首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Certain ciliary transmembrane and membrane-associated signaling proteins export from cilia as intraflagellar transport (IFT) cargoes in a BBSome-dependent manner. Upon reaching the ciliary tip via anterograde IFT, the BBSome disassembles before being reassembled to form an intact entity for cargo phospholipase D (PLD) coupling. During this BBSome remodeling process, Chlamydomonas Rab-like 4 GTPase IFT27, by binding its partner IFT25 to form the heterodimeric IFT25/27, is indispensable for BBSome reassembly. Here, we show that IFT27 binds IFT25 in an IFT27 nucleotide-independent manner. IFT25/27 and the IFT subcomplexes IFT-A and -B are irrelevant for maintaining the stability of one another. GTP-loading onto IFT27 enhances the IFT25/27 affinity for binding to the IFT-B subcomplex core IFT-B1 entity in cytoplasm, while GDP-bound IFT27 does not prevent IFT25/27 from entering and cycling through cilia by integrating into IFT-B1. Upon at the ciliary tip, IFT25/27 cycles on and off IFT-B1 and this process is irrelevant with the nucleotide state of IFT27. During BBSome remodeling at the ciliary tip, IFT25/27 promotes BBSome reassembly independent of IFT27 nucleotide state, making postremodeled BBSomes available for PLD to interact with. Thus, IFT25/27 facilitates BBSome-dependent PLD export from cilia via controlling availability of intact BBSomes at the ciliary tip, while IFT27 nucleotide state does not participate in this regulatory event.  相似文献   

2.
Intraflagellar transport (IFT) relies on the IFT complex and is required for ciliogenesis. The IFT‐B complex consists of 9–10 stably associated core subunits and six “peripheral” subunits that were shown to dissociate from the core structure at moderate salt concentration. We purified the six “peripheral” IFT‐B subunits of Chlamydomonas reinhardtii as recombinant proteins and show that they form a stable complex independently of the IFT‐B core. We suggest a nomenclature of IFT‐B1 (core) and IFT‐B2 (peripheral) for the two IFT‐B subcomplexes. We demonstrate that IFT88, together with the N‐terminal domain of IFT52, is necessary to bridge the interaction between IFT‐B1 and B2. The crystal structure of IFT52N reveals highly conserved residues critical for IFT‐B1/IFT‐B2 complex formation. Furthermore, we show that of the three IFT‐B2 subunits containing a calponin homology (CH) domain (IFT38, 54, and 57), only IFT54 binds αβ‐tubulin as a potential IFT cargo, whereas the CH domains of IFT38 and IFT57 mediate the interaction with IFT80 and IFT172, respectively. Crystal structures of IFT54 CH domains reveal that tubulin binding is mediated by basic surface‐exposed residues.  相似文献   

3.
Ciliary transport in eukaryotic cells is an intricate and conserved process involving the coordinated assembly and functioning of a multiprotein intraflagellar transport (IFT) complex. Among the various IFT proteins, intraflagellar transport 52 (IFT52) plays a crucial role in ciliary transport and is implicated in various ciliopathies. IFT52 is a core component of the IFT-B complex that facilitates movement of cargoes along the ciliary axoneme. Stable binding of the IFT-B1 and IFT-B2 subcomplexes by IFT52 in the IFT-B complex regulates recycling of ciliary components and maintenance of ciliary functions such as signal transduction and molecular movement. Mutations in the IFT52 gene can disrupt ciliary trafficking, resulting in dysfunctional cilia and affecting cellular processes in ciliopathies. Such ciliopathies caused by IFT52 mutations exhibit a wide range of clinical features, including skeletal developmental abnormalities, retinal degeneration, respiratory failure and neurological abnormalities in affected individuals. Therefore, IFT52 serves as a promising biomarker for the diagnosis of various ciliopathies, including short-rib thoracic dysplasia 16 with or without polydactyly. Here, we provide an overview of the IFT52-mediated molecular mechanisms underlying ciliary transport and describe the IFT52 mutations that cause different disorders associated with cilia dysfunction.  相似文献   

