首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 814 毫秒
1.
The REG homologs, alpha, beta and gamma, activate mammalian proteasomes in distinct ways. REGalpha and REGbeta activate the trypsin-like, chymotrypsin-like and peptidylglutamyl-preferring active sites, whereas REGgamma only activates the proteasome's trypsin-like subunit. The three REG homologs differ in carboxyl-terminal sequences that are located next to activation loops on their proteasome binding surface. To assess the importance of these carboxyl-terminal sequences in the activation of specific proteasome beta catalytic subunits, we characterized chimeras in which 8 or 12 residues were exchanged among the three proteins. Like the wild-type molecule, REGalpha chimeras activated all three proteasome catalytic subunits regardless of the carboxyl-terminal sequence. However, REGalpha-beta chimeras activated the proteasome at lower concentrations than wild-type REGalpha and higher levels of REGalpha-gamma chimeras were needed for maximal activation because exchanged carboxyl-terminal sequences can stabilize (REGalpha-beta) or destabilize (REGalpha-gamma) the REGalpha heptamer. REGgamma chimeras were equivalent to REGgamma in their activation properties, but they bound the proteasome less tightly than the wild-type molecule. REGbeta chimeras also bound the proteasome more weakly than wild-type REGbeta and were virtually unable to activate it. Our findings demonstrate that the carboxyl-terminal sequences of REG subunits can affect heptamer stability and proteasome affinity, but they do not determine which proteasome beta subunits become activated.  相似文献   

2.
11S REGs (PA28s) are multimeric rings that bind proteasomes and stimulate peptide hydrolysis. Whereas REGalpha activates proteasomal hydrolysis of peptides with hydrophobic, acidic or basic residues in the P1 position, REGgamma only activates cleavage after basic residues. We have isolated REGgamma mutants capable of activating the hydrolysis of fluorogenic peptides diagnostic for all three active proteasome beta subunits. The most robust REGgamma specificity mutants involve substitution of Glu or Asp for Lys188. REGgamma(K188E/D) variants are virtually identical to REGalpha in proteasome activation but assemble into less stable heptamers/hexamers. Based on the REGalpha crystal structure, Lys188 of REGgamma faces the aqueous channel through the heptamer, raising the possibility that REG channels function as substrate-selective gates. However, covalent modification of proteasome chymotrypsin-like subunits by 125I-YL3-VS demonstrates that REGgamma(K188E)'s activation of all three proteasome active sites is not due to relaxed gating. We propose that decreased stability of REGgamma(K188E) heptamers allows them to change conformation upon proteasome binding, thus relieving inhibition of the CT and PGPH sites normally imposed by the wild-type REGgamma molecule.  相似文献   

3.
We report the cloning and characterization of a Drosophila proteasome 11 S REGgamma (PA28) homolog. The 28-kDa protein shows 47% identity to the human REGgamma and strongly enhances the trypsin-like activities of both Drosophila and mammalian 20 S proteasomes. Surprisingly, the Drosophila REG was found to inhibit the proteasome's chymotrypsin-like activity against the fluorogenic peptide succinyl-LLVY-7-amino-4-methylcoumarin. Immunocytological analysis reveals that the Drosophila REG is localized to the nucleus but is distributed throughout the cell when nuclear envelope breakdown occurs during mitosis. Through site-directed mutagenesis studies, we have identified a functional nuclear localization signal present in the homolog-specific insert region. The Drosophila PA28 NLS is similar to the oncogene c-Myc nuclear localization motif. Comparison between uninduced and innate immune induced Drosophila cells suggests that the REGgamma proteasome activator has a role independent of the invertebrate immune system. Our results support the idea that gamma class proteasome activators have an ancient conserved function within metazoans and were present prior to the emergence of the alpha and beta REG classes.  相似文献   

4.
We previously demonstrated that the proteasome activator REGgamma directs degradation of the steroid receptor coactivator SRC-3 by the 20S proteasome in an ATP- and ubiquitin-independent manner. Our efforts to identify additional endogenous direct targets of the REGgamma proteasome revealed that p21(Waf/Cip1), a central cyclin-dependent kinase inhibitor, is another endogenous target. Gain-of-function analysis, RNAi knockdown, REGgamma-deficient MEF analysis, and pulse-chase experiments substantiate that REGgamma promotes degradation of unbound p21. Cell-free proteasome proteolysis assays using purified REGgamma, p21, and the 20S proteasome confirm that REGgamma directly mediates degradation of free p21 in an ATP- and ubiquitin-independent manner. Depletion of REGgamma in a thyroid carcinoma cell line results in cell-cycle and proliferative alterations. Our study reveals that, in addition to degrading the SRC-3 growth coactivator, REGgamma also has a role in the regulation of the cell cycle through its ability to influence the level of a cell-cycle regulator(s).  相似文献   

