首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Accumulating evidence demonstrates that PKCι is an oncogene and prognostic marker that is frequently targeted for genetic alteration in many major forms of human cancer. Functional data demonstrate that PKCι is required for the transformed phenotype of lung, pancreatic, ovarian, prostate, colon, and brain cancer cells. Future studies will be required to determine whether PKCι is also an oncogene in the many other cancer types that also overexpress PKCι. Studies of PKCι using genetically defined models of tumorigenesis have revealed a critical role for PKCι in multiple stages of tumorigenesis, including tumor initiation, progression, and metastasis. Recent studies in a genetic model of lung adenocarcinoma suggest a role for PKCι in transformation of lung cancer stem cells. These studies have important implications for the therapeutic use of aurothiomalate (ATM), a highly selective PKCι signaling inhibitor currently undergoing clinical evaluation. Significant progress has been made in determining the molecular mechanisms by which PKCι drives the transformed phenotype, particularly the central role played by the oncogenic PKCι-Par6 complex in transformed growth and invasion, and of several PKCι-dependent survival pathways in chemo-resistance. Future studies will be required to determine the composition and dynamics of the PKCι-Par6 complex, and the mechanisms by which oncogenic signaling through this complex is regulated. Likewise, a better understanding of the critical downstream effectors of PKCι in various human tumor types holds promise for identifying novel prognostic and surrogate markers of oncogenic PKCι activity that may be clinically useful in ongoing clinical trials of ATM.  相似文献   

2.
Ect2 is an oncogene in multiple human cancers. Ect2 is aberrantly overexpressed in multiple human tumor types, often as a result of targeted amplification of the ECT2 gene as part of the 3q26 amplicon. Ect2 is important for proliferation, migration and invasion of various types of cancer cells in vitro, and for NSCLC tumorigenicity in vivo. The role of Ect2 in cellular transformation is distinct from its physiologic role in cytokinesis, and many tumor cells appear to have evolved Ect2-independent cytokinesis mechanisms. In NSCLC cells, the ability of Ect2 to support transformation is linked to its mislocalization to the cytoplasm and activation of a Rac1-Pak-Mek1,2-Erk1,2 signaling axis that is regulated through its binding to the oncogenic PKCι/Par6α complex (Fig. 4). Therefore, Ect2 and PKCι are genetically linked due to their frequent co-amplification as part of the 3q26 amplicon, and functionally and biochemically linked through formation of an oncogenic PKCι-Par6-Ect2 complex that drives transformation. Further experiments will be required to determine if Ect2 and PKCι are similarly linked in other tumors, particularly those harboring 3q26 amplification. In addition, further work is needed to elucidate the molecular mechanisms that regulate the formation, dynamics and activity of the oncogenic PKCι-Par6α-Ect2 complex. These studies hold the promise of identifying novel therapeutic approaches to cancer treatment based on inhibiting Ect2 function in cancer cells.  相似文献   

3.
Protein kinase Cι (PKCι) is an atypical PKC isoform and participates in multiple aspects of the transformed phenotype in human cancer cells. We previously reported that frequent amplification and overexpression of PKCι were correlated with lymph node metastasis in primary esophageal squamous cell carcinomas (ESCC). In the present study, short interfering RNA-mediated silencing of PKCι revealed that this enzyme was required for cell migration, invasion, and resistance to anoikis. In vivo experiments showed that PKCι suppression decreased tumor growth in esophageal cancer xenografts and lung metastases in nude mice. At the molecular level, knockdown of PKCι in suspended ESCC cells caused a decrease in S-phase kinase-associated protein 2 (SKP2) that had been reported to promote resistance to anoikis via the PI3K/AKT pathway. AKT phosphorylation was abolished after PKCι suppression, but AKT activation could be refreshed by PKCι upregulation, suggesting that PKCι enhanced cell resistance to anoikis via the PKCι-SKP2-PI3K/AKT pathway. Addition of the proteasome inhibitor MG132 prevented the decrease of SKP2 in PKCι silenced cells, and polyubiquitin-SKP2 was elevated after PKCι depletion, showing that PKCι might regulate the expression of SKP2 through the ubiquitin-proteasome pathway in suspended cells. Furthermore, overexpression of SKP2 in PKCι-downregulated cells restored cell resistance to anoikis. Most importantly, PKCι expression significantly correlated with SKP2 in 133 ESCC tissues (P = 0.031). Taken together, our data show that PKCι promotes tumorigenicity and metastasis of human esophageal cancer and that SKP2 is a candidate downstream effector of PKCι signaling in ESCC.  相似文献   