4.
Intraflagellar transport (IFT) represents a bidirectional dynamic process that carries cargo essential for cilia building and the maintenance of ciliary function, which is important for the locomotion of single cells, intracellular and intercellular signalling transduction. Accumulated evidence has revealed that defects in IFT cause several clinical disorders. Here, we determined the role of IFT80, an IFT‐B protein that is mutated in Jeune asphyxiating thoracic dystrophy. Using the RNAi method in the ciliate Paramecium as model, we found that loss of IFT80 prevents cilia biogenesis and causes strong cell lethality. A specific antibody against IFT80 was also prepared in our study, which labelled IFT80 in cilia of Paramecium. GFP fusion experiments were performed to illustrate the dynamic movement of IFT‐A and IFT‐B proteins in cilia of Paramecium; then, we found that the depletion of IFT80 in cells prevents IFT‐A and IFT‐B proteins from entering the cilia. Our results showed the distribution change of other IFT proteins in cells that were depleted of IFT80, and we discuss the possible roles of IFT80 in Paramecium.  相似文献   

5.
Motile cilia protrude from cell surfaces and are necessary to create movement of cells and fluids in the body. At the molecular level, cilia contain several dynein molecular motor complexes including outer dynein arms (ODAs) that are attached periodically to the ciliary axoneme, where they hydrolyse ATP to create the force required for bending and motility of the cilium. ODAs are preassembled in the cytoplasm and subsequently trafficked into the cilium by the intraflagellar transport (IFT) system. In the case of the green alga Chlamydomonas reinhardtii, the adaptor protein ODA16 binds to ODAs and directly to the IFT complex component IFT46 to facilitate the ciliary import of ODAs. Here, we purified recombinant human IFT46 and ODA16, determined the high‐resolution crystal structure of the ODA16 protein, and carried out direct interaction studies of IFT46 and ODA16. The human ODA16 C‐terminal 320 residues adopt the fold of an eight‐bladed β‐propeller with high overall structural similarity to the Chlamydomonas ODA16. However, the small 80 residue N‐terminal domain, which in Chlamydomonas ODA16 is located on top of the β‐propeller and is required to form the binding cleft for IFT46, has no visible electron density in case of the human ODA16 structure. Furthermore, size exclusion chromatography and pull‐down experiments failed to detect a direct interaction between human ODA16 and IFT46. These data suggest that additional factors may be required for the ciliary import of ODAs in human cells with motile cilia.  相似文献   

6.
Intraflagellar transport (IFT) proteins are evolutionarily conserved throughout all ciliated organisms and are essential for the assembly and maintenance of cilia. IFT80, a component of the IFT complex, was linked recently to a human developmental disorder, Jeune asphyxiating thoracic dystrophy. We report here identification and characterization of a human IFT80 long isoform (namely IFT80-L), the carboxyl terminus of which shares the protein sequence of IFT80. Sequence analysis indicates that IFT80-L is likely an evolutionarily merged product of genes IFT80 and TRIM59, a RING finger gene we reported previously. Expression analysis of IFT80-L demonstrates that IFT80-L is ubiquitously expressed in humans. By using the nerve growth factor-induced cell differentiation assays, we reveal that IFT80-L is highly expressed in the rapidly proliferating cells but not in differentiated cells, which withdraw from the cell cycle. Our findings suggest that IFT80-L, like other IFT proteins, plays an important role in cell proliferation and differentiation.  相似文献   