5.
Two gamma-aminobutyric acid(A) (GABA(A)) receptor chimeras were designed in order to elucidate the structural requirements for GABA(A) receptor desensitization and assembly. The (alpha1/gamma2) and (gamma2/alpha1) chimeric subunits representing the extracellular N-terminal domain of alpha1 or gamma2 and the remainder of the gamma2 or alpha1 subunits, respectively, were expressed with beta2 and beta2gamma2 in Spodoptera frugiperda (Sf-9) cells using the baculovirus expression system. The (alpha1/gamma2)beta2 and (alpha1/gamma2)beta2gamma2 but not the (gamma2/alpha1)beta2 and (gamma2/alpha1)beta2gamma2 subunit combinations formed functional receptor complexes as shown by whole-cell patch-clamp recordings and [3H]muscimol and [3H]flunitrazepam binding. Moreover, the surface immunofluorescence staining of Sf-9 cells expressing the (alpha1/gamma2)-containing receptors was pronounced, as opposed to the staining of the (gamma2/alpha1)-containing receptors, which was only slightly higher than background. To explain this, the (alpha1/gamma2) and (gamma2/alpha1) chimeras may act like alpha1 and gamma2 subunits, respectively, indicating that the extracellular N-terminal segment is important for assembly. However, the (alpha1/gamma2) chimeric subunit had characteristics different from the alpha1 subunit, since the (alpha1/gamma2) chimera gave rise to no desensitization after GABA stimulation in whole-cell patch-clamp recordings, which was independent of whether the chimera was expressed in combination with beta2 or beta2gamma2. Surprisingly, the (alpha1/gamma2)(gamma2/alpha1)beta2 subunit combination did desensitize, indicating that the C-terminal segment of the alpha1 subunit may be important for desensitization. Moreover, desensitization was observed for the (alpha1/gamma2)beta2gamma2 receptor with respect to the direct activation by pentobarbital. This suggests differences in the mechanism of channel activation for pentobarbital and GABA.  相似文献   

6.
7.
Activity of the 20S proteasome, which performs much of the cytosolic and nuclear proteolysis in eukaryotic cells, is controlled by regulatory complexes that bind to one or both ends of the cylindrical proteasome. One of these complexes, the 11S regulator (REG), is a complex of 28 kDa subunits that is thought to activate proteasomes toward the production of antigenic peptides. REG, purified from red blood cells, is a complex of REG alpha and REG beta subunits. We have crystallized recombinant REG alpha (rREG alpha) and collected diffraction data to 3.0 A resolution. The self-rotation function indicates that rREG alpha forms a heptameric ring in the crystal. Equilibrium sedimentation demonstrates that rREG alpha is a heptamer in solution also.  相似文献   

8.
The proteasome activation properties of recombinant REG gamma molecules depend on purification procedures. Prior to ammonium sulfate precipitation recombinant REG gamma activates the trypsin-like catalytic subunit of the proteasome; afterwards it activates all three catalytic subunits. The expanded activation specificity is accompanied by reduced stability of the REG gamma heptamer providing support for the idea that a "tight" REG gamma heptamer suppresses the proteasome's chymotrypsin-like and postglutamyl-preferring active sites. In an attempt to determine whether REG gamma synthesized in mammalian cells also exhibits restricted activation properties, extracts were prepared from several mammalian organs and cell lines. Surprisingly, endogenous REG gamma was found to be largely monomeric. In an alternate approach, COS7 cells were cotransfected with plasmids expressing FLAG-REG gamma and REG gamma. The expressed FLAG-REG gamma molecules were shown to form oligomers with untagged REG gamma subunits, and the mixed oligomers preferentially activated the proteasome's trypsin-like subunit. Thus, REG gamma molecules synthesized in mammalian cells also exhibit restricted activation properties.  相似文献   