4.
Using a glutathione S-transferase pull-down liquid chromatography–coupled tandem mass spectrometry approach and immunoprecipitation/immunoblot analysis, we found that heat shock cognate protein 70 (Hsc70) was involved in the complex formed by atypical protein kinase Cι (PKCι) and LC3 in the esophageal cancer cell line KYSE30. Further study indicated that Hsc70 was targeted by autophagic degradation, and knockdown of PKCι down-regulated Hsc70 by promoting autophagy. PKCι knockdown sensitized cells to oxidative stress-induced apoptosis, whereas forced PKCι expression counteracted the oxidative stress-induced apoptosis via Hsc70.  相似文献   

5.
6.
To investigate the impact of oncogenic protein kinase C isoform ι (PKCι) on the microenvironment and the immunogenic properties of pancreatic tumors, we prohibit PKCι activity in various pancreatic ductal adenocarcinoma (PDAC) cell lines and co-culture them with human natural killer NK92 cells. The results demonstrate that PKCι suppression enhances the susceptibility of PDAC to NK cytotoxicity and promotes the degranulation and cytolytic activity of co-cultured NK92 cells. Mechanistic studies pinpoint that downstream of KRAS, both YAP1 and STAT3 are recruited by oncogenic PKCι to elevate the expression of PDL1, contributing to constitute an immune suppressive microenvironment in PDAC. Co-culture with NK92 further induces PDL1 upregulation via STAT3 to stimulate immune escape of PDAC cells. Subsequently, inhibition of PKCι in PDAC alleviates the immune suppression and enhances the cytotoxicity of NK92 towards PDAC through restraining PDL1 overexpression. Combined with PD1/PDL1 blocker, PKCι inhibitor remarkably elevates the cytotoxicity of NK92 against PDAC cells in vitro, establishing PKCι inhibitor as a promising candidate for boosting the immunotherapy of PDAC.  相似文献   

7.
The focus of this research was to investigate the role of protein kinase C-iota (PKC-ι) in regulation of Bad, a pro-apoptotic BH3-only molecule of the Bcl-2 family in glioblastoma. Robust expression of PKC-ι is a hallmark of human glioma and benign and malignant meningiomas. The results were obtained from the two human glial tumor derived cell lines, T98G and U87MG. In these cells, PKC-ι co-localized and directly associated with Bad, as shown by immunofluorescence, immunoprecipitation, and Western blotting. Furthermore, in-vitro kinase activity assay showed that PKC-ι directly phosphorylated Bad at phospho specific residues, Ser-112, Ser-136 and Ser-155 which in turn induced inactivation of Bad and disruption of Bad/Bcl-XL dimer. Knockdown of PKC-ι by siRNA exhibited a corresponding reduction in Bad phosphorylation suggesting that PKC-ι may be a Bad kinase. PKC-ι knockdown also induced apoptosis in both the cell lines. Since, PKC-ι is an essential downstream mediator of the PI (3)-kinase, we hypothesize that glioma cell survival is mediated via a PI (3)-kinase/PDK1/PKC-ι/Bad pathway. Treatment with PI (3)-kinase inhibitors Wortmannin and LY294002, as well as PDK1 siRNA, inhibited PKC-ι activity and subsequent phosphorylation of Bad suggesting that PKC-ι regulates the activity of Bad in a PI (3)-kinase dependent manner. Thus, our data suggest that glioma cell survival occurs through a novel PI (3)-kinase/PDK1/PKC-ι/BAD mediated pathway.  相似文献   

8.
Two splice variants derived from the Bcl-x gene via alternative 5' splice site selection (5'SS) are proapoptotic Bcl-x(s) and antiapoptotic Bcl-x(L). Previously, our laboratory showed that apoptotic signaling pathways regulated the alternative 5'SS selection via protein phosphatase-1 and de novo ceramide. In this study, we examined the elusive prosurvival signaling pathways that regulate the 5'SS selection of Bcl-x pre-mRNA in cancer cells. Taking a broad-based approach by using a number of small-molecule inhibitors of various mitogenic/survival pathways, we found that only treatment of non-small cell lung cancer (NSCLC) cell lines with the phosphoinositide 3-kinase (PI3K) inhibitor LY294002 (50 μmol/L) or the pan-protein kinase C (PKC) inhibitor G?6983 (25 μmol/L) decreased the Bcl-x(L)/(s) mRNA ratio. Pan-PKC inhibitors that did not target the atypical PKCs, PKCι and PKCζ, had no effect on the Bcl-x(L)/(s) mRNA ratio. Additional studies showed that downregulation of the proto-oncogene, PKCι, in contrast to PKCζ, also resulted in a decrease in the Bcl-x(L)/(s) mRNA ratio. Furthermore, downregulation of PKCι correlated with a dramatic decrease in the expression of SAP155, an RNA trans-acting factor that regulates the 5'SS selection of Bcl-x pre-mRNA. Inhibition of the PI3K or atypical PKC pathway induced a dramatic loss of SAP155 complex formation at ceramide-responsive RNA cis-element 1. Finally, forced expression of Bcl-x(L) "rescued" the loss of cell survival induced by PKCι siRNA. In summary, the PI3K/PKCι regulates the alternative splicing of Bcl-x pre-mRNA with implications in the cell survival of NSCLC cells.  相似文献   