7.
B Antonny  P Chardin  M Roux  M Chabre 《Biochemistry》1991,30(34):8287-8295
We have substituted leucine 56 or tyrosine 64 of p21 ras with a tryptophan. The intrinsic fluorescence of this tryptophan was used as an internal conformational probe for time-resolved biochemical studies of the ras protein. The slow intrinsic GTPase, GDP/GTP exchange induced by the SDC25 "exchange factor", and the fast GTP hydrolysis induced by GAP were studied. Tryptophan fluorescence of mutated ras is very sensitive to magnesium binding, GDP/GTP exchange, and GTP hydrolysis (changes in tyrosine fluorescence of wild-type ras are also observed but with a lower sensitivity). Nucleotide affinities, exchange kinetics, and intrinsic GTPase rates of the mutated ras could be measured by this method and were found to be close to those of wild-type ras. The SDC25 gene product enhances GDP/GTP exchange in both mutants. In both mutants, a slow fluorescence change follows the binding of GTP gamma S; its kinetics are close to those of the intrinsic GTPase, suggesting that a slow conformational change precedes the GTPase and is the rate-limiting step, as proposed by Neal et al. (1990) (Proc. Natl. Acad. Sci. U.S.A. 87, 3562-3565). GAP interacts with both mutant ras proteins and accelerates the GTPase of (L56W)ras but not that of (Y64W)ras, suggesting a role for tyrosine 64 in GAP-induced GTP hydrolysis. However, GAP does not accelerate the slow conformational change following GTP gamma S binding in either of the mutated ras proteins. This suggests that the fast GAP-induced catalysis of GTP hydrolysis that is observed with (L56W)ras bypasses the slow conformational change associated with the intrinsic GTPase and therefore might proceed by a different mechanism.  相似文献   

8.
The rod‐shaped cells of the bacterium Myxococcus xanthus move uni‐directionally and occasionally undergo reversals during which the leading/lagging polarity axis is inverted. Cellular reversals depend on pole‐to‐pole relocation of motility proteins that localize to the cell poles between reversals. We show that MglA is a Ras‐like G‐protein and acts as a nucleotide‐dependent molecular switch to regulate motility and that MglB represents a novel GTPase‐activating protein (GAP) family and is the cognate GAP of MglA. Between reversals, MglA/GTP is restricted to the leading and MglB to the lagging pole defining the leading/lagging polarity axis. For reversals, the Frz chemosensory system induces the relocation of MglA/GTP to the lagging pole causing an inversion of the leading/lagging polarity axis. MglA/GTP stimulates motility by establishing correct polarity of motility proteins between reversals and reversals by inducing their pole‐to‐pole relocation. Thus, the function of Ras‐like G‐proteins and their GAPs in regulating cell polarity is found not only in eukaryotes, but also conserved in bacteria.  相似文献   

9.
The Rab family belongs to the Ras‐like small GTPase superfamily and is implicated in membrane trafficking through interaction with specific effector molecules. Because of the large number of Rab isoforms in mammals, however, the effectors of most of the mammalian Rabs are yet to be identified. In this study, we systematically screened five different cell or tissue lysates for novel Rab effectors by a combination of glutathione S‐transferase (GST) pull‐down assay with 60 different mammalian Rabs and mass spectroscopic analysis. Three of the 21 Rab‐binding proteins we identified, mKIAA1055/TBC1D2B (Rab22‐binding protein), GAPCenA/TBC1D11 (Rab36‐binding protein) and centaurin β2/ACAP2 (Rab35‐binding protein), are GTPase‐activating proteins (GAPs) for Rab or Arf. Although it has recently been proposed that the Rab–GAP (Tre‐2 /Bub2/Cdc16) domain physically interacts with its substrate Rab, these three GAPs interacted with specific Rabs via a domain other than a GAP domain, e.g. centaurin β2 binds GTP‐Rab35 via the ankyrin repeat (ANKR) domain. Although centaurin β2 did not exhibit any Rab35–GAP activity in vitro, the Rab35‐binding ANKR domain of centaurin β2 was found to be required for its plasma membrane localization and regulation of Rab35‐dependent neurite outgrowth of PC12 cells through inactivation of Arf6. These findings suggest a novel mode of interaction between Rab and GAP.  相似文献   