9.
PA28 or 11S REG is a proteasome activator composed of homologous alpha- and beta-subunits and predominantly found in the cytosol. A homologous protein originally known as the Ki antigen but now called PA28gamma or REGgamma is predominantly localized in the nucleus. To further characterize the biochemical properties of PA28gamma, we expressed and purified homogenous recombinant human protein with and without an N-terminal 6-His extension. PA28gamma is a heptamer based on the molecular masses of the native and monomeric proteins. The heptameric 6-His fusion protein can dimerize. Recombinant PA28y stimulates the proteasome-mediated hydrolysis of synthetic substrates containing hydrophobic, basic, and acidic amino acids in the P1 position. Stimulation is dependent on substrate size. PA28y only minimally stimulates degradation of the oxidized B chain of insulin. PA28gamma may facilitate the later stages of protein metabolism in the nucleus and/or have a more specialized role in controlling the levels of biologically active peptides in the nucleus.  相似文献   

10.
The proteasome activator 11S REG or PA28 is a conical molecule composed of two homologous subunits, REG alpha and REG beta. Recombinant REG alpha forms a heptamer, whereas recombinant REG beta is a monomer. When mixed with REG beta, a monomeric REG alpha mutant (N50Y) forms an active hetero-oligomer in which the molar ratio of REG beta to REG alpha(N50Y) is close to 1.3. This apparent stoichiometry is consistent with the REG alpha(N50Y)/REG beta hetero-oligomer being a heptamer composed of three alpha and four beta subunits. Chemical cross-linking of the alpha/beta oligomers revealed the presence of REG alpha-REG beta and REG beta-REG beta dimers, but REG alpha-REG alpha dimers were not detected. The mass of the REG alpha(N50Y)/REG beta hetero-oligomer determined by electrospray ionization time-of-flight mass spectrometry (ESI-TOF MS) is 194 871 +/- 40 Da in good agreement with the theoretical mass of 194 856 Da for an alpha 3 beta 4 heptamer. Hexamers were not observed in the mass spectrum. For wild-type REG subunits coexpressed in bacteria cells at an apparent beta/alpha molar ratio of approximately 1.2, the resulting hetero-oligomers observed by ESI-TOF MS were again predominantly alpha 3 beta 4 heptamers, with trace amounts of alpha 4 beta heptamers also present. On the other hand, the mass spectrum contained a mixture of alpha 7, alpha 6 beta 1, alpha 5 beta 2, and alpha 4 beta 3 heptamers when the REG beta/REG alpha ratio was 0.1. Thus, formation of heptamers is an intrinsic property of recombinant REG alpha and REG beta subunits. On the basis of these results, we propose that 11S REG purified directly from eukaryotic cells is also heptameric, likely alpha 3 beta 4 or a mixture of alpha 3 beta 4 and alpha 4 beta 3 species.  相似文献   

11.
AMP-activated protein kinase (AMPK) is an important metabolic stress-sensing protein kinase responsible for regulating metabolism in response to changing energy demand and nutrient supply. Mammalian AMPK is a stable alphabetagamma heterotrimer comprising a catalytic alpha and two non-catalytic subunits, beta and gamma. The beta subunit targets AMPK to membranes via an N-terminal myristoyl group and to glycogen via a mid-molecule glycogen-binding domain. Here we find that the conserved C-terminal 85-residue sequence of the beta subunit, beta1-(186-270), is sufficient to form an active AMP-dependent heterotrimer alpha1beta1-(186-270)-gamma1, whereas the 25-residue beta1 C-terminal (246-270) sequence is sufficient to bind gamma1, gamma2, or gamma3 but not the alpha subunit. Deletion of the beta C-terminal Ile-270 precludes betagamma association in the absence of the alpha subunit, but the presence of the alpha subunit or substitution of Ile-270 with Ala or Glu restores betagamma binding. Truncation of the alpha subunit reveals that beta1 binding requires the alpha1-(313-473) sequence. The conserved C-terminal 85-residue sequence of the beta subunit (90% between beta1 and beta2) is the primary alphagamma binding sequence responsible for the formation of the AMPK alphabetagamma heterotrimer.  相似文献   