9.
Protein kinase A-anchoring proteins (AKAPs) influence fundamental cellular processes by directing the cAMP-dependent protein kinase (PKA) toward its intended substrates. In this report we describe the identification and characterization of a ternary complex of AKAP220, the PKA holoenzyme, and the IQ domain GTPase-activating protein 2 isoform (IQGAP2) that is enriched at cortical regions of the cell. Formation of an IQGAP2-AKAP220 core complex initiates a subsequent phase of protein recruitment that includes the small GTPase Rac. Biochemical and molecular biology approaches reveal that PKA phosphorylation of Thr-716 on IQGAP2 enhances association with the active form of the Rac GTPase. Cell-based experiments indicate that overexpression of an IQGAP2 phosphomimetic mutant (IQGAP2 T716D) enhances the formation of actin-rich membrane ruffles at the periphery of HEK 293 cells. In contrast, expression of a nonphosphorylatable IQGAP2 T716A mutant or gene silencing of AKAP220 suppresses formation of membrane ruffles. These findings imply that IQGAP2 and AKAP220 act synergistically to sustain PKA-mediated recruitment of effectors such as Rac GTPases that impact the actin cytoskeleton.  相似文献   

10.
Recently, we have reported that the active form of Rac 1 GTPase binds to the glycogen phosphorylase muscle isoform (PYGM) and modulates its enzymatic activity leading to T cell proliferation. In the lymphoid system, Rac 1 and in general other small GTPases of the Rho family participate in the signaling cascades that are activated after engagement of the T cell antigen receptor. However, little is known about the IL-2-dependent Rac 1 activator molecules. For the first time, a signaling pathway leading to the activation of Rac 1/PYGM in response to IL-2-stimulated T cell proliferation is described. More specifically, αPIX, a known guanine nucleotide exchange factor for the small GTPases of the Rho family, preferentially Rac 1, mediates PYGM activation in Kit 225 T cells stimulated with IL-2. Using directed mutagenesis, phosphorylation of αPIX Rho-GEF serines 225 and 488 is required for activation of the Rac 1/PYGM pathway. IL-2-stimulated serine phosphorylation was corroborated in Kit 225 T cells cultures. A parallel pharmacological and genetic approach identified PKCθ as the serine/threonine kinase responsible for αPIX serine phosphorylation. The phosphorylated state of αPIX was required to activate first Rac 1 and subsequently PYGM. These results demonstrate that the IL-2 receptor activation, among other early events, leads to activation of PKCθ. To activate Rac 1 and consequently PYGM, PKCθ phosphorylates αPIX in T cells. The biological significance of this PKCθ/αPIX/Rac 1 GTPase/PYGM signaling pathway seems to be the control of different cellular responses such as migration and proliferation.  相似文献   

11.
N,N'-Dinitrosopiperazine (DNP) is a carcinogen for nasopharyngeal carcinoma (NPC), which shows organ specificity to nasopharyngeal epithelium. Herein, we demonstrate that DNP induces fiber formation of NPC cells (6-10B) and also increases invasion and motility of 6-10B cells. DNP-mediated NPC metastasis also was confirmed in nude mice. Importantly, DNP induced the expression of phosphorylated ezrin (phos-ezrin) at threonine 567 (Thr-567) dose- and time-dependently but had no effect on the total ezrin expression at these concentrations. Furthermore, DNP-induced phos-ezrin expression was dependent on increased Rho kinase and protein kinase C (PKC) activity. DNP may activate Rho kinase through binding to its pleckstrin homology and may activate PKC through promoting its translocation to the plasma membrane in vivo. DNP-induced phos-ezrin was associated with induction of fiber growth in 6-10B cells. However, DNP could not induce motility and invasion of NPC cells containing ezrin mutated at Thr-567. Similarly, DNP could not induce motility and invasion of the cells containing siRNAs against Rho or PKC. These results indicate that DNP induces ezrin phosphorylation at Thr-567, increases motility and invasion of cells, and promotes tumor metastasis. DNP may be involved in NPC metastasis through regulation of ezrin phosphorylation at Thr-567.  相似文献   