10.
TBC1D15 belongs to the TBC (Tre‐2/Bub2/Cdc16) domain family and functions as a GTPase‐activating protein (GAP) for Rab GTPases. So far, the structure of TBC1D15 or the TBC1D15·Rab complex has not been determined, thus, its catalytic mechanism on Rab GTPases is still unclear. In this study, we solved the crystal structures of the Shark and Sus TBC1D15 GAP domains, to 2.8 Å and 2.5 Å resolution, respectively. Shark‐TBC1D15 and Sus‐TBC1D15 belong to the same subfamily of TBC domain‐containing proteins, and their GAP‐domain structures are highly similar. This demonstrates the evolutionary conservation of the TBC1D15 protein family. Meanwhile, the newly determined crystal structures display new variations compared to the structures of yeast Gyp1p Rab GAP domain and TBC1D1. GAP assays show that Shark and Sus GAPs both have higher catalytic activity on Rab11a·GTP than Rab7a·GTP, which differs from the previous study. We also demonstrated the importance of arginine and glutamine on the catalytic sites of Shark GAP and Sus GAP. When arginine and glutamine are changed to alanine or lysine, the activities of Shark GAP and Sus GAP are lost.  相似文献   

11.

Background

Intraflagellar transport (IFT) is the bidirectional movement of IFT particles between the cell body and the distal tip of a flagellum. Organized into complexes A and B, IFT particles are composed of at least 18 proteins. The function of IFT proteins in flagellar assembly has been extensively investigated. However, much less is known about the molecular mechanism of how IFT is regulated.

Methodology/Principal Findings

We herein report the identification of a novel IFT particle protein, IFT25, in Chlamydomonas. Dephosphorylation assay revealed that IFT25 is a phosphoprotein. Biochemical analysis of temperature sensitive IFT mutants indicated that IFT25 is an IFT complex B subunit. In vitro binding assay confirmed that IFT25 binds to IFT27, a Rab-like small GTPase component of the IFT complex B. Immunofluorescence staining showed that IFT25 has a punctuate flagellar distribution as expected for an IFT protein, but displays a unique distribution pattern at the flagellar base. IFT25 co-localizes with IFT27 at the distal-most portion of basal bodies, probably the transition zones, and concentrates in the basal body region by partially overlapping with other IFT complex B subunits, such as IFT46. Sucrose density gradient centrifugation analysis demonstrated that, in flagella, the majority of IFT27 and IFT25 including both phosphorylated and non-phosphorylated forms are cosedimented with other complex B subunits in the 16S fractions. In contrast, in cell body, only a fraction of IFT25 and IFT27 is integrated into the preassembled complex B, and IFT25 detected in complex B is preferentially phosphorylated.

Conclusion/Significance

IFT25 is a phosphoprotein component of IFT particle complex B. IFT25 directly interacts with IFT27, and these two proteins likely form a subcomplex in vivo. We postulate that the association and disassociation between the subcomplex of IFT25 and IFT27 and complex B might be involved in the regulation of IFT.  相似文献   

12.
Amino acid sequence homology between the GTPase Activating Protein (GAP) and the GTP-binding regulatory protein, Gs alpha, suggests that a specific region of GAP primary structure (residues 891-898) may be involved in its stimulation of p21ras GTP hydrolytic activity (McCormick, F. [1989] Nature 340, 678-679). A peptide, designated p891, corresponding to GAP residues 891-906 (M891RTRVVSGFVFLRLIC906) was synthesized and tested for its ability to inhibit GAP-stimulated p21ras GTPase activity. At a concentration of 25 microM, p891 inhibited GAP activity approximately 50%. Unexpectedly, p891 also stimulated GTP binding to p21N-ras independent of GAP. This stimulation correlated with an enhancement of p21N-ras.GDP dissociation; an approximate 15-fold increase in the presence of 10 microM p891. In contrast, dissociation of the p21N-ras.GTP gamma S complex was unaffected by 10 microM p891. The p21N-ras.GDP complex was unresponsive to 100 microM mastoparan, a peptide toxin shown previously to accelerate GDP dissociation from the guanine nucleotide regulatory proteins, Gi and Go. p21H-ras, as well as the two p21H-ras effector mutants, Ala-38, and Ala-35, Leu-36, also exhibited increased rates of GDP dissociation in the presence of p891. Also tested were three ras-related GTP-binding proteins; rap, G25K and rac. The rap.-GDP complex was unaffected by 10 microM p891. Dissociation of the G25K- and rac.GDP complexes were enhanced slightly; approximately 1.3- and 1.8-fold over control, respectively. Thus, the inhibitory effect of p891 on GAP stimulation of p21ras suggests that amino acids within the region 891-906 of GAP may be essential for interaction with p21ras. In addition, p891 independently affects the nucleotide exchange properties of p21ras.  相似文献   