12.
Members of the phospholipase C-beta (PLC-beta) family of proteins are activated either by G alpha or G beta gamma subunits of heterotrimeric G proteins. To define specific regions of PLC-beta 3 that are involved in binding and activation by G beta gamma, a series of fragments of PLC-beta 3 as glutathione-S-transferase (GST) fusion proteins were produced. A fragment encompassing the N-terminal pleckstrin homology (PH) domain and downstream sequence (GST-N) bound to G protein beta 1 gamma 2 in an in vitro binding assay, and binding was inhibited by G protein alpha subunit, G alpha i1. This PLC-beta 3 fragment also inhibited G beta gamma-stimulated PLC-beta activity in a reconstitution system, while having no significant effect on G alpha q-stimulated PLC-beta 3 activity. The N-terminal G beta gamma binding region was delineated further to the first 180 amino acids, and the sequence Asn150-Ser180, just distal to the PH domain, was found to be required for the interaction. Mutation of basic residues 154Arg, 155Lys, 159Lys, and 161Lys to Glu within this region reduced G beta gamma binding affinity and specifically reduced the EC50 for G beta gamma-dependent activation of the mutant enzyme 3-fold. Basal activity and G alpha q-dependent activation of the enzyme were unaffected by the mutations. While these basic residues may not directly mediate the interaction with G beta gamma, the data provide evidence for an N-terminal G beta gamma binding region of PLC-beta 3 that is involved in activation of the enzyme.  相似文献   

13.
Gs and Gi, respectively, activate and inhibit the enzyme adenylyl cyclase. Regulation of adenylyl cyclase by the heterotrimeric Gs and Gi proteins requires the dissociation of GDP and binding of GTP to the alpha s or alpha i subunit. The beta gamma subunit complex of Gs and Gi functions, in part, to inhibit GDP dissociation and alpha subunit activation by GTP. Multiple beta and gamma polypeptides are expressed in different cell types, but the functional significance for this heterogeneity is unclear. The beta gamma complex from retinal rod outer segments (beta gamma t) has been shown to discriminate between alpha i and alpha s subunits (Helman et al: Eur J Biochem 169:431-439, 1987). beta gamma t efficiently interacts with alpha i-like G protein subunits, but poorly recognizes the alpha s subunit. beta gamma t was, therefore, used to define regions of the alpha i subunit polypeptide that conferred selective regulation compared to the alpha s polypeptide. A series of alpha subunit chimeras having NH2-terminal alpha i and COOH-terminal alpha s sequences were characterized for their regulation by beta gamma t, measured by the kinetics of GTP gamma S activation of adenylyl cyclase. A 122 amino acid NH2-terminal region of the alpha i polypeptide encoded within an alpha i/alpha s chimera was sufficient for beta gamma t to discriminate the chimera from alpha s. A shorter 54 amino acid alpha i sequence substituted for the corresponding NH2-terminal region of alpha s was insufficient to support the alpha i-like interaction with beta gamma t. The findings are consistent with our previous observation (Osawa et al: Cell 63:697-706, 1990) that a region in the NH2-terminal moiety functions as an attenuator domain controlling GDP dissociation and GTP activation of the alpha subunit polypeptide and that the attenuator domain is involved in functional recognition and regulation by beta gamma complexes.  相似文献   

14.
Heterotrimeric guanine nucleotide-binding proteins (G proteins) consisting of alpha, beta, and gamma subunits mediate signalling between cell surface receptors and intracellular effectors in eukaryotic cells. To define signalling functions of G gamma subunits (STE18 gene product) involved in pheromone response and mating in the yeast Saccharomyces cerevisiae, we isolated and characterized dominant-negative STE18 alleles. We obtained dominant-negative mutations that disrupt C-terminal sequences required for prenylation of G gamma precursors (CAAX box) and that affect residues in the N-terminal half of Ste18p. Overexpression of mutant G gamma subunits in wild-type cells blocked signal transduction; this effect was suppressed upon overexpression of G beta subunits. Mutant G gamma subunits may therefore sequester G beta subunits into nonproductive G beta gamma dimers. Because mutant G gamma subunits blocked the constitutive signal resulting from disruption of the G alpha subunit gene (GPA1), they are defective in functions required for downstream signalling. Ste18p bearing a C107Y substitution in the CAAX box displayed reduced electrophoretic mobility, consistent with a prenylation defect. G gamma subunits carrying N-terminal substitutions had normal electrophoretic mobilities, suggesting that these proteins were prenylated. G gamma subunits bearing substitutions in their N-terminal region or C-terminal CAAX box (C107Y) supported receptor-G protein coupling in vitro, whereas C-terminal truncations caused partial defects in receptor coupling.  相似文献   