12.
Pancreatic acinar-to-ductal metaplasia (ADM) is associated with an increased risk of pancreatic cancer and is considered a precursor of pancreatic ductal adenocarcinoma. Transgenic expression of transforming growth factor alpha (TGF-α) or K-ras(G12D) in mouse pancreatic epithelium induces ADM in vivo. Protein kinase C iota (PKCι) is highly expressed in human pancreatic cancer and is required for the transformed growth and tumorigenesis of pancreatic cancer cells. In this study, PKCι expression was assessed in a mouse model of K-ras(G12D)-induced pancreatic ADM and pancreatic cancer. The ability of K-ras(G12D) to induce pancreatic ADM in explant culture, and the requirement for PKCι, was investigated. PKCι is elevated in human and mouse pancreatic ADM and intraepithelial neoplastic lesions in vivo. We demonstrate that K-ras(G12D) is sufficient to induce pancreatic ADM in explant culture, exhibiting many of the same morphologic and biochemical alterations observed in TGF-α-induced ADM, including a dependence on Notch activation. PKCι is highly expressed in both TGF-α- and K-ras(G12D)-induced pancreatic ADM and inhibition of PKCι significantly reduces TGF-α- and K-ras(G12D)-mediated ADM. Inhibition of PKCι suppresses K-ras(G12D)-induced MMP-7 expression and Notch activation, and exogenous MMP-7 restores K-ras(G12D)-mediated ADM in PKCι-depleted cells, implicating a K-ras(G12D)-PKCι-MMP-7 signaling axis that likely induces ADM through Notch activation. Our results indicate that PKCι is an early marker of pancreatic neoplasia and suggest that PKCι is a potential downstream target of K-ras(G12D) in pancreatic ductal metaplasia in vivo.  相似文献   

13.

Background

Protein kinase C (PKC) ε, a key signaling transducer implicated in mitogenesis, survival, and cancer progression, is overexpressed in human primary non-small cell lung cancer (NSCLC). The role of PKCε in lung cancer metastasis has not yet been established.

Principal Findings

Here we show that RNAi-mediated knockdown of PKCε in H358, H1299, H322, and A549 NSCLC impairs activation of the small GTPase Rac1 in response to phorbol 12-myristate 13-acetate (PMA), serum, or epidermal growth factor (EGF). PKCε depletion markedly impaired the ability of NSCLC cells to form membrane ruffles and migrate. Similar results were observed by pharmacological inhibition of PKCε with εV1-2, a specific PKCε inhibitor. PKCε was also required for invasiveness of NSCLC cells and modulated the secretion of extracellular matrix proteases and protease inhibitors. Finally, we found that PKCε-depleted NSCLC cells fail to disseminate to lungs in a mouse model of metastasis.

Conclusions

Our results implicate PKCε as a key mediator of Rac signaling and motility of lung cancer cells, highlighting its potential as a therapeutic target.  相似文献   

14.
Protein Kinase C-iota (PKC-ι), an atypical protein kinase C isoform manifests its potential as an oncogene by targeting various aspects of cancer cells such as growth, invasion and survival. PKC-ι confers resistance to drug-induced apoptosis in cancer cells. The acquisition of drug resistance is a major obstacle to good prognosis in neuroblastoma. The focus of this research was to identify the efficacy of [4-(5-amino-4-carbamoylimidazol-1-yl)-2,3-dihydroxycyclopentyl] methyl dihydrogen phosphate (ICA-1) as a novel PKC-ι inhibitor in neuroblastoma cell proliferation and apoptosis. ICA-1 specifically inhibits the activity of PKC-ι but not that of PKC-zeta (PKC-ζ), the closely related atypical PKC family member. The IC(50) for the kinase activity assay was approximately 0.1μM which is 1000 times less than that of aurothiomalate, a known PKC-ι inhibitor. Cyclin dependent kinase 7 (Cdk7) phosphorylates cyclin dependent kinases (cdks) and promotes cell proliferation. Our data shows that PKC-ι is an in vitro Cdk7 kinase and the phosphorylation of Cdk7 by PKC-ι was potently inhibited by ICA-1. Furthermore, our data shows that neuroblastoma cells proliferate via a PKC-ι/Cdk7/cdk2 cell signaling pathway and ICA-1 mediates its antiproliferative effects by inhibiting this pathway. ICA-1 (0.1μM) inhibited the in vitro proliferation of BE(2)-C neuroblastoma cells by 58% (P=0.01). Additionally, ICA-1 also induced apoptosis in neuroblastoma cells. Interestingly, ICA-1 did not affect the proliferation of normal neuronal cells suggesting its potential as chemotherapeutic with low toxicity. Hence, our results emphasize the potential of ICA-1 as a novel PKC-ι inhibitor and chemotherapeutic agent for neuroblastoma.  相似文献   