13.
GTP hydrolysis occurs at several specific stages during the initiation, elongation, and termination stages of mRNA translation. However, it is unclear how GTP hydrolysis occurs; it has previously been suggested to involve a GTPase active center in the ribosome, although proof for this is lacking. Alternatively, it could involve the translation factors themselves, e.g., be similar to the situation for small G in which the GTPase active site involves arginine residues contributed by a further protein termed a GTPase-activator protein (GAP). During translation initiation in eukaryotes, initiation factor eIF5 is required for hydrolysis of GTP bound to eIF2 (the protein which brings the initiator Met-tRNA(i) to the 40S subunit). Here we show that eIF5 displays the hallmarks of a classical GAP (e.g., RasGAP). Firstly, its interaction with eIF2 is enhanced by AlF(4)(-). Secondly, eIF5 possesses a conserved arginine (Arg15) which, like the "arginine fingers" of classical GAPs, is flanked by hydrophobic residues. Mutation of Arg15 to methionine abolishes the ability of eIF5 either to stimulate GTP hydrolysis or to support mRNA translation in vitro. Mutation studies suggest that a second conserved arginine (Arg48) also contributes to the GTPase active site of the eIF2.eIF5 complex. Our data thus show that eIF5 behaves as a classical GAP and that GTP hydrolysis during translation involves proteins extrinsic to the ribosome. Indeed, inspection of their sequences suggests that other translation factors may also act as GAPs.  相似文献   

14.
Signal output from receptor-G-protein-effector modules is a dynamic function of the nucleotide exchange activity of the receptor, the GTPase-accelerating activity of GTPase-activating proteins (GAPs), and their interactions. GAPs may inhibit steady-state signaling but may also accelerate deactivation upon removal of stimulus without significantly inhibiting output when the receptor is active. Further, some effectors (e.g., phospholipase C-beta) are themselves GAPs, and it is unclear how such effectors can be stimulated by G proteins at the same time as they accelerate G protein deactivation. The multiple combinations of protein-protein associations and interacting regulatory effects that allow such complex behaviors in this system do not permit the usual simplifying assumptions of traditional enzyme kinetics and are uniquely subject to systems-level analysis. We developed a kinetic model for G protein signaling that permits analysis of both interactive and independent G protein binding and regulation by receptor and GAP. We evaluated parameters of the model (all forward and reverse rate constants) by global least-squares fitting to a diverse set of steady-state GTPase measurements in an m1 muscarinic receptor-G(q)-phospholipase C-beta1 module in which GTPase activities were varied by approximately 10(4)-fold. We provide multiple tests to validate the fitted parameter set, which is consistent with results from the few previous pre-steady-state kinetic measurements. Results indicate that (1) GAP potentiates the GDP/GTP exchange activity of the receptor, an activity never before reported; (2) exchange activity of the receptor is biased toward replacement of GDP by GTP; (3) receptor and GAP bind G protein with negative cooperativity when G protein is bound to either GTP or GDP, promoting rapid GAP binding and dissociation; (4) GAP indirectly stabilizes the continuous binding of receptor to G protein during steady-state GTPase hydrolysis, thus further enhancing receptor activity; and (5) receptor accelerates GDP/GTP exchange primarily by opening an otherwise closed nucleotide binding site on the G protein but has minimal effect on affinity (K(assoc) = k(assoc)/k(dissoc)) of G protein for nucleotide. Model-based simulation explains how GAP activity can accelerate deactivation >10-fold upon removal of agonist but still allow high signal output while the receptor is active. Analysis of GTPase flux through distinct reaction pathways and consequent accumulation of specific GTPase cycle intermediates indicate that, in the presence of a GAP, the receptor remains bound to G protein throughout the GTPase cycle and that GAP binds primarily during the GTP-bound phase. The analysis explains these behaviors and relates them to the specific regulatory phenomena described above. The work also demonstrates the applicability of appropriately data-constrained system-level analysis to signaling networks of this scale.  相似文献   