15.
About 1800 sequences of gene promoters, enhancers and other types of regulatory elements (REG) have been statistically analysed for investigation of a role for enzymatic DNA methylation in prokaryotes, yeasts, plants, invertebrates, animal viruses, vertebrates and human. The frequencies and localizations of CG and CNG methylated sites and also the number of CG-->TG+CA transitions in different series of REGs have been studied. It was showed that the pro- and eukaryotic REGs with the exception of yeast and drosophila ones have higher CpG-suppression values than the main genome in the same species. About 40% of all the point substitutions in pro- and eukaryotic REGs were found in the CG and CNG methylated sites, that are "hot spots" for C-->T transitions. More than 30% of all analysed REGs have neither sites CG nor CNG and so they are not capable of methylation in vivo. The methylated sites have not been localized in any specific regions of promoters and other types of REGs nor in the flanking sequences of the same genes. Only part of the homological REG's sequences have CG and CNG methylated sites. Therefore the methylation of cytosine residues in any REGs may be not an obligatory condition for normal regulation of the REG activity in cells. Two main REG's families of different length were unexpectedly found in the study. The length of the first one is 9-12 n. and the second is 17-20 n. The families are about 60-80% of other REGs. The essential deficiency of cytosine residues and also triplets of CGG, CCG, CTG and CAG has been showed in the "sense" chain of the REGs. The chain has some abundance of TTG, CCA and CAA triplets. The REG's chains have a strong asymmetry in purine and pyrimidine contents and also in duplets TG and CA frequencies. It may be the result of different reparation effectivity of G-T pairs produced by 5-meC residues deamination in DNA complementary chains. Therefore cytosine methylation in REGs may strongly destabilize the structure, accelerate its divergence in evolution, and disturb the REGs binding with protein factors regulating activity of the genes. The results showed that a function of DNA enzymatic methylation may be hardly realized through the modification of gene regulatory elements.  相似文献   

16.
17.
Yokoyama K  Zhang XP  Medved L  Takada Y 《Biochemistry》1999,38(18):5872-5877
Integrin alpha v beta 3, a widely distributed fibrinogen receptor, recognizes the RGD572-574 motif in the alpha chain of human fibrinogen. However, this motif is not conserved in other species, nor is it required for alpha v beta 3-mediated fibrin clot retraction, suggesting that fibrinogen may have other alpha v beta 3 binding sites. Fibrinogen has conserved C-terminal domains in its alpha (E variant), beta, and gamma chains (designated alpha EC, beta C, and gamma C, respectively), but their function in cell adhesion is not known, except that alpha IIb beta 3, a platelet fibrinogen receptor, binds to the gamma C HHLGGAKQAGDV400-411 sequence. Here we used mammalian cells expressing recombinant alpha v beta 3 to show that recombinant alpha EC and gamma C domains expressed in bacteria specifically bind to alpha v beta 3. Interaction between alpha v beta 3 and gamma C or alpha EC is blocked by LM609, a function-blocking anti-alpha v beta 3 mAb, and by RGD peptides. alpha v beta 3 does not require the HHLGGAKQAGDV400-411 sequence of gamma C for binding, and alpha EC does not have such a sequence, indicating that the alpha v beta 3 binding sites are distinct from those of alpha IIb beta 3. A small fragment of gamma C (residues 148-226) supports alpha v beta 3 adhesion, suggesting that an alpha v beta 3 binding site is located within the gamma chain 148-226 region. We have reported that the CYDMKTTC sequence of beta 3 is responsible for the ligand specificity of alpha v beta 3. gamma C and alpha EC do not bind to wild-type alpha v beta 1, but do bind to the alpha v beta 1 mutant (alpha v beta 1-3-1), in which the CYDMKTTC sequence of beta 3 is substituted for the corresponding beta 1 sequence CTSEQNC. This suggests that gamma C and alpha EC contain determinants for fibrinogen's specificity to alpha v beta 3. These results suggest that fibrinogen has potentially significant novel alpha v beta 3 binding sites in gamma C and alpha EC.  相似文献   