15.
16.
LIM-kinase 1 (LIMK1) phosphorylates cofilin, an actin-depolymerizing factor, and regulates actin cytoskeletal reorganization. LIMK1 is activated by the small GTPase Rho and its downstream protein kinase ROCK. We now report the site of phosphorylation of LIMK1 by ROCK. In vitro kinase reaction revealed that the active forms of ROCK phosphorylated LIMK1 on the threonine residue and markedly increased its cofilin-phosphorylating activity. A LIMK1 mutant (T508A) with replacement of Thr-508 within the activation loop of the kinase domain by alanine was neither phosphorylated nor activated by ROCK. Replacement of Thr-508 by serine changed the ROCK-catalyzed phosphorylation residue from threonine to serine. A LIMK1 mutant with replacement of Thr-508 by two glutamates increased the kinase activity about 2-fold but was not further activated by ROCK. In addition, wild-type LIMK1, but not its T508A mutant, was activated by co-expression with ROCK in cultured cells. These results suggest that ROCK activates LIMK1 in vitro and in vivo by phosphorylation at Thr-508. Together with the recent finding that PAK1, a downstream effector of Rac, also activates LIMK1 by phosphorylation at Thr-508, these results suggest that activation of LIMK1 is one of the common targets for Rho and Rac to reorganize the actin cytoskeleton.  相似文献   

17.
18.
19.
The small GTPase Rac regulates cytoskeletal organization, cell cycle progression, gene expression and oncogenic transformation, processes that depend upon both soluble growth factors and adhesion to the extracellular matrix (ECM). We now show that growth factors and adhesion to the ECM both contribute independently and approximately equally to Rac activation. However, activated Rac in non-adherent cells failed to stimulate the Rac effector PAK. V12 Rac or Rac activated by serum translocated to the membrane fraction of adherent cells but remained mainly cytoplasmic in suspended cells. An activated Rac mutant lacking a membrane-targeting sequence did not activate PAK in adherent cells, while mutations that forced membrane targeting restored PAK activation in suspended cells. In vitro, V12 Rac showed greater binding to membranes from adherent relative to suspended cells, indicating that cell adhesion regulated membrane binding sites for Rac. These results show that ECM regulates the ability of Rac to couple with PAK via an effect on membrane binding sites that facilitate their interaction.  相似文献   

20.
Nutrients are essential for living organisms because they fuel biological processes in cells. Cells monitor nutrient abundance and coordinate a ratio of anabolic and catabolic reactions. Mechanistic target of rapamycin (mTOR) signaling is the essential nutrient-sensing pathway that controls anabolic processes in cells. The central component of this pathway is mTOR, a highly conserved and essential protein kinase that exists in two distinct functional complexes. The nutrient-sensitive mTOR complex 1 (mTORC1) controls cell growth and cell size by phosphorylation of the regulators of protein synthesis S6K1 and 4EBP1, whereas its second complex, mTORC2, regulates cell proliferation by functioning as the regulatory kinase of Akt and other members of the AGC kinase family. The regulation of mTORC2 remains poorly characterized. Our study shows that the cellular ATP balance controls a basal kinase activity of mTORC2 that maintains the integrity of mTORC2 and phosphorylation of Akt on the turn motif Thr-450 site. We found that mTOR stabilizes SIN1 by phosphorylation of its hydrophobic and conserved Ser-260 site to maintain the integrity of mTORC2. The optimal kinase activity of mTORC2 requires a concentration of ATP above 1.2 mm and makes this kinase complex highly sensitive to ATP depletion. We found that not amino acid but glucose deprivation of cells or acute ATP depletion prevented the mTOR-dependent phosphorylation of SIN1 on Ser-260 and Akt on Thr-450. In a low glucose medium, the cells carrying a substitution of SIN1 with its phosphomimetic mutant show an increased rate of cell proliferation related to a higher abundance of mTORC2 and phosphorylation of Akt. Thus, the homeostatic ATP sensor mTOR controls the integrity of mTORC2 and phosphorylation of Akt on the turn motif site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号