15.
The signal recognition particle (SRP) cotranslationally targets proteins to cell membranes by coordinated binding and release of ribosome-associated nascent polypeptides and a membrane-associated SRP receptor. GTP uptake and hydrolysis by the SRP-receptor complex govern this targeting cycle. Because no GTPase-activating proteins (GAPs) are known for the SRP and SRP receptor GTPases, however, it has been unclear whether and how GTP hydrolysis is stimulated during protein trafficking in vivo. Using both biochemical and genetic experiments, we show here that SRP RNA enhances GTPase activity of the SRP-receptor complex above a critical threshold required for cell viability. Furthermore, this stimulation is a property of the SRP RNA tetraloop. SRP RNA tetraloop mutants that confer defective growth phenotypes can assemble into SRP-receptor complexes, but fail to stimulate GTP hydrolysis in these complexes in vitro. Tethered hydroxyl radical probing data reveal that specific positioning of the RNA tetraloop within the SRP-receptor complex is required to stimulate GTPase activity to a level sufficient to support cell growth. These results explain why no external GAP is needed and why the phylogenetically conserved SRP RNA tetraloop is required in vivo.  相似文献   

16.
The binding of the coat protein complex, coatomer, to the Golgi is mediated by the small GTPase ADP-ribosylation factor-1 (ARF1), whereas the dissociation of coatomer, requires GTP hydrolysis on ARF1, which depends on a GTPase-activating protein (GAP). Recent studies demonstrate that when GAP activity is assayed in a membrane-free environment by employing an amino-terminal truncation mutant of ARF1 (Delta17-ARF1) and a catalytic fragment of the ARF GTPase-activating protein GAP1, GTP hydrolysis is strongly stimulated by coatomer (Goldberg, J., (1999) Cell 96, 893-902). In this study, we investigated the role of coatomer in GTP hydrolysis on ARF1 both in solution and in a phospholipid environment. When GTP hydrolysis was assayed in solution using Delta17-ARF1, coatomer stimulated hydrolysis in the presence of the full-length GAP1 as well as with a Saccharomyces cerevisiae ARF GAP (Gcs1) but had no effect on hydrolysis in the presence of the phosphoinositide dependent GAP, ASAP1. Using wild-type myristoylated ARF1 loaded with GTP in the presence of phospholipid vesicles, GAP1 by itself stimulated GTP hydrolysis efficiently, and coatomer had no additional effect. Disruption of the phospholipid vesicles with detergent resulted in reduced GAP1 activity that was stimulated by coatomer, a pattern that resembled Delta17-ARF1 activity. Our findings suggest that in the biological membrane, the proximity between ARF1 and its GAP, which results from mutual binding to membrane phospholipids, may be sufficient for stimulation of ARF1 GTPase activity.  相似文献   

17.
The biological functions of ras proteins are controlled by the bound guanine nucleotide GDP or GTP. The GTP-bound conformation is biologically active, and is rapidly deactivated to the GDP-bound conformation through interaction with GAP (GTPase Activating Protein). Most transforming mutants of ras proteins have drastically reduced GTP hydrolysis rates even in the presence of GAP. The crystal structures of the GDP complexes of ras proteins at 2.2 A resolution reveal the detailed interaction between the ras proteins and the GDP molecule. All the currently known transforming mutation positions are clustered around the bound guanine nucleotide molecule. The presumed "effector" region and the GAP recognition region are both highly exposed. No significant structural differences were found between the GDP complexes of normal ras protein and the oncogenic mutant with valine at position 12, except the side-chain of the valine residue. However, comparison with GTP-analog complexes of ras proteins suggests that the valine side-chain may inhibit GTP hydrolysis in two possible ways: (1) interacting directly with the gamma-phosphate and altering its orientation or the conformation of protein residues around the phosphates; and/or (2) preventing either the departure of gamma-phosphate on GTP hydrolysis or the entrance of a nucleophilic group to attack the gamma-phosphate. The structural similarity between ras protein and the bacterial elongation factor Tu suggests that their common structural motif might be conserved for other guanine nucleotide binding proteins.  相似文献   

