling activated by Wnt1, Wnt3, or Wnt3a but not by Wnt7a or Wnt7b. Co-culture experiments with NIH3T3 cells showed that the co-expression of Wnt11 with Wnt1 was not an essential requirement for the inhibition, suggesting receptor competition as a possible mechanism. Moreover, in both cell types, elevation of intracellular Ca(2+) levels, which can result from Wnt11 treatment, led to the inhibition of canonical signaling. This result suggests that Wnt11 might not be able to signal in NIH3T3. Furthermore, P19 cells were found to express both endogenous canonical Wnts and Wnt11. Knockdown of Wnt11 expression using siRNA resulted in increased LEF-1 reporter activity, thus indicating that Wnt11-mediated suppression of canonical signaling exists in vivo.  相似文献   

18.
W Wei  M Li  J Wang  F Nie  L Li 《Molecular and cellular biology》2012,32(19):3903-3912
Dishevelled (Dvl) is a key component in the canonical Wnt signaling pathway and becomes hyperphosphorylated upon Wnt stimulation. Dvl is required for LRP6 phosphorylation, which is essential for subsequent steps of signal transduction, such as Axin recruitment and cytosolic β-catenin stabilization. Here, we identify the HECT-containing Nedd4-like ubiquitin E3 ligase ITCH as a new Dvl-binding protein. ITCH ubiquitinates the phosphorylated form of Dvl and promotes its degradation via the proteasome pathway, thereby inhibiting canonical Wnt signaling. Knockdown of ITCH by RNA interference increased the stability of phosphorylated Dvl and upregulated Wnt reporter gene activity as well as endogenous Wnt target gene expression induced by Wnt stimulation. In addition, we found that both the PPXY motif and the DEP domain of Dvl are critical for its interaction with ITCH, as mutation in the PPXY motif (Dvl2-Y568F) or deletion of the DEP domain led to reduced affinity for ITCH. Consistently, overexpression of ITCH inhibited wild-type Dvl2-induced, but not Dvl2-Y568F mutant-induced, Wnt reporter activity. Moreover, the Y568F mutant, but not wild-type Dvl2, can reverse the ITCH-mediated inhibition of Wnt-induced reporter activity. Collectively, these results indicate that ITCH plays a negative regulatory role in modulating canonical Wnt signaling by targeting the phosphorylated form of Dvl.  相似文献   

19.
20.
Dishevelled (Dvl) is the essential signal transduction component of both canonical and non-canonical Wnt signaling pathways. The cysteine-rich protein Idax acts as a negative regulator of Wnt signaling in mammals by interaction with Dvl in the region of the PDZ domain. In an effort to clarify the structural basis of this interaction, we used nuclear magnetic resonance spectroscopy to study the interaction of the Dvl PDZ domain with Idax. We first confirmed that the C-terminal region of Idax consisting of residues 109-198 binds to the PDZ domain of mouse Dvl-1 at the conventional C-terminal peptide-binding groove. However, instead of the C-terminus of Idax, we showed that a peptide of an internal sequence of Idax containing a KTXXXI motif is important in the interaction with a binding affinity estimated at 56 microM. Such internal motif identified in this study suggests a new type of sequence motif recognition for Dvl PDZ domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号