18.
To further identify amino acid domains involved in the ligand binding specificity of alpha(IIb)beta(3), chimeras of the conserved calcium binding domains of alpha(IIb) and the alpha subunit of the fibronectin receptor alpha(5)beta(1) were constructed. Chimeras that replaced all four calcium binding domains, replaced all but the second calcium binding domain of alpha(IIb) with those of alpha(5), or deleted all four calcium binding domains were synthesized but not expressed on the cell surface. Additional chimeras exchanged subsets or all of the variant amino acids in the second calcium binding domain, a region implicated in ligand binding. Cell surface expression of each second calcium binding domain mutant complexed with beta(3) was observed. Each second calcium binding domain mutant was able to 1) bind to immobilized fibrinogen, 2) form fibrinogen-dependent aggregates after treatment with dithiothreitol, and 3) bind the activation-dependent antibody PAC1 after LIBS 6 treatment. Soluble fibrinogen binding studies suggested that there were only small changes in either the K(d) or B(max) of any mutant. We conclude that chimeras of alpha(IIb) containing the second calcium binding domain sequences of alpha(5) are capable of complexing with beta(3), that the complexes are expressed on the cell surface, and that mutant complexes are capable of binding both immobilized and soluble fibrinogen, suggesting that the second calcium binding domain does not determine ligand binding specificity.  相似文献   

19.
Human C8 is one of five components of the membrane attack complex of complement. It is an oligomeric protein composed of three subunits (C8 alpha, C8 beta, and C8 gamma) that are derived from different genes. C8 alpha and C8 beta are homologous and both contain a pair of tandemly arranged N-terminal modules [thrombospondin type 1 (TSP1) + low-density lipoprotein receptor class A (LDLRA)], an extended middle segment referred to as the membrane attack complex/perforin region (MACPF), and a pair of C-terminal modules [epidermal growth factor (EGF) + TSP1]. During biosynthetic processing, C8 alpha and C8 gamma associate to form a disulfide-linked dimer (C8 alpha-gamma) that binds to C8 beta through a site located on C8 alpha. In this study, the location of binding sites for C8 beta and C8 gamma and the importance of the modules in these interactions were investigated by use of chimeric and truncated forms of C8 alpha in which module pairs were either exchanged for those in C8 beta or deleted. Results show that exchange or deletion of one or both pairs of modules does not abrogate the ability of C8 alpha to form a disulfide-linked dimer when coexpressed with C8 gamma in COS cells. Furthermore, each chimeric and truncated form of C8 alpha-gamma retains the ability to bind C8 beta; however, only those containing the TSP1 + LDLRA modules from C8 alpha are hemolytically active. These results indicate that binding sites for C8 beta and C8 gamma reside within the MACPF region of C8 alpha and that interaction with either subunit is not dependent on the modules. They also suggest that the N-terminal modules in C8 alpha are important for C9 binding and/or expression of C8 activity.  相似文献   

20.
Protein kinase C-associated kinase (PKK) is a recently described kinase of unknown function that was identified on the basis of its specific interaction with PKC beta. PKK contains N-terminal kinase and C-terminal ankyrin repeats domains linked to an intermediate region. Here we report that the kinase domain of PKK is highly homologous to that of two mediators of nuclear factor-kappa B (NF-kappa B) activation, RICK and RIP, but these related kinases have different C-terminal domains for binding to upstream factors. We find that expression of PKK, like RICK and RIP, induces NF-kappa B activation. Mutational analysis revealed that the kinase domain of PKK is essential for NF-kappa B activation, whereas replacement of serine residues in the putative activation loop did not affect the ability of PKK to activate NF-kappa B. A catalytic inactive PKK mutant inhibited NF-kappa B activation induced by phorbol ester and Ca(2+)-ionophore, but it did not block that mediated by tumor necrosis factor alpha, interleukin-1 beta, or Nod1. Inhibition of NF-kappa B activation by dominant negative PKK was reverted by co-expression of PKC beta I, suggesting a functional association between PKK and PKC beta I. PKK-mediated NF-kappa B activation required IKK alpha and IKK beta but not IKK gamma, the regulatory subunit of the IKK complex. Moreover, NF-kappa B activation induced by PKK was not inhibited by dominant negative Bimp1 and proceeded in the absence of Bcl10, two components of a recently described PKC signaling pathway. These results suggest that PKK is a member of the RICK/RIP family of kinases, which is involved in a PKC-activated NF-kappa B signaling pathway that is independent of Bcl10 and IKK gamma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号