18.
ARF‐GTPases are important proteins that control membrane trafficking events. Their activity is largely influenced by the interplay between guanine nucleotide exchange factors (GEFs) and GTPase‐activating proteins (GAPs), which facilitate the activation or inactivation of ARF‐GTPases, respectively. There are 15 predicted proteins that contain an ARF‐GAP domain within the Arabidopsis thaliana genome, and these are classified as ARF‐GAP domain (AGD) proteins. The function and subcellular distribution of AGDs, including the ability to activate ARF‐GTPases in vivo, that remain largely uncharacterized to date. Here we show that AGD5 is localised to the trans‐Golgi network (TGN), where it co‐localises with ARF1, a crucial GTPase that is involved in membrane trafficking and which was previously shown to be distributed on Golgi and post‐Golgi structures of unknown nature. Taking advantage of the in vivo AGD5–ARF1 interaction at the TGN, we show that mutation of an arginine residue that is critical for ARF‐GAP activity of AGD5 leads to longer residence of ARF1 on the membranes, as expected if GTP hydrolysis on ARF1 was impaired due to a defective GAP. Our results establish the nature of the post‐Golgi compartments in which ARF1 localises, as well as identifying the role of AGD5 in vivo as a TGN‐localised GAP. Furthermore, in vitro experiments established the promiscuous interaction between AGD5 and the plasma membrane‐localised ADP ribosylation factor B (ARFB), confirming that ARF‐GAP specificity for ARF‐GTPases within the cell environment may be spatially regulated.  相似文献   

19.
Cilia and flagella (interchangeable terms) are evolutionarily conserved organelles found on many different types of eukaryotic cells where they fulfill important functions in motility, sensory reception and signaling. The process of Intraflagellar Transport (IFT) is of central importance for both the assembly and maintenance of cilia, as it delivers building blocks from their site of synthesis in the cell body to the ciliary assembly site at the tip of the cilium. A key player in this process is the multi-subunit IFT-complex, which acts as an adapter between the motor proteins required for movement and the ciliary cargo proteins. Since the discovery of IFT more than 15 years ago, considerable effort has gone into the purification and characterization of the IFT complex proteins. Even though this has led to very interesting findings and has greatly improved our knowledge of the IFT process, we still know very little about the overall architecture of the IFT complex and the specific functions of the various subunits. In this review we will give an update on the knowledge of the structure and function of individual IFT proteins, and the way these proteins interact to form the complex that facilitates IFT.  相似文献   

20.
Cilia are microtubule-based, hair-like organelles involved in sensory function or motility, playing critical roles in many physiological processes such as reproduction, organ development, and sensory perception. In insects, cilia are restricted to certain sensory neurons and sperms, being important for chemical and mechanical sensing, and fertility. Although great progress has been made regarding the mechanism of cilia assembly, the formation of insect cilia remains poorly understand, even in the insect model organism Drosophila. Intraflagellar transport (IFT) is a cilia-specific complex that traffics protein cargos bidirectionally along the ciliary axoneme and is essential for most cilia. Here we investigated the role of IFT52, a core component of IFT-B, in cilia/flagellar formation in Drosophila. We show that Drosophila IFT52 is distributed along the sensory neuronal cilia, and is essential for sensory cilia formation. Deletion of Ift52 results in severe defects in cilia-related sensory behaviors. It should be noted that IFT52 is not detected in spermatocyte cilia or sperm flagella of Drosophila. Accordingly, ift52 mutants can produce sperms with normal motility, supporting a dispensable role of IFT in Drosophila sperm flagella formation. Altogether, IFT52 is a conserved protein essential for sensory cilia formation and sensory neuronal function in